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Abstract
Speech segmentation is the problem of finding the end points of
a speech utterance for passing to an automatic speech recogni-
tion (ASR) system. The quality of this segmentation can have
a large impact on the accuracy of the ASR system; in this pa-
per we demonstrate that it can have an even larger impact on
downstream natural language processing tasks – in this case,
machine translation. We develop a novel semi-Markov model
which allows the segmentation of audio streams into speech ut-
terances which are optimised for the desired distribution of sen-
tence lengths for the target domain. We compare this with exist-
ing state-of-the-art methods and show that it is able to achieve
not only improved ASR performance, but also to yield signifi-
cant benefits to a speech translation task.
Index Terms: speech activity detection, speech segmentation,
machine translation, speech recognition

1. Introduction
We define speech segmentation as the problem of finding the
end points of a speech utterance in time. While this may at
first seem like a relatively simple goal it is in fact a non-trivial
problem to define. As speech does not strictly follow the same
rules we find in written language, such as sentence breaks, it
can often be highly subjective as to what constitutes an appro-
priate segmentation of speech for a given task. The vagueness
and high-order decision processes that surround these concepts
make it challenging to design an effective automatic speech seg-
mentation system.

Most automatic speech segmentation methods work by
identifying speech and non-speech regions based on acous-
tic evidence alone e.g. contrasting energy levels or spectral
behaviour[1] [2] [3]. Some more recent research has improved
upon this foundation by using richer feature sets that are more
suited to the task or include long-term dependances [4] [5] [6].
Others have begun to apply deep learning techniques which
can garner more discriminative features and improve robustness
[7] [8] [9]. However, all of these methods still only consider
the acoustics and are not necessarily exploiting the underlying
structure of the spoken language.

Human transcribers, on the other hand, are capable of seg-
menting speech by exploiting a greater wealth of prior infor-
mation such as syntax, semantics and prosody in addition to
such acoustic evidence. As a result, human transcribers may
opt to ignore acoustically motivated ‘breaks’ in speech in favour
of maintaining longer segments based on semantic knowledge.
Such an informed segmentation can greatly influence subse-
quent system components that have been explicitly designed to
exploit the patterns and structure of natural language, e.g. the
language models used in automatic speech recognition (ASR)
or machine translation (MT).

Previous work on detecting segmentation of sentence like
units has looked at using features such as prosody [10], lan-
guage model scores [11] [12], translation model scores [13] and
syntactic constituents [14]. [15] presents a review of some of
this work and also motivates tuning the segmentation of speech
to the task at hand as we do in this paper. Our approach of mod-
elling global sentence length distribution is orthogonal to much
of this previous work, and combining these information sources
would be beneficial. There has been some previous work which
attempts to exploit some of these cues [16]. However, in the
present paper, we have limited our focus to the use of statis-
tics of utterance durations and present a novel way of exploit-
ing this to select a globally optimal sequence from acoustically
motivated‘break candidates’. We find that this yields an advan-
tage over the use of local acoustic information alone at putative
pauses in the speech. We also find indications that the optimal
setting of the segmentation parameters varies with the ultimate
task (e.g. transcription or translation) that is to be achieved us-
ing the segmented speech. We present results on segmentation,
recognition and translation of TED talks1.

2. Utterance-break Modelling
While the automatic speech segmenters that we initially used
are only able to segment on an acoustic basis, they would actu-
ally perform this task very well. When compared to the manual
segmentation we found the False Alarm rate to be very low ( 2-
3%) while the more dominant error is Missed Speech.

Empirical evidence suggests that the automatic segmenters
work very well at framewise classification but are not able to
distinguish when a non-speech segment is simply a pause in-
side a speaker’s utterance or a true ’break’ between utterances
as judged by human annotators. Often such pauses are quite
short and as such a naı̈ve approach might be to simply alter
the minimum duration constraint for non-speech regions. How-
ever, in practice we find that this simply shifts the balance from
Missed Speech to False Alarm errors by removing more po-
tential breaks, quickly resulting in over-long segments. A sig-
nificant part of this behaviour is due to the fact that such sys-
tems are only able to make local decisions about whether or
not to include a non-speech segment. To remedy this prob-
lem, we propose to investigate methods for globally optimising
the sequence of utterance breaks, incorporating prior knowledge
about the likelihood that non-speech breaks should be included
given their temporal relationship i.e. the duration between them.

2.1. Break Candidates

As a precursory step to find the globally optimal sequence of
utterance breaks B∗, we first need to derive a sequence of can-
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Figure 1: Log-normal vs. Gamma PDFs fitted to speech seg-
ment durations of TED dev set. The CDFs provide the prior
likelihood of a new break given the duration after the last break.

didate break points B. Ideally the candidate sequence should
be broad enough that it includes a good optimal sequence as
a sub-set so we would therefore require that |B|≥|B∗|, where
|B| and |B∗| are the cardinalities of the candidate and optimal
sequences respectively. The candidates themselves can be de-
termined by any kind of initial segmentation method such as an
existing acoustically motivated speech segmentation algorithm.

2.2. Utterance-break Prior

In order to make decisions about whether or not to include a
candidate break, we need to know the prior probability of a
break, which we condition on the time since the last break was
observed. This may be derived from a statistical model of seg-
ment durations. Figure 1 shows a histogram of speech segment
durations for a development set of lecture data. We investi-
gated the use log-normal and gamma distributions to represent
the behaviour of the data and ultimately chose the former as it
provided a slightly better fit as shown in Figure 1. To derive
the break likelihood prior we simply use the cumulative den-
sity function (CDF) of this distribution as shown in Equation
1 where d is the duration since the previous break and α is a
scaling factor to account for the difference in dynamic range
compared to the acoustic likelihood.
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We were interested in how such a prior may vary accord-
ing to the domain. Therefore, as a contrast to the prepared,
rehearsed, single-speaker speech that is found in TED talks,
we also looked at the distribution of speech segments for a set
of AMI scenario meetings. These meetings contain multiple
speakers discussing a given common task whereby the speech
is unprepared and spontaneous. From Figure 2 we can observe
that the distribution has a much lower mean, illustrating the in-
tuition that speech segments are generally shorter during such
dynamic group discourse. This suggests that the break likeli-
hood prior could be adapted for different domains to achieve
optimal performance.

Figure 2: Log-normal PDFs and corresponding CDFs for
speech segment durations of TED vs AMI data.

2.3. Viterbi Decoding

In order to determine the globally optimal sequence of utter-
ance breaks B∗ we consider a sequence of candidate breaks
B =

{
b0, . . . , b|B|

}
as a semi-Markov process whereby each

candidate is a state. We can then perform Viterbi decoding over
a sparse |B|×|B| trellis, whereby each position i moves, not
through uniform time segments, but through the indices of B.
Each position j allows us to consider the transition arriving at
break bi from bj . As the break candidate states are only forward
connected we can only arrive at a given break from a previous
break, hence j < i. We keep a vector of tuples T that records
the start and end frame indices of each break, this allows us
to calculate the duration between any pair of break candidates
di,j = ti,start − tj,end.

We also use the sums of the frame-level log-likelihoods
from the speech/non-speech segmenter for acoustic features X ,
where xi is a vector representing all the frames that are in break
bi. We use this to create a posterior probability Pbrk aco, as
shown in Equation 2, that represents the acoustic probability of
a given break. The purpose of the normalisation is that we want
the acoustic likelihood of breaks to increase with duration so
that long breaks are favoured.

Pbrk aco(i) =
`nonspch(xi)

`nonspch(xi) + `spch(xi)
(2)

Therefore, the probability of the partial sequence that has a
break at i is formalised as

vi = max
j<i

[vj + logfbrk utt(di,j)] + logPbrk aco(i) (3)

with v0 = 0. For each candidate i we store the identity of the
state j which maximises Equation 3. This allows to B∗ to be
recovered by a backtrace procedure.

As the duration between the break candidate under consid-
eration and earlier ones increases, it will become very unlikely
that such long term transitions would occur. In practice, we can
therefore afford to prune the lattice by ignoring transitions from
earlier states that are further away than a prescribed maximum
segment duration, δ. As such, for each index i we only consider
transitions from states where di,j ≤ δ. This is illustrated in
Figure 3.



Figure 3: An example of a candidate break sequence and assos-
ciated state topology. We can see that the states can only feed
forward and some long-term transitions have been pruned such
as b0 → b3 as d0,3 > δ. The transitions highlighted in red show
an example optimal break sequence B∗ = {b0, b2, b3, b4, b6}

3. Experiments
3.1. Data

For evaluation, we used the data made available for the IWSLT
evaluation campaigns[17]. This comprises a series of TED talks
that have been divided into development sets (dev2010 and
dev2011) and a test set (tst2010), each containing 8-11 talks.
The talks average just under 10mins in length and each contains
a single English speaker (either native or non-native). The talks
are manually segmented and transcribed at the utterance level.
We also had manual English-French translations for evaluating
the MT system component.

3.2. Speech Segmentation Systems

3.2.1. Manual

Here we simply pass the manual segmentation to the ASR and
MT systems directly in order to form the oracle standard with
which to compare our automatic speech segmenters.

3.2.2. SHOUT

This system makes use of the SHOUT Toolkit (v0.3)2[18]
which is a widely-used off-the-shelf speech segmentation sys-
tem. The tool uses a GMM-HMM-based Viterbi decoder,
with an iterative sequence of parameter re-estimation and re-
segmenting. Minimum speech and silence duration constraints
are enforced by the number of emitting states in the respective
HMMs.

3.2.3. Baseline segmenter

Our baseline system, labelled “simple” in the tables, is identical
to that used for our recent lecture transcription system [19] and
comprises a GMM-HMM based model which is used to per-
form a Viterbi decoding of the audio. Speech and non-speech
are modelled with diagonal-covariance GMMs with 12 and 5
mixture components respectively. We allow more mixture com-
ponents for speech to cover its greater variability. Features are
calculated every 10ms from a 30ms analysis window and have
a dimensionality of 14 (13 PLPs and energy). Models were
trained on 70 hours of scenario meetings data from the AMI cor-
pus using the provided manual segmentations as a reference. A
heuristically optimised minimum duration constraint of 500ms
is enforced by inserting a series of 50 states per class that each

2http://shout-toolkit.sourceforge.net/download.html

have a transition weight of 1.0 to the next, the final state has a
self transition weight of 0.9.

3.2.4. Break Smooth

Here we introduce our utterance-break prior model. In order
to establish the candidate break sequence we use the system in
Section 3.2.3 to do an initial segmentation pass over the data.
The only exception is that the minimum duration constraint is
reduced to 100ms. If used directly, this would normally per-
form very poorly as a VAD but when used as input to the sub-
sequent break smoothing we have three advantages over the
original constraint: better guarantee of enough candidates to
find an optimal solution, the ability to find shorter speech seg-
ments (≥100ms), and more accurate end-points for segments
between 100-500ms. The break likelihood prior was trained on
the speech segment durations of the dev2010 and dev2011 sets.
The maximum segment duration δ is set to 30 seconds.

We have also shown results for 2 different operating points
of the scaling factor α, 30 and 80. While this parameter is de-
signed to mitigate for the difference in dynamic range with the
acoustic model, we found it subsequently functioned as a form
of segment duration tuning whereby a greater α results in more
break smoothing and hence longer segments.

3.2.5. Uniform

As well as our automatic methods we also considered segment-
ing each talk into uniform speech segments of length N sec-
onds, which is equivalent to having a break of zero length at ev-
ery interval. This allowed us to check whether or not the benefit
of our utterance-break prior may simply be due to an ’averag-
ing’ of the break distribution. As the ASR system is still able to
do decoder-based segmentation within each given segment, this
is also a way of measuring its influence. Here, longer uniform
segments leave more responsibility to the decoder for segmen-
tation and at N = 300, the maximum segment length for the
ASR system, we effectively allow the decoder to do all the seg-
mentation (with potentially a small error at the initial segment
boundaries).

3.3. Downstream System Descriptions

3.3.1. Automatic Speech Recognition (ASR)

ASR was performed using a system based on that described in
[19]. Briefly, this comprises deep neural network acoustic mod-
els used in a tandem configuration, incorporating out-of-domain
features. Models were speaker-adapted using CMLLR trans-
forms. An initial decoding pass was performed using a 3-gram
language model, with final lattices rescored with a 4-gram lan-
guage model.

3.3.2. Machine Translation (MT)

We trained an English-French phrase-based machine translation
model using the Moses [20] toolkit. The model is described in
detail in our 2013 IWSLT shared task paper [21]. It is the offi-
cial spoken language translation system for the English-French
track. It uses large parallel corpora (80.1M English words and
103.5M French words), which have been filtered for the TED
talks domain. The tuning and filtering used the IWSLT dev2010
set.

The goal of our machine translation experiments is to test
the effect that ASR segmentation has on the performance of a
downstream natural language processing task. The difficulty



with allowing arbitrary segmentations in MT is that automatic
evaluation is performed matching MT output with gold refer-
ence sentences which have their own manual segmentation. In
order to evaluate translations which have different segmenta-
tions, we need to align the MT output segmentation with the
reference. We use a tool provided by the Travatar [22] toolkit
which aligns files with different segmentations. It searches for
the optimal alignment according to the BLEU score. We use
it to align our MT output with a variety of different segmenta-
tion models, to our gold reference with manual segmentations.
We align each TED talk in the test set separately to maximize
performance.

3.4. Gold Transcription Mapping

Any improvement a given segmentation provides to the ASR
system could subsequently improve the performance of the MT
system. However, this makes it difficult to infer how much of
the MT performance gain is simply a consequence of a bet-
ter source transcript as compared with the direct influence of
the segmentation itself. To control for this, we used the ASR
system to make a forced alignment of the manual transcription
in order to gain word-level timing information. We were then
able to map any of our given segmentations with the same gold-
standard transcription.

4. Results
We present results for all of our end-to-end automatic systems
in Table 1. Firstly, we note that our Simple segmenter is able to
significantly outperform SHOUT, confirming that we have com-
petitive acoustic segmenter with which to form the foundation
of our experiments. We can then see that our Break Smooth seg-
menter is further able to improve the performance of both ASR
and MT over the Simple segmenter.

The performance of the Uniform 300s system showed a
strong performance for ASR, falling only slightly short of our
best performing Break Smooth system. We attribute this to the
nature of TED talks whereby there is typically very little non-
speech (illustrated by the 6.49% FA of Uniform 300s), which
itself mostly comprises periods of silence of small duration,
which is implicitly segmented by the silence HMMs used by
the decoder itself. In contrast, however, when we use a uni-
form segmentation for MT, we find that it does not perform as
well despite the good ASR performance. As the MT system
ideally expects sentence-like segments, a uniform segmentation
will not be practical for these purposes. This also shows that
a segmentation that works well for ASR may not necessarily
work well for MT and vice-versa.

In order to fully control for the dependence MT has for the
WER of the ASR transcript it receives, we have shown the re-
sults for when we map each of our segmentations to the force-
aligned gold transcription in Table 1. First of all, from the varia-
tion in performance we can infer that segmentation does indeed
have a direct effect on MT performance. However, in these con-
ditions we find that the MT system favours the break smoothing
algorithm with shorter segments than MT. Figure 4 shows how
the prior and posterior distributions compare. We can see that
when α = 30 the distribution takes a closer shape to the true
distribution with a ’shift’ to shorter segments, which could be
due to the fact that the automated methods have more accurate
segment boundaries. As such the MT system in this case could
be benefitting from more ’sentence-like’ utterances, whereas the
ASR system can actually afford to have, and may actually bene-

SAD ASR MT:ASR MT:Gold
Segmentation Miss FA WER BLEU BLEU
Manual - - 13.6 0.2472 0.2472
SHOUT 12.71 0.16 18.3 0.1967 0.2256
Simple 9.91 2.66 16.7 0.2007 0.2319
Break Smooth 30 4.25 2.33 15.0 0.2085 0.2409
Break Smooth 80 7.86 1.46 14.6 0.2104 0.2368
Uniform 300s 0.00 6.49 14.8 0.2014 0.2369

Table 1: Segmentation, ASR and MT results for each seg-
menter. MT results are shown for both ASR output and gold
transcripts segmented with different segmentation models.

Figure 4: A comparison of the prior and posterior segment
length distributions.

fit from, slightly longer segments as it is able to further segment
in more detail using its own decoder.

5. Conclusions and Future Work
We have shown that speech segmentation can be improved by
exploiting non-acoustic prior knowledge – in this case, the use
of an utterance-break model. Such improvements can be shown
to propagate to further benefit the performance of downstream
tasks such as ASR and MT. We have also shown that the benefits
to MT are not simply a consequence of the benefits to ASR sug-
gesting that speech translation performance is highly dependent
on the quality of the speech segmentation. However, we ob-
served that the optimal segmentations for each task are not nec-
essarily the same – furthermore, typical speech segmentation
evaluation metrics are not a reliable indicator of downstream
system performance.

Given what we have learned from this investigation we be-
lieve there is scope in future work to add linguistic knowledge
into the segmentation model, such as language modelling scores
and even syntactic bracketing information. This would require
running segmentation as an iterative procedure, on the output of
an ASR model, before feeding it back in as the input to an ASR
system.
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