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Abstract. Dialogue moves influence and are influenced by the agents’ preferences. We pro-
pose a method for modelling this interaction. We motivate and describe a recursive method
for calculating the preferences that are expressed, sometimes indirectly, through the speech
acts performed. These yield partialCP-nets, which provide a compact and efficient method
for computing how preferences influence each other. Our study of 100 dialogues in the Verb-
mobil corpus can be seen as a partial vindication of using CP-nets to represent preferences.

1 Introduction

It is well accepted that dialogues are structured by variousmoves that the participants make—e.g.,
answering questions, asking follow-up questions, elaborating and defending prior claims, and so
on. Such moves often affect the way interlocutors view a speaker’s preferences and consequently
influence how they respond. Dialogue (1) from the Verbmobil corpus [13] illustrates this.

(1) π1 A: Shall we meet sometime in the next week?
π2 A: What days are good for you?
π3 B: Well, I have some free time on almost every day except Fridays.
π4 B: Fridays are bad.
π5 B: In fact, I’m busy on Thursday too.
π6 A: Well next week I am out of town Tuesday, Wednesday and Thursday.
π7 A: So perhaps Monday?

Intuitively, A’s questionπ1 reveals his preference for meeting next week but it does so indirectly:
the preference is not asserted and accordingly responding with I do too (meaning “I want to meet
next week too”) would be highly anomalous. Nevertheless,B’s responseπ3 to π5 to A’s elaborating
questionπ2 reveals that he has adoptedA’s preference. This follows his answerπ2 which specifies
a non-empty extension forwhat days. Semantically, inferringπ3 to π5 answersA’s question and
inferring that the temporal expressions refer to next week are logically dependent.
Inferences aboutB’s preferences evolve as he gives his extended answer: fromπ3 alone one would
infer a preference for meeting any day next week other than Friday and its explanationπ4 would
maintain this. But the continuationπ5 compelsA to revise his inferences aboutB’s preference
for meeting on Thursday. These inferences about preferences arise from both the content ofB’s
utterances and the semantic relations that connect them together.A’s responseπ6 reveals he dis-
prefers Tuesday, Wednesday and Thursday, thereby refining the preferences that he revealed last
time he spoke.A’s follow-up proposalπ7 then reinforces the inference fromπ6 that among Mon-
day, Tuesday and Wednesday—the days thatB prefers—A prefers Monday. This may not match



his preferred day when the dialogue started: perhaps that was Friday. Further dialogue may compel
agents to revise their preferences as they learn about the domain and each other.
The dialogue moves exhibited in (1) are typical of the Verbmobil corpus, and we suspect typical
also of task-oriented dialogues generally. [3] annotated 100 randomly chosen dialogues from the
Verbmobil corpus with their discourse structure accordingto Segmented Discourse Representa-
tion Theory (SDRT, [2, 1])—these structures represent the types of (relational) speech acts that the
agents perform. According to this labelled corpus, 40% of the discourse units are either questions
or assertions that help to elaborate a plan to achieve the preferences revealed by a prior part of
the dialogue—these are marked respectively with the discourse relationsQ-ElabandPlan-Elabin
SDRT, and the interpretations of utterancesπ2, π6 andπ7 and the segmentπ3–π5 in dialogue (1)
invoke these relations (see Section 2)). Moreover, 10% of the moves revise or correct preferences
from the context (likeπ5 in (1)); and 15% of them explain prior content or prior moves (like π4 in
(1)). The remaining 35% are not pertinent to our modeling of preferences.
Inferring an agents’ preferences from the speeh acts they perform is an important task because
preferences are crucial for planning appropriate conversational moves, ensuring that responses in
dialogue remain relevant and natural. We will model the interaction between dialogue content
in dialogues of the Verbmobil corpus and preferences using (partial) CP-nets. These allow us to
exploit dependencies between dialogue moves and mental states in a compact and intuitive way.
But we start by motivating and describing the semantic representation of dialogue from which
CP-nets will be constructed.

2 The Logical Form of Dialogue

Agents expresscommitmentsto beliefs and preferences through the speech acts they perform [7].
It is these commitments that concern us here, but in what follows we shall treat a commitment to a
preference (or a belief) as an actual preference (or belief).
Our starting point is the aforementioned theory of discourse interpretationSDRT [1]. Like many
theories [8, 10], it structures discourse into units that are linked together withrhetorical relations
such asExplanation, Question Answer Pair(QAP), Q-Elab, Plan-Elab, and so on. Logical forms
in SDRT consist ofSegmented Discourse Representation Structures(SDRSs). As shown in Def. 1,
an SDRS is a set of labels each representing a unit of discourse, and amapping from each label
to anSDRS-formula representing its content—these formulas are based on those for representing
clauses or elementary discourse units (EDUs) plus rhetorical relation symbols between labels:

Def. 1 An SDRS is a pair 〈Π,F 〉,4 whereΠ is a set of labels; andF : Π −→ SDRS-formulas,
where:

– If φ is anEDU-formula, thenφ is anSDRS-formula.
– If π1, . . . ,πn are labels and R is an n-ary rhetorical relation, then R(π1, . . . ,πn) is an SDRS-

formula.
– If φ,φ′ are SDRS-formulas, then so are(φ∧φ′), ¬φ.

[9] represent a dialogue turn (where turn boundaries occur whenever the speaker changes) as a set
of SDRSs—one for each agent representing all his current commitments, from the beginning of the
dialogue to the end of that turn. The representation of the dialogue overall—a DialogueSDRSor
DSDRS—is that of each of its turns. Each agent constructs theSDRSs for all other agents as well as
his own. For instance, (1) is assigned theDSDRS in Table 1, with the content of theEDUs omitted

4 We omit the distinguished label Last from [1] as it plays no role here.
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for reasons of space.5 We adopt a convention of indexing the root label of thenth turn, spoken by
agentd, asnd; andπ : φ meansF (π) = φ.

Turn A’s SDRS B’s SDRS

1 π1A : Q-Elab(π1,π2) /0
2 π1A : Q-Elab(π1,π2) π2B : Q-Elab(π1,π2)∧QAP(π2,π)∧Plan-Elab(π2,π)

π : Plan-Correction(π′,π5)
π′ : Explanation(π3,π4)

3 π3A : Q-Elab(π1,π2)∧QAP(π2,π)∧ π2B : Q-Elab(π1,π2)∧QAP(π2,π)∧Plan-Elab(π2,π)
Plan-Elab(π2,π)∧Plan-Elab(π1,π6)∧ π : Plan-Correction(π′,π5)
Plan-Elab(π1,π7)∧Plan-Elab(π6,π7) π′ : Explanation(π3,π4)

Table 1.TheDSDRSfor Dialogue (1).

A’s SDRS for turn 1 in Table 1 commits him to ‘caring’ about the answer to the two questionsπ1

andπ2 (becauseQ-Elab is veridical). We takeπ1 to commitA to the implicature that he prefers to
meet next week. AndQ-Elab(π1,π2) entails that any answer toπ2 must elaborate a plan to achieve
the preference revealed byπ1; this makesπ2 paraphrasable as “What days next week are good for
you?”, which doesn’t add new preferences.B’s contribution in the second turn attaches toπ2 with
QAP; alsoPlan-Elabbecause of its non-empty extension forwhat days. [9] argue that this means
thatB is also committed to the illocutionary contribution ofπ2, as shown in Table 1 by the addition
of Q-Elab(π1,π2) to B’s SDRS. This addition commitsB also to the preference of meeting next
week, with his answer making the preference more precise:π3 andπ4 reveal thatB prefers any
day except Friday; but withπ5 he retracts the preference for Thursday.A’s third turn exploitsB’s
answer to identify a time to meet: hisPlan-Elabmoveπ6 reveals he disprefers Tuesday through
Friday; and the suggestionπ7 is a solution to the constraints imposed by his preferences,which
have evolved through the dialogue.

3 CP-nets

We saw earlier that dialogue reveals information about preferences. These preferences influence
subsequent utterances—people plan strategically so as to achieve outcomes that are most preferred.
So in addition to a method for computing preferences from dialogue, we also need a method for
computing which of all possible outcomes is the most preferred. We will use CP-nets [4, 5] for this.
A CP-net offers a compact representation of preferences. This graphical model exploits condi-
tional preferential independence so as to structure the decision maker’s preferences under aceteris
paribusassumption. Representing dependencies among preferenceswhile also exploiting their in-
dependence when appropriate is a major motivation for usingCP-nets in our framework. As we
shall demonstrate in Section 5, CP-nets have a major advantage for us in that it is relatively straight-
forward to build a CP-netcompositionallyfrom aDSDRS, exploiting recursion overSDRSs.
Although CP-nets generally consider variables with a finiterange of values, for simplicity we con-
sider here only propositional variables with binary values(think of each variable as the description
of an action that an agent can choose to perform, or not). Moreover, we also introduce indifference

5 We also ignore here how to construct thisDSDRSfrom linguistic form and context; see [9] for details.
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relations in these CP-nets, that is the possibility to be indifferent between both values of a variable.
More formally, letV be a finite set of propositional variables andLV the language built fromV via
Boolean connectives and the constants⊤ (true) and⊥ (false). Formulas ofLV are denoted byφ,ψ,
etc. 2V is the set of interpretations forV, and as usual forM ∈ 2V andx∈V, M gives the valuetrue
to x if x∈M andfalseotherwise. LetX ⊆V. 2X is the set ofX-interpretations. X-interpretations
are denoted by listing all variables ofX, with a ¯ symbol when the variable is set to false: e.g.,
whereX = {a,b,d}, theX-interpretationM = {a,d} is denotedabd.
A preference relation� is a reflexive and transitive binary relation (not necessarily complete) on
2V . WhereM,M′ ∈ 2V , as usual, strict preferenceM ≻M′ holds iff M �M′ and notM′ �M.
As we stated earlier, CP-nets exploit conditional preferential independence to compute a preferen-
tial ranking over outcomes:

Def. 2 Let V be a set of propositional variables and{X,Y,Z} a partition of V . X isconditionally
preferentially independentof Y given Z if and only if∀z∈ 2Z, ∀x1,x2 ∈ 2X and∀y1,y2 ∈ 2Y we
have: x1y1z� x2y1z iff x1y2z� x2y2z.

For each variableX, the agent specifies a set ofparent variables Pa(X) that can affect his prefer-
ences over the values ofX. Formally,X is conditionally preferentially independent ofV \ ({X}∪
Pa(X)). This is then used to create the CP-net:

Def. 3 Let V be a set of propositional variables.N = 〈G ,T 〉 is a CP-neton V, whereG is a
directed graph over V, andT is a set of conditional preference tables with indifferenceCPT(Xj)

for each Xj ∈V. CPT(Xj) specifies for each instantiation p∈ 2Pa(Xj) either xj ≻p x j , x j ≻p x j or
x j ∼p x j .

Exploiting the CP-net formalism and semantics enables us to“flip” the value of a variableX within
an outcome to obtain a different outcome, which the agent mayprefer, disprefer or be indifferent to.
An outcomeo is better than another outcomeo′ iff there is a chain of flips fromo′ to o which yield
either preferred or indifferent outcomes, and there is at least oneimproving flip. This definition
induces a partial order over the outcomes.
Despite their many virtues, classical CP-nets won’t do for representing the preferences expressed
in dialogue. Suppose an agent says “I want to go to the mall to eat something”. We can infer from
this that he prefers to go to the mall given that he wants to eat, but we do not know his preferences
over “go to the mall” if he does not want to eat. We thus needpartial CP-nets. A partial CP-net, as
introduced by [11], is a CP-net in which some features may notbe ranked. Partiality forces us to
relax the semantics:

– An improving flipin a partial CP-net changes the value of a variableX such that: ifX is ranked,
the flip is improving with respect to (wrt) the CPT ofX; and ifX is not ranked, it is improving
wrt the CPT of all features that depend onX.

– An indifferent flipchanges the value of a variableX such that: ifX is ranked, the flip is indif-
ferent inCPT(X); otherwise wrt all CPT, the change in the value ofX leaves the outcome in
the same position.

– Incomparable flipsare all those flips which are neither worsening, nor improving, nor indiffer-
ent.

As before, an outcomeo is preferred to outcomeo′ (o≻ o′) iff there is a chain of flips fromo′ to o
which are all improving or indifferent, with at least one improving one. An outcomeo is indifferent
wrt o′ (o∼ o′) iff at least one chain of flips between them consists only of indifferent flips.o is
incomparable too′ iff none ofo≻ o′, o′ ≻ o or o∼ o′ hold.
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Unlike classical CP-nets, partial CP-nets with indifference can have more than one optimal out-
come even if their dependency graph is acyclic. However, we can still easily determine a best
outcome, using theforward sweepprocedure [4] for outcome optimization (this procedure consists
in instantiating variables following an order compatible with the graph, choosing for each variable
(one of) its preferred value given the value of the parents).
Partial CP-nets are expressive enough for the examples we have studied in the Verbmobil corpus.
Section 5 will show how discourse structure typically leadsto a dependence among preferences
that is similar to the one exploited in CP-nets.

4 From EDUs to Preferences

Speech acts are relations between sets of commitments, justas factual statements in dynamic se-
mantics are relations between information states. While some speech acts, like greetings, don’t
affect preference commitments, many speech acts do affect them, as we have seen. We must there-
fore extract (commitments to) preferences from speech acts. We will compute preferences in two
stages: we extract them fromEDUs; and modify them recursively via the discourse structure (see
Section 5).
EDUs include what we callatomic preference statements (e.g.,I want X or We need X). They
can be complex, expressing boolean combinations of preferences (e.g.I want X and Y); they can
also express preferences in an indirect way (e.g., interrogatives likeShouldn’t we go home now?
or expressions of sentiment or politeness). We regiment such complexities via a functionP that
recursively exploits the logical structure of anEDU’s logical form to produce aboolean preference
representation(BPR), expressed as a propositional formula. For the purposes ofthis paper, we
define theBPR output of P manually, although in principle it is possible to learn thismapping
from labelled corpus data. ThisBPR will then affect preferences expressed as partial CP-nets (see
Section 5).
SDRT’s description logic (glue logicor GL) is designed to express statements about the logical
structure ofSDRS-formulae, and so we use it here to define the functionP. Formulae inGL partially
describeDSDRSs in general, and the formulae associated withEDUs in particular. For instance,
π : Not(π1) means that the labelπ in the DSDRS being described is associated with a formula
¬φπ1, where¬ is the constructor from theSDRS language that’s denoted by Not, andφπ1 is the
SDRS-formula associated withπ1. We defineP recursively over theseGL-formulae.
We treat disjunction non-exclusively: i.e.,I want X or Ymeans I prefer one of the literals or both.
If the preference is exclusive, we rely on model constraintsto rule out states whereX andY are
satisfied. Conjunctions are ambiguous with respect to preferences, but in certain cases we can
resolve the ambiguity.I want X and Ycan mean that my most preferred state is one where both
X andY are satisfied, but I would still prefer to satisfy one of them to neither being satisfied. This
disambiguation forandwill be represented with theGL predicate &. On the other hand, thisEDU

could mean that I prefer the “fusion” ofX andY while not preferring eitherX or Y separately; we
mark this inGL with ∧. A final case has to do with questions. Although not all questions entail that
their author commits to a preference, in many cases they do. That is, if A askscan we meet next
week?he implicates a preference for meeting. For negative andwh-interrogatives, the implication
is even stronger. This yields the following axioms inGL for mappingEDUs to aBPR:

1. P(π) = Xπ for atomicπ
2. π : Not(π1)→ P(π) = ¬P(π1)
3. π : Or(π1,π2)→ P(π) = P(π1)∨P(π2)
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4. π : &(π1,π2)→ P(π) = P(π1)&P(π2)
5. π : ∧(π1,π2)→ P(π) = P(π1)∧F(π2)
6. π :?(π1)→ P(π) = P(π1)
7. π :?(¬π1)→ P(π) = P(π1)

5 From Discourse Structure to Preferences

We now define how to update CP-nets representing an agent’s preferences with theBPRs of EDUs
and by discourse structure. More formally, we define a functionCommitfrom a labelπ or discourse
relationR(π1,π2) and a contextually given CP-netN to an updated CP-net. We focus here on the
relations that are prevalent in the Verbmobil corpus (see Section 1).
Below,X denotes a propositional variable andφ a propositional formula fromBPR. Var(φ) are the
variables inφ, and≻X the preference relation associated withCPT(X). Sat(φ) is a conjunction of
literals fromVar(φ) that satisfyφ, while non-Sat(φ) is a conjunction of literals fromVar(φ) that
do not satisfyφ. Sat(φ)−X is the formula that results from removing the conjunct withX from
Sat(φ).

1. WhereP(π) = X (e.g.,I want X), Commit(π,N ) updatesN by addingX ≻ X.
2. WhereP(π) = φ∧ψ (the agent prefers bothφ andψ, but is indifferent if he can’t have both),

Commit(π,N ) updatesN as follows:
– For eachX ∈Var(φ), addVar(ψ) to Pa(X) and modifyCPT(X) as follows:

a. If Sati(ψ), Satj(φ) ⊢ X (resp.X), thenSati(ψ), Satj(φ)−X : X ≻ X (resp.X ≻ X), for
all satisfiersi and j.

b. If Sati(ψ), Satj(φ) 6⊢ X and 6⊢ X, thenSati(ψ), Satj(φ)−X : X ∼ X, for all satisfiersi
and j

c. non-Sati(ψ), Satj(φ)−X : X ∼ X andSati(ψ), non-Satj(φ)−X : X ∼ X for all satis-
fiers i and j

– Similarly for eachY ∈Var(ψ).
Whereφ and ψ are literalsX andY, this rule yields the following:X : Y ≻ Y, X : Y ∼ Y.
Y : X ≻ X, Y : X ∼ X.

And we obtain the following preference relation:
XY

XY XY XY
Even though the dependencies are cyclic here, the use of indifference allows us to find the best
outcomeXY easily.

3. P(π) = φ&ψ (the agent prefers to have bothφ andψ and prefers either one if he can’t have
both). We use a similar definition to that for∧, where ifφ andψ are literalsX andY we get
Y ≻Y andX ≻ X.
We obtain the following preference relation:

XY
XY XY

XY
4. P(π) = φ∨ψ (the agent prefers to have at least one ofφ andψ satisfied). The definition is

similar to that for∧, where ifφ andψ areX andY, we get:
– Var(X) ∈ Pa(Var(Y)) andX : Y ∼Y, X : Y ≻Y.
– Var(Y) ∈ Pa(Var(X)) andY : X ∼ X, Y : X ≻ X.

We have the following preference relation:
XY

XY XY XY

As before, the use of indifference allows us to find the best outcomes (XY, XY andXY) easily.

Due to lack of space, we won’t describe rule forP(π) = ¬φ.
Iexplanation. Iexplanation(π1,π2), as illustrated with example (2), means thatP(π1) (here, going
to the mall) is causally dependent uponP(π2) (eating something).
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(2) π1 I want to go to the mall
π2 to eat something

Being a veridical relation (and assuming that a commitment to content implies a commitment also
to the preferences expressed by it),Commit(Iexplanation(π1,π2),N ) starts by applyingCommit(π2,

Commit(π1,N )) to the contextually given CP-netN . Then, the preferences arising from the illocu-
tionary effects ofIexplanation, given its semantics, must ensure that CPTs are modified so that each
variable inP(π1) depends on each variable inP(π2): i.e.,∀X ∈Var(P(π1)), ∀Y ∈Var(P(π2)), Y ∈
Pa(X). So,∀X ∈Var(P(π1)),CPT(X) is constructed by simply adding all conjunctionsSat(P(π2))
to the conditional part ofCPT(X). On the other hand,≻X when the condition includesnon-Sat(P(π2))
is undefined (i.e., we don’t know preferences onX if P(π2) is false).
For example, letP(π1) = X∨Z andP(π2) =Y. That is, the agent explains his preferences onX∨Z
by Y: he wants eitherX or Z if Y is satisfied. We first applyCommit(Y,Commit(X∨Z,〈 /0, /0〉)). By
rules 4 and 1, we obtain:

– X ∈ Pa(Z) andX: Z∼ Z, X: Z≻ Z.
– Z ∈ Pa(X) andZ: X ∼ X, Z: X ≻ X.
– Y ≻Y

Then, the rule forIexplanationmodifiesCPT(X) andCPT(Z):
– Y ∈ Pa(X) andZ∧Y:X ∼ X, Z∧Y: X ≻ X.
– Y ∈ Pa(Z) andX∧Y:Z∼ Z, X∧Y: Z≻ Z.

This yields the following, partial, preference relation. As we do not have
any information on the preference onX andZ if Y is false, the states in
whichY is false are incomparable, as required.

XYZ

XYZ

XYZ

XYZ

XYZXYZ

XYZXYZ

The causal dependence inIexplanationis very close to the logical dependence exhibited in anElab:

(3) π1 I want wine
π2 I want white wine

That is, a preference for white wine depends on a preference for wine. This leads us to the following
Elab rule:Commit(Elab(π1,π2),N ) = Commit(Iexplanation(π2,π1),N ) whenπ1 andπ2 express
a preference (i.e.,P(π1) andP(π2) are defined); otherwise there is no modification of the given
CP-net.
Plan-Elab marks those cases where the second term of the relation details a plan to achieve
the preferences expressed in the first term (see Table 1). SoCommit(Plan-Elab(π1,π2),N ) =
Commit(Elab(π1,π2),N ).

We now turn to questions.
Q-Elab Q-ElabA(π1,π2) implies that the speakerA who utters the questionπ2 takes over the pref-
erences expressed inπ1 (in future, we may often identify the agent who’s committed to the speech
act as a subscript on the relation, as done here). More formally, Q-ElabA(π1,π2) implies that we
updateA’s CP-netN by applying the rule forElab(π1,π2), where ifπ2 expresses no preferences
on their own, we simply setP(π2) = P(π1). Note that this means thatA’s CP-net is updated with
the preferences expressed by utteranceπ1, regardless of who saidπ1.
QAP Answers to questions affect preferences in complex ways. The first case concerns yes/no
questions and there are two cases, depending on whetherB repliesyesor no:
Yes QAPB(π1,π2) whereπ2 isyes. B’s preferencesN are updated by applyingCommit(ElabB(π1,π2),N )

(and soB’s preferences include those expressed byπ1 andπ2).
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No QAPB(π1,π2) whereπ2 is no. If P(π1) andP(π2) are consistent, thenB’s preferencesN are
updated by applyingCommitB(ElabB(π1,π2),N ); if they are not consistent,B’s preferences
are updated by applyingCommit(Plan-Correction(π1,π2),N ) (see below).

Now considerQAPB(π1,π2), whereπ1 is a wh-question. ThenB’s preferences over variables in
π1 andπ2 are exactly the same as the ones defined for a yes/no question where the answer isyes:
variables inπ2 will refine preferences over variables inπ1. So,B’s preferencesN are updated by
applyingCommitB(ElabB(π1,π2),N ).
Alternatives The last and most complex sort of question and answer pair involves so calledal-
ternativequestions such aswould you like fish or pizza?Suppose agentA asksB an alternative
questionπ1 involving n variables. ThenB’s answerQAPB(π1,π2) provides information aboutB’s
preferences. Supposeπ2 : &(Xi , . . .Xn). Intuitively, this response provides several answers as good
as any other: fori ≤ j ≤ n, B wants to satisfy the literalXj . Therefore, we add the following pref-
erences for eachXj , or we change the existing preferences if appropriate:Pa(Xj) = /0 andXj ≻ Xj .
Plan-Correction may affect preferences in several ways. For example, it can correct what variables
are operative. That is, givenPlan-Correction(π1,π2), some variables inP(π1) are replaced by
variables inP(π2). We have a set of rules of the formX ← {Y1, . . . ,Ym}, which means that the
variableX ∈Var(P(π1)) is replaced by the set of variables{Y1, . . . ,Ym} ⊆Var(P(π2)). We assume
thatX cannot depend on{Y1, . . . ,Ym} before thePlan-Correctionis performed. Then replacement
proceeds as follows:

6. If Pa(X) = /0, we addYk≻Yk for all k∈ {1, . . . ,m} and removeX ≻ X (or X ≻ X). Otherwise,
we replace every preference statement inCPT(X) with an equivalent statement usingYk (to
createCPT(Yk)), for all k∈ {1, . . .m}.

7. For allW such thatVar(X) ∈ Pa(W), we re-defineCPT(W) so that every occurrence ofX
andX is replaced by a set ofk statements where each statement replaces replacesX with X
respectively with

V

1≤k≤mYk and
W

1≤k≤mYk.

Plan-Corrections, like the one in (1), can also remove certain options from consideration in re-
alizing a particular plan or it can put certain options into play that were previously excluded. In
particular, suppose,π1 countenances k optionsX1, . . . ,Xk and rules outn optionsY1, . . . ,Yn; thus,
P(πi) =

W

1≤i≤k Xi ∧
V

1≤r≤n¬Yr . Supposeπ2 removes an optionXm from π1. Then we must re-
placeP(π1) with

W

{1≤i≤k\{m}}Xi ∧ (
V

1≤r≤n¬Yr)∧¬Xm. The rule for putting an option into play
that was previously excluded is similar; one removes one of the conjuncts inP(πi) and adds to the
disjunction. It seems impossible to state the effects ofPlan-Correctionwithout the level of boolean
preference representations afforded by the functionP; we have not found a way to modify CP-nets
directly.

6 Treatment of our example

Dialogue (1) illustrates how our rules work to refine preferences as conversation proceeds. While
this dialogue doesn’t feature all of our rules, other examples in the Verbmobil corpus verify the
other rules.

π1 A: Shall we meet sometime in the next week?
CommitA(π1,〈 /0, /0〉) = P(π1) = M, whereM means Meet.

M M ≻M

Fig. 1. A’s preferences
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π2 A: What days are good for you?
Q-Elab(π1, π2). A continues to commit toM on π2 and no new preferences are introduced by
π2 (i.e.P(π2) = P(π1)).

π3 B: Well, I have some free time on almost every day except Fridays.
π4 B: Fridays are bad.

π4 is linked to π3 with explanation, but this has no effect on preferences. Inπ3, B says he
has some free time on Monday, Tuesday, Wednesday and Thursday (and so can meet on these
days); he does not want to meet on Friday. So, we updateB’s CP-net〈 /0, /0〉with Q-Elab(π1,π2)
and thenQAP(π2,π3), whereP(π3) = (J1 ∨ J2 ∨ J3 ∨ J4) ∧¬J5, with J1 being Monday,J2

Tuesday,J3 Wednesday,J4 Thursday andJ5 Friday. WhereI = {1,2,3,4,5} this update yields:

M

J1

J2 J3 J4

J5

M ≻M

M∧ (
W

i∈I\{1} Ji ) : J1 ∼ J1

M∧ (
V

i∈I\{1} Ji ) : J1 ≻ J1

M∧ (
W

i∈I\{2} Ji ) : J2 ∼ J2

M∧ (
V

i∈I\{2} Ji ) : J2 ≻ J2 M∧ (
W

i∈I\{3} Ji ) : J3 ∼ J3

M∧ (
V

i∈I\{3} Ji ) : J3 ≻ J3

M∧ (
W

i∈I\{4} Ji ) : J4 ∼ J4

M∧ (
V

i∈I\{4} Ji ) : J4 ≻ J4

M∧ (
W

i∈I\{5} Ji ) : J5 ≻ J5

M∧ (
V

i∈I\{5} Ji ) : J5 ∼ J5

Fig. 2. B’s preferences
π5 B: In fact, I’m busy on Thursday too.

This is aPlan-Correctionwith P(π5) = ¬J4, and thusJ4←¬J4. ThusJ4 is no longer an op-
tion. The above rule for updating a CP-netN with this dialogue movePlan-Correction(π,π5)
(whereπ outscopesπ3 andπ4) therefore removes the disjunctJ4 from the BPR for the first
argumentπ, and adds the conjunct¬J4. The effect of the resultingBPR is this update toB’s
CP-net:

M

J1

J2 J3 J4

J5

M ≻M

M∧ (
W

i∈I\{1} Ji ) : J1 ∼ J1

M∧ (
V

i∈I\{1} Ji ) : J1 ≻ J1

M∧ (
W

i∈I\{2} Ji ) : J2 ∼ J2

M∧ (
V

i∈I\{2} Ji ) : J2 ≻ J2 M∧ (
W

i∈I\{3} Ji ) : J3 ∼ J3

M∧ (
V

i∈I\{3} Ji ) : J3 ≻ J3

M∧ (
W

i∈I\{4} Ji ) : J4 ≻ J4

M∧ (
V

i∈I\{4} Ji ) : J4 ∼ J4

M∧ (
W

i∈I\{5} Ji ) : J5 ≻ J5

M∧ (
V

i∈I\{5} Ji ) : J5 ∼ J5

Fig. 3. B’s preferences
π6 A: Well next week I am out of town Tuesday, Wednesday and Thursday.

The above rule for updatingA’s prior CP-net (see Figure 1) withPlan-Elab(π1,π6), where
P(π6) = ¬J2∧¬J3∧¬J4, yields the following CP-net.

M

J2 J3 J4

M ≻M

M∧ (
W

i∈{3,4} Ji ) : J2 ∼ J2

M∧ (
V

i∈{3,4} Ji ) : J2 ≻ J2 M∧ (
W

i∈{2,4} Ji ) : J3 ∼ J3

M∧ (
V

i∈{2,4} Ji ) : J3 ≻ J3

M∧ (
W

i∈{2,3} Ji ) : J4 ∼ J4

M∧ (
V

i∈{2,3} Ji ) : J4 ≻ J4

Fig. 4. A’s preferences
π7 A: So perhaps Monday?

Commitupdates the CP-net in Figure 4 with the moveQ-Elab(π1,π7), whereP(π7)= J1. Using
the same rules as before this yields:

M
J1

J2 J3 J4

M ≻M

M : J1 ≻ J1

M∧ (
W

i∈{3,4} Ji ) : J2 ∼ J2

M∧ (
V

i∈{3,4} Ji ) : J2 ≻ J2 M∧ (
W

i∈{2,4} Ji ) : J3 ∼ J3

M∧ (
V

i∈{2,4} Ji ) : J3 ≻ J3

M∧ (
W

i∈{2,3} Ji ) : J4 ∼ J4

M∧ (
V

i∈{2,3} Ji ) : J4 ≻ J4

Fig. 5. A’s preferences

Our rules suffice to analyse the dialogues we have examined from the Verbmobil corpus. We have
also analyzed examples from a tourism corpus where our rulessuffice to extract preferences.
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7 Conclusion

Computing preferences expressed in texts is important for many NLP applications. We have shown
how to use CP-nets and models of discourse structure, together with the intermetiate levelBPR,
to investigate this task formally. Our rules for preferencemodelling are straightforward, intuitive
and of low complexity. While CP-nets can loose their polynomial time complexity for computing
best outcomes, if conjunctive (∧) or disjunctive (∨) preferences occur, on the whole the formalism
remains tractable. Once we can extract preferences, we are in a position to broaden current analyses
of dialogue beyond the usual Gricean cooperative settings [6], in which agents’ preferences are
assumed to be aligned, and to use game-theoretic techniquesto analyze strategic conversations, in
which preferences are not aligned or not known to be aligned.Thus, our work here opens a way
to attack the complex interaction between what agents say, what their preferences are, and what
they take the preferences of other dialogue agents to be. Of course, all this depends on extracting
discourse structure from text, which has proved to be a difficult task. Nevertheless [3, 12] show
how one can begin to extract discourse structure automatically from texts like those found in the
Verbmobil corpus. So we hope that our proposal will eventually find its way into automatic systems.
In any case, our formal approach serves as a model for what such systems should aim to accomplish
with respect to preference modeling.
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