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Abstract

The joint probability model proposed by
Marcu and Wong (2002) provides a strong
probabilistic framework for phrase-based
statistical machine translation (SMT). The
model’s usefulness is, however, limited
by the computational complexity of es-
timating parameters at the phrase level.
We present a method of constraining the
search space of the joint probability model
based on statistically and linguistically
motivated word alignments. This method
reduces the complexity and size of the
joint model and allows it to display per-
formance superior to the standard phrase-
based models.

1 Introduction

Machine translation is a hard problem because of
the highly complex, irregular and diverse nature
of natural languages. It is impossible to accurately
model all the linguistic rules that shape the trans-
lation process, and therefore a principled approach
uses statistical methods to make optimal decisions
given incomplete data.

The original IBM Models (Brown et al., 1993)
learned only word-to-word alignment probabili-
ties which made it computationally feasible to es-
timate model parameters from large amounts of
training data. Phrase-based SMT models, such
as the alignment template model (Och, 2003),
improve on word-based models because phrases
provide local context which leads to better lex-
ical choice and more reliable local reordering.
However, most phrase-based models extract their
phrase pairs from previously word-aligned cor-
pora using ad-hoc heuristics. These models per-
form no search for optimal phrasal alignments.

Even though this is an efficient strategy, it is a de-
parture from the rigourous statistical framework of
the IBM Models.

Marcu and Wong (2002) proposed the joint
probability model which directly estimates the
phrase translation probabilities from the corpus in
a theoretically governed way. This model neither
relies on potentially sub-optimal word alignments
nor on heuristics for phrase extraction. Instead, it
searches the phrasal alignment space, simultane-
ously learning translation lexicons for both words
and phrases. The joint model has been shown to
outperform standard models on restricted data sets
such as the small data track for Chinese-English in
the 2004 NIST MT Evaluation (Przybocki, 2004).

However, considering all possible phrases and
all their possible alignments vastly increases the
computational complexity of the joint model when
compared to its word-based counterpart. This re-
sults in prohibitively slow training and heavy use
of memory resources. The large size of the model
means that only a very small proportion of the
alignment space can be searched, and this reduces
the chances of finding optimum parameters. Fur-
thermore, the complexity of the joint model makes
it impossible to scale up to the larger training cor-
pora available today, preventing the model from
being more widely adopted.

In this paper, we propose a method of constrain-
ing the search space of the joint model to areas
where most of the unpromising phrasal alignments
are eliminated and yet as many potentially useful
alignments as possible are still explored. The joint
model is constrained to phrasal alignments which
do not contradict a set high confidence word align-
ments for each sentence. These high confidence
alignments can incorporate information from both
statistical and linguistic sources. We show that by



using the points of high confidence from the in-
tersection of the bi-directional Viterbi alignments
to reduce complexity, translation quality also im-
proves. We also show that the addition of linguis-
tic information from a machine readable dictio-
nary and aligning identical words further improves
the model.

Apart from the large memory requirements of
the joint model, it is computationally very expen-
sive to train. We describe a modification to the
Expectation Maximisation (EM) algorithm which
greatly increases the speed of the training without
compromising the quality of the resulting transla-
tions.

2 Models

2.1 Standard Phrase-based Model

Most phrase-based models (Och, 2003; Koehn et
al., 2003; Vogel et al., 2003) rely on a pre-existing
set of word-based alignments from which they in-
duce their parameters. In this project we use the
model described by Koehn et al. (2003) which ex-
tracts its phrase alignments from a corpus that has
been word aligned. From now on we refer to this
phrase-based model as the standard model.

The standard model decomposes the foreign
input sentence F' into a sequence of I phrases
fi,-.., f;. All segmentations are assumed to be
equally probable. Each foreign phrase f; is trans-
lated to an English phrase €; using the probability
distribution 6(f;|e;). English phrases may be re-
ordered using a relative distortion probability d(-).
The model is defined as follows:

I
p(F|B) = [[o(Filend() (1)

i=1
As alignments between phrases are constructed
from word alignments, there is no summing over
possible alignments. This model performs no
search for optimal phrase pairs. Instead, it ex-
tracts phrase pairs (f;,€;) in the following man-
ner. First, it uses the IBM Models to learn the
Viterbi alignments for English to Foreign and For-
eign to English. It then uses a heuristic to recon-
cile the two alignments, starting from the points
of high confidence in the intersection of the two
Viterbi alignments and growing towards the points
in the union. Points from the union are selected if
they are adjacent to points from the intersection
and their words are previously unaligned. Koehn

et al. (2003) discusses and compares variations on
this strategy.

Phrases are then extracted by selecting phrase
pairs which are ‘consistent’ with the symmetrised
alignment. Here ‘consistent’ means that all words
within the source language phrase are only aligned
to the words of the target language phrase and vice
versa. Finally the phrase translation probability
distribution is estimated using the relative frequen-
cies of the extracted phrase pairs.

This approach to phrase extraction means that
phrasal alignments are locked into the sym-
metrised alignment. This is problematic for two
reasons: firstly, the symmetrisation process will
grow an alignment based on arbitrary decisions
about adjacent words, and secondly, because word
alignments inadequately represent the real depen-
dencies between translations.

In Figure 1 we can see an example of sym-
metrization from the German-English Europarl
corpus when training the standard model on nearly
500,000 sentences.

Figure 1 highlights the problems of modelling
the translation process using word alignments.
Parallel sentences are often not literally translated:
some words are dropped, like ‘entsprechenden
(appropriate)’, and some have been translated in
a way for which there is no word alignment possi-
ble, like the words in ‘with regard to’. The points
from the intersection are mostly correct, and the
symmetrization process adds some new points cor-
rectly. For instance, the word ‘on’ correctly gets
added to alignment with ‘aushéndigen’ to create
the phrase ‘passing on’. However, further words
get incorrectly aligned because they are adjacent
to points on the symmetrized alignment, such as °,
damit’ with ‘to’.

Locking the set of phrase pairs into the sym-
metrized alignment is clearly not ideal. By heuris-
tically creating phrasal alignments from Viterbi
word-level alignments, we throw away a great deal
of the information that was estimated when learn-
ing word alignment parameters and we can intro-
duce errors. With the joint model one can search
areas of the alignment space. Common phrases
such as ‘with regard to’ are treated as a unit, im-
proving its chances of finding good parameters.
This allows us to learn a distribution of possible
phrasal alignments that better handles the uncer-
tainty inherent in the translation process.
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Figure 1. Example of symmetrisation which illustrates that errors can be introduced through heuristic merging, e.g.

‘, damit’ is aligned with ‘to’

2.2 Joint Probability Model

The joint probability model (Marcu and Wong,
2002), does not rely on a pre-existing set of word-
level alignments. Like the IBM Models, it uses
Expectation Maximisation to align and estimate
the probabilities for sub-sentential units in a par-
allel corpus. Unlike the IBM Models, it does not
constrain the alignments to being single words.

The basic model is defined as follows. Phrases
are created from words and commonly occurring
sequences of words. Concepts, c;, are defined
as a pair of aligned phrases < &;, f;, >. A set
of concepts which completely covers the sentence
pair is denoted by C'. Phrases are restricted to be-
ing sequences of words which occur above a cer-
tain frequency in the corpus. Commonly occur-
ring phrases are more likely to lead to the creation
of useful phrase pairs, and without this restriction
the search space would be much larger.

The probability of a sentence and its translation
is the sum of all possible alignments, C each of
which is defined as the product of the probability
of all individual concepts:

p(<e f;i>) (2

p(F,E):Z H

CeC <;,f,>eC

The model is trained by initialising the transla-
tion table and then performing EM as described
below.

2.2.1 Initialising Translation Table

Before starting EM all phrasal alignments are
assumed to be equally probable. Under these cir-
cumstances, the probability of a concept ¢; in sen-
tences (E, F') is equal to the number of phrasal
alignments which contain this concept divided by
the total number of phrasal alignments that can be
built between the two sentences. This probability
can be approximated by using the lengths of the
two phrases and the lengths of the two sentences
with Stirling numbers of the second kind as de-
scribed by Marcu and Wong (2002). We are thus
able to initialise all possible alignments.

The size of the translation table is largely deter-
mined by the initialisation phase, and so it greatly
impacts on the scalability of the model.

2.2.2 Expectation Maximisation

After initialising the translation parameters,
alignments will have different probabilities. It is
no longer possible to collect fractional counts over
all possible alignments in polynomial time. EM
is therefore performed approximately to improve
parameters and increase the probability of the cor-
pus.

An iteration of EM starts by creating an ini-
tial phrasal alignment of high probability. This is
done by selecting the highest probability concepts
that cover the sentence pair. Then the model hill-
climbs towards the optimal Viterbi alignment by
using a set of modifying operations. These oper-
ations break and merge concepts, swap words be-
tween concepts and move words across concepts.



The model calculates the probabilities associated
with all alignments generated in this process and
collects fractional counts for the concepts based
on these probabilities.

2.2.3 Complexity

Training the IBM models is computationally
challenging, but the joint model is much more de-
manding. Considering all possible segmentations
of phrases and all their possible alignments vastly
increases the number of possible alignments that
can be formed between two sentences.

E Length | F' Length No. Alignments
5 5 6721
10 10 818288740923
20 20 4.4145633531e+32
40 40 2.7340255177e+83

Table 1. The number of possible phrasal alignments for
sentence pairs calculated using Stirling numbers of the
second kind.

Table 1 shows just how many phrasal align-
ments are possible between sentences of different
length. Even for medium length sentences that
are 20 words in lengths, the total number of align-
ments is huge. Apart from being intractable, when
one has a very large parameter estimation space
the EM algorithm struggles to discover good pa-
rameters. Pereira and Schabes (1992) proposed a
method for dealing with this problem for PCFG
estimation from treebanks. They encouraged the
probabilities into good regions of the parameter
space by constraining the search to only consider
parses that did not cross Penn-Treebank nodes.

3 Constraining the Joint Model

The Joint Model requires a strategy for restricting
the search for phrasal alignments to areas of the
alignment space which contain most of the prob-
ability mass. We propose a method which exam-
ines phrase pairs that are consistent with the set of
high confidence word alignments defined for the
sentence. By ‘consistent’ we mean that for a con-
cept < €;, f; > to be valid, we make sure that if
any word in €; is part of a high confidence align-
ment, then the word to which it is aligned must be
included in f; and vice versa. Phrases must still
occur above a certain frequency in the corpus to
be considered.

The constraints on the model are applied during
the initialisation phase of the training. During EM,

it would be very computationally expensive to en-
force constraints and there would be less benefit as
only high probability alignments are visited.

3.1 1IBM Constraints

The standard phrase-based model is based on a
complex series of models, parameters and heuris-
tics which allow it to be efficient. The joint prob-
ability model is a more principled and conceptu-
ally simpler model but it is very inefficient. By us-
ing the IBM Models to constrain the joint model,
we are searching areas in the phrasal alignment
space where both models overlap. We combine the
advantage of prior knowledge about likely word
alignments with the ability to perform a proba-
bilistic search around them.

The IBM constraints are the high confidence
word alignments that result from taking the in-
tersection of the bi-directional Viterbi alignments.
This strategy for extracting phrase pairs that are
coherent with the Viterbi alignments is similar to
that of the standard phrase-based model. How-
ever, the constrained joint model does not lock
the search into a heuristically derived symmetrized
alignment.
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Figure 2. The area of alignment space searched using
IBM constraints for an example sentence.

Figure 2 shows us the space searched by the
model for an example sentence. All valid con-
cepts are consistent with all high confidence
word alignments and either comprise of words
or commonly occurring phrases. The concept
<‘wir’,‘consider’> would break the high con-
fidence alignment between ‘wir’ and ‘we’ and
would therefore be invalid. We can also see
that the model searches more intensively areas



of the sentence about which there is little cer-
tainty. Searching over an area of lower probabil-
ity is preferable to using a heuristic to arbitrarily
align all unaligned words. Searching allows good
phrasal alignments to be discovered, for instance
< ‘das tiberpriifen’, ‘consider this’ >.

3.2 Linguistic Constraints

By constraining the joint model using high confi-
dence word alignments, any external knowledge
sources can be included into the probabilistic
framework. Linguistic constraints can be com-
bined to guide the training of the joint model. In
this paper we use a bilingual dictionary and iden-
tical words to contribute further alignment points.
These constraints are combined in a simple linear
fashion. First the IBM constraints are collected,
then identical words that do not contradict the IBM
alignments are aligned. Finally, word entries from
the dictionary are used to align as yet unaligned
words.

These linguistic constraints are useful with
small sets of training data, but for larger corpora,
dictionaries and identical words would contribute
less to the quality of the final translations. How-
ever, the advantage of being able to include any
knowledge about word alignments within a statis-
tical model is compelling.

4 Optimizing the Joint Model

4.1 Prior counts from Word-Aligned
Corpora

The joint probability model can only be trained
with small amounts of parallel data and conse-
quently the resulting parameters suffer from sparse
counts. In order to make fractional counts more re-
liable, we can include information which encodes
our prior belief about word-to-word alignments.
This is desirable as word alignments are less prone
to sparse statistics than phrasal alignments.

When training the joint model, we have initially
assumed a uniform probability across all possible
alignments. In a sentence, concepts of the same
size will be assigned the same fractional counts. If
one concept occurs more often over the entire cor-
pus, its final parameter value will be higher. How-
ever, when the training corpus is very small, it is
unlikely for the model to have seen representative
occurrences of the concepts.

In order to overcome this problem, the joint
model can use information about word-alignments

generated by the IBM models. A simple way to in-
clude this knowledge is to use the high confidence
points from the intersection of the bi-directional
Viterbi alignments. Concepts which contain many
points of high confidence will be more probable
than concepts of the same size which contain none.

We define a prior count which reflects the prob-
ability of the phrasal alignment given the high con-
fidence word alignments:

- lalign|

pe(e, f) = T

We divide the number of word alignments con-
tained within the concept by the total number of
possible word alignments for the concept, which
is equal to the length of the shorter of the two
phrases. We add a small fraction (0.1) to both
the numerator and the denominator to smooth and
avoid zero probabilities.

One way to include this prior count in the model
would be to calculate it separately and then use
it in the decoding process as one of the features
of the log linear model. This would be similar
to the lexical weighting employed by Koehn et
al. (2003). In the joint model, however, we must
perform EM and including these probabilities in
the training of the model will improve the overall
quality of alignments searched. These counts are
thus included in the initialisation phase of the joint
model training with the calculation of the frac-
tional counts:

fc(éa ?) = (1 - )\)p(é,?|E, F) + )‘pc(€7 ?)

The fractional count for each concept in each
sentence is calculated by interpolating the joint
probability of the concept, based on the Stirling
numbers, and the prior count, which reflects the
probability of the phrasal alignment given the
high confidence word alignments. The use of the
weight to balance the two contributions allows us
to adjust for differences in scale and our confi-
dence in each of the two measures. After testing
various settings for A\ the value 0.5 gave the best
Bleu scores. Callison-Burch et al. (2004) used
a similar technique for combining word and sen-
tence aligned data. However, they inserted data
from labelled word alignments which meant that
they did not need to sum over all possible align-
ments for a sentence pair.



4.2 Fast Hill-climbing

The constraints on the joint model reduce its size
by restricting the initialisation phase of the train-
ing. This is one of the two major drawbacks of the
model discussed by Marcu and Wong (2002). The
other major drawback is the computational cost of
the training procedure. Fast hill-climbing is nec-
essary to make EM training more tractable.

The joint model examines all possible swaps,
splits, merges and moves for the set of concepts
that have been selected as part of the initial align-
ment. Normal hill-climbing repeatedly performs a
very expensive search over all possible steps, se-
lecting the best step each time and applying it un-
til no further improvement is found. In fast hill-
climbing, instead of selecting only the best step,
we collects all the steps that improve the probabil-
ity of the initial phrasal alignment, and only search
once. We then apply them one by one to the initial
phrasal alignment.

This approach has the disadvantage of heavily
weighting the initial alignment. All alignments
generated during one iteration of EM are only one
step away from the initial alignment, so the counts
for the concepts in this alignment will be high.
This is a drastic change to Viterbi training, but
such measures are needed to reduce the training
time from nearly 5 hours to complete one iteration
of EM for just 5000 sentences.

5 Experiments

We used the German-English Europarl cor-
pus (Koehn, 2002) to perform our experiments.
Europarl contains proceedings from the European
Parliament covering the years 1996-2003. The test
set consisted of 1755 sentences which ranged from
5 to 15 words in length.

For the language model we used the SRI Lan-
guage Modelling Toolkit (Stolcke, 2002) to train
a trigram model on the English section of the Eu-
roparl corpus.

The first baseline used was the standard phrase-
based model (Koehn et al., 2003) with the default
feature set and options. The second baseline was
an implementation of the joint probability model
as described by Marcu and Wong (2002). We set
all the model’s maximum phrase length to four
words long.

To perform the translations we used the
Pharaoh (Koehn, 2004) beam search decoder ver-
sion 1.2.8, with all the standard settings. Our

evaluation metric was Bleu (Papineni et al., 2002)
which compares the output sentences with human
translated sentences using 4-gram precision.

We also perform experiments with a bilingual
dictionary which comes with Ding, an open source

translation program'.

6 Results

6.1 Fast Hill-climbing

EM training of the joint model was prohibitively
slow even for the smallest data sets, so the first
experiment explores the gains to be made by using
fast hill-climbing.
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Figure 3. Time taken for EM training in minutes per
iteration for 5,000 sentences on a machine with 2Gb
RAM and a 2.4GHz CPU

In Figure 3 we can see that fast hill-climbing
is much faster than the normal hill-climbing. We
have reduced the time taken to perform the first
iteration from nearly 5 hours to about 40 minutes,
which is about a factor of eight.
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The effect of fast hill-climbing on the quality of
translations can be seen in Figure 4. The default
method slightly outperforms fast hill-climbing for
the first few iterations, but then fast hill-climbing
overtakes it. The difference in performance be-
tween the two methods is small and we apply fast
hill-climbing in the remaining experiments.

6.2 IBM Constraints

6.3 Linguistic Constraints

The effect of adding linguistic constraints to the
IBM word constraints is shown in tables 4 and 5.

Corpus Size 10,000 | 20,000 | 40,000
Standard Model 95k 200k 405k
Joint + IBM + prior | 1,451k | 2,724k | 4,964k
+ Ident. 1,361k | 2,557k | 4,649k
+ Ident. + Dict. 1,096k | 2,079k | 3,834k

Table 4. Translation table size in number of phrase pairs

Corpus Size 10,000 | 20,000 | 40,000 when linguistic constraints are added to the joint model
Standard Model | 21.69 | 23.61 | 25.52
Joint Model 19.93 - -
+ IBM 22.13 | 23.08 | 24.16 Corpus Size 10,000 | 20,000 | 40,000
+ IBM + prior 22779 | 2433 | 2599 Standard Model 21.69 | 23.61 | 25.52
Table 2. Bl or th dol with 1BM Joint + IBM + prior | 22.79 | 2433 | 25.99
able 2. Bleu scores for the joint model wit con-
straints and prior counts, corpus size indicates number + Ident. ) 23.30 24.90 26.12
of sentence pairs + Ident. + Dict. 23.20 | 2496 | 26.13

Corpus Size 10,000 | 20,000 | 40,000
Standard Model 95k 200k 405k
Joint Model 6,178k - -
+ IBM 1,457k | 2,738k | 4,993k
+ IBM + prior 1,451k | 2,724k | 4,964k

Table 3. Translation table size in number of phrase pairs

In Tables 2 and 3 we can see the differences in
size and performance between the baseline model
and the joint model for different sizes of training
corpora. The unconstrained joint model produces
a very large translation table, containing more than
6 million phrase pairs. The size of the model
hampers its performance, resulting in a poor Bleu
score. In fact it was only able to be trained on a
maximum of 10,000 sentences before running out
of memory on a machine with 2Gb of RAM.

By using IBM constraints, the performance of
the joint model improves, beating even the stan-
dard phrase-based model. The resulting transla-
tion table is, however, still quite large and only
about four times smaller than the unconstrained
joint model. On examining the phrase pairs pro-
duced for each sentence, we discovered that the
reason for the large size of the model was due to
longer sentences for which there were few points
of high confidence.

Table 2 shows that adding prior counts based
on word alignments to the initial estimation of the
joint probability improves the Bleu score.

Table 5. Bleu scores for different training corpus sizes

Table 4 shows that by adding high confidence
alignments for identical words and forcing phrase
pairs to be consistent with these as well as the IBM
constraints, we reduce the size of the model but
only slightly. Including points from the bilingual
dictionary results in a sizeable reduction of about
20%.

Table 5 shows that the inclusion of lexical in-
formation into the model improves performance.
The improvement in Bleu score seems to reduce
with the increase in training data. As the model is
trained on more data, external knowledge sources
provide less advantage.

7 Conclusion

In this paper we have shown that using the joint
probability model to estimate phrase translation
probabilities results in a better performance than
the standard heuristic approach. This suggests that
there are gains to be had by using a more princi-
pled statistical framework.

We presented the first attempt at constraining
the joint probability model. By introducing con-
straints to the alignment space we can greatly re-
duce the complexity of the model and increase
its performance. The strategy of using IBM con-
straints with the joint model allows it to search ar-
eas of the alignment space with a higher probabil-
ity mass, resulting in better parameters. A con-
strained joint probability model can train on larger



corpora making the model more widely applica-
ble. Also, our particular method of constraining
the joint model makes it easy to include linguis-
tic information into the probabilistic framework of
SMT.

When using IBM constraints, the search space
of the joint model is comparable to that of stan-
dard phrase-based models, but does not depend on
ad-hoc heuristics for phrase pair extraction. If the
joint model were to be further engineered for effi-
ciency, for example by using word classes, it could
potentially replace the standard models for smaller
data conditions.
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