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Abstract. Dialogue moves influence and are influenced by the agent&rpreces. We pro-
pose a method for modelling this interaction. We motivaté describe a recursive method
for calculating the preferences that are expressed, sorgtindirectly, through the speech
acts performed. These yield parti@P-nets which provide a compact and efficient method
for computing how preferences influence each other. Ouy16d00 dialogues in the Verb-
mobil corpus can be seen as a partial vindication of usingh€RB-+to represent preferences.

1 Introduction

Itis well accepted that dialogues are structured by vannoges that the participants make—e.qg.,
answering questions, asking follow-up questions, elabwand defending prior claims, and so
on. Such moves often affect the way interlocutors view a lspesapreferences and consequently
influence how they respond. Dialogue (1) from the Verbmodwipas [13] illustrates this.

(1) m A: Shall we meet sometime in the next week?
T A: What days are good for you?
3 B: Well, | have some free time on almost every day except FEday
Ty B: Fridays are bad.
T B: In fact, I'm busy on Thursday too.
5 A: Well next week | am out of town Tuesday, Wednesday and Tlayrsd
7 A So perhaps Monday?

Intuitively, A’'s questionry reveals his preference for meeting next week but it doesdiceictly:
the preference is not asserted and accordingly respondthd do too (meaning “I want to meet
next week to0”) would be highly anomalous. NeverthelB&sresponsets to 15 to A's elaborating
questionmy reveals that he has adoptad preference. This follows his answag which specifies
a non-empty extension farhat days Semantically, inferringg to T answersA’'s question and
inferring that the temporal expressions refer to next weekagically dependent.

Inferences aboW’s preferences evolve as he gives his extended answer:ffs@one one would
infer a preference for meeting any day next week other thadajFiand its explanationy would
maintain this. But the continuatiors compelsA to revise his inferences aboBts preference
for meeting on Thursday. These inferences about prefesemige from both the content &fs
utterances and the semantic relations that connect thesthiigA's responset reveals he dis-
prefers Tuesday, Wednesday and Thursday, thereby refinengreferences that he revealed last
time he spokeA'’s follow-up proposalt; then reinforces the inference fromg that among Mon-
day, Tuesday and Wednesday—the days Bhptefers—A prefers Monday. This may not match



his preferred day when the dialogue started: perhaps tteEviday. Further dialogue may compel
agents to revise their preferences as they learn about thaid@and each other.

The dialogue moves exhibited in (1) are typical of the Verbihcorpus, and we suspect typical
also of task-oriented dialogues generally. [3] annota@@ randomly chosen dialogues from the
Verbmobil corpus with their discourse structure accordm@egmented Discourse Representa-
tion Theory 6DRT, [2, 1])—these structures represent the types of (relatj@peech acts that the
agents perform. According to this labelled corpus, 40% efdiscourse units are either questions
or assertions that help to elaborate a plan to achieve tHerprees revealed by a prior part of
the dialogue—these are marked respectively with the diseaxelation€-ElabandPlan-Elabin
SDRT, and the interpretations of utteranaes 1 and 1, and the segmentz—Ti in dialogue (1)
invoke these relations (see Section 2)). Moreover, 10%ehtbves revise or correct preferences
from the context (likatw in (1)); and 15% of them explain prior content or prior moviéee(tu in
(1)). The remaining 35% are not pertinent to our modelingrefgrences.

Inferring an agents’ preferences from the speeh acts thdgrpeis an important task because
preferences are crucial for planning appropriate contiersal moves, ensuring that responses in
dialogue remain relevant and natural. We will model thered@on between dialogue content
in dialogues of the Verbmobil corpus and preferences ugiagtial) CP-nets. These allow us to
exploit dependencies between dialogue moves and mentas staa compact and intuitive way.
But we start by motivating and describing the semantic igration of dialogue from which
CP-nets will be constructed.

2 The Logical Form of Dialogue

Agents expressommitmentso beliefs and preferences through the speech acts theyrpef].

It is these commitments that concern us here, but in whaivialwe shall treat a commitment to a
preference (or a belief) as an actual preference (or belief)

Our starting point is the aforementioned theory of disceungerpretatiorsDRT [1]. Like many
theories [8, 10], it structures discourse into units thatlanked together withthetorical relations
such a€xplanation Question Answer PaifQAP), Q-Elab, Plan-Elaly and so on. Logical forms
in SDRT consist ofSegmented Discourse Representation Structigesss). As shown in Def. 1,
an sDRsSis a set of labels each representing a unit of discourse, andpging from each label
to ansbRrsformula representing its content—these formulas aredasehose for representing
clauses or elementary discourse uniss) plus rhetorical relation symbols between labels:

Def. 1 An spRsis a pair (I, 7),* wherell is a set of labels; andF : M — sprsformulas,
where:

— If @is anebu-formula, thenpis ansbrsformula.

— If y,..., T, are labels and R is an n-ary rhetorical relation, theqrR,...,T,) is an SDRS

formula.

— If @ ¢f are sbrsformulas, then so arépA @), —@.
[9] represent a dialogue turn (where turn boundaries octiemnever the speaker changes) as a set
of sbrss—one for each agent representing all his current commisngom the beginning of the
dialogue to the end of that turn. The representation of thendue overall—a DialogusDRS or
DSDRS—is that of each of its turns. Each agent constructsthrss for all other agents as well as
his own. For instance, (1) is assigned ti&DRsin Table 1, with the content of thebus omitted

4 We omit the distinguished label Last from [1] as it plays nlefeere.



for reasons of spaceWe adopt a convention of indexing the root label of Hfeturn, spoken by
agentd, asnd; andTt: @ means¥ (1)) = @.

[Turn|A’s sDRs |B's SDRS |
1 Tya : Q-Elab(ty, ™) 0
2 Tya : Q-Elab(ty, ™) g : Q-Elab(ty, o) A QAP(T, M) A Plan-Elal(,, 1)

1t: Plan-Correctior{1t, Ti5)

0 : Explanatior{rs, Ty)

3 Ta : Q-Elab(ty, o) A QAP(TR, THA g : Q-Elab(ty, o) A QAP(T, M) A Plan-Elal(t,, 1)
Plan-Elal{ty, 1) A Plan-Elab(ty, 16) A |1t: Plan-Correction(1t, 1)

Plan-Elak(my, ;) A Plan-Elal(t, T7) |17 : Explanatior{te, )

Table 1. The bspRsfor Dialogue (1).

A's sbrsfor turn 1 in Table 1 commits him to ‘caring’ about the answethe two questionsy
andTtp (becaus®-Elabis veridical). We taket to commitA to the implicature that he prefers to
meet next week. An@-Elab(ty, T») entails that any answer t® must elaborate a plan to achieve
the preference revealed by; this makest paraphrasable as “What days next week are good for
you?”, which doesn’t add new preferencB% contribution in the second turn attachestowith
QAP, alsoPlan-Elabbecause of its non-empty extension ¥anat days[9] argue that this means
thatB is also committed to the illocutionary contributionmf, as shown in Table 1 by the addition
of Q-Elah(ty, ) to B's SDRS This addition commit8 also to the preference of meeting next
week, with his answer making the preference more precis@nd 1y reveal thatB prefers any
day except Friday; but withi he retracts the preference for Thursd@. third turn exploitsB’s
answer to identify a time to meet: hidan-ElabmoveTtg reveals he disprefers Tuesday through
Friday; and the suggestiaw is a solution to the constraints imposed by his preferengbish
have evolved through the dialogue.

3 CP-nets

We saw earlier that dialogue reveals information aboutguegfces. These preferences influence
subsequent utterances—people plan strategically so abkieva outcomes that are most preferred.
So in addition to a method for computing preferences fronodize, we also need a method for
computing which of all possible outcomes is the most prefierivWe will use CP-nets [4, 5] for this.
A CP-net offers a compact representation of preferences. giaphical model exploits condi-
tional preferential independence so as to structure thisidaanaker’s preferences undeceteris
paribusassumption. Representing dependencies among preferghiteslso exploiting their in-
dependence when appropriate is a major motivation for uSiRgnets in our framework. As we
shall demonstrate in Section 5, CP-nets have a major adyafdaus in that it is relatively straight-
forward to build a CP-netompositionallffrom aDSDRS exploiting recursion ovesDRSs.

Although CP-nets generally consider variables with a firdtege of values, for simplicity we con-
sider here only propositional variables with binary val(tegk of each variable as the description
of an action that an agent can choose to perform, or not). M@rewe also introduce indifference

5 We also ignore here how to construct thisbrsfrom linguistic form and context; see [9] for details.



relations in these CP-nets, that is the possibility to béferdnt between both values of a variable.
More formally, letV be a finite set of propositional variables dndthe language built fron via
Boolean connectives and the constantg&rue) and L (false. Formulas oLy are denoted by, |,
etc. 2 is the set of interpretations fdt, and as usual fdvl € 2 andx € V, M gives the valuérue

to x if x € M andfalseotherwise. LeiX C V. 2X is the set ofX-interpretations X-interpretations
are denoted by listing all variables &f, with a— symbol when the variable is set to false: e.g.,
whereX = {a, b,d}, theX-interpretatiorM = {a,d} is denotedibd.

A preference relatiorr is a reflexive and transitive binary relation (not necesganmplete) on
2V. WhereM, M’ € 2V, as usual, strict preferenté > M’ holds iff M = M’ and notM’ > M.

As we stated earlier, CP-nets exploit conditional preféaéindependence to compute a preferen-
tial ranking over outcomes:

Def. 2 LetV be a set of propositional variables afid,Y,Z} a partition of V. X isconditionally
preferentially independertf Y given Z if and only if/z € 22, Vx1,x2 € 2X andVyy,y, € 2¥ we
have: xy1z > Xoy1Z iff X1y2zZ = Xoyoz.

For each variabl, the agent specifies a setdrent variables P&X) that can affect his prefer-
ences over the values ¥ Formally,X is conditionally preferentially independent'gf\ ({X} U
Pa(X)). This is then used to create the CP-net:

Def. 3 Let V be a set of propositional variabled/ = (G,T) is a CP-neton V, whereg is a
directed graph over V, and’ is a set of conditional preference tables with indiffereGeeT (X;)
for each % € V. CPT(Xj) specifies for each instantiationg2Pa*i) either x > X}, Xj =p X;j or
Xj ~pXj.

Exploiting the CP-net formalism and semantics enables tfigbthe value of a variablex within

an outcome to obtain a different outcome, which the agentpnefier, disprefer or be indifferent to.
An outcomeo is better than another outcornéff there is a chain of flips frono’ to o which yield
either preferred or indifferent outcomes, and there is astleneimproving flip This definition
induces a partial order over the outcomes.

Despite their many virtues, classical CP-nets won't do émresenting the preferences expressed
in dialogue. Suppose an agent says “l want to go to the malits@mething”. We can infer from
this that he prefers to go to the mall given that he wants tooesitve do not know his preferences
over “go to the mall” if he does not want to eat. We thus npadial CP-nets. A partial CP-net, as
introduced by [11], is a CP-net in which some features maybeatanked. Partiality forces us to
relax the semantics:

— An improving flipin a partial CP-net changes the value of a varidbsich that: ifX is ranked,
the flip is improving with respect to (wrt) the CPT ¥f and if X is not ranked, it is improving
wrt the CPT of all features that dependXn

— An indifferent flipchanges the value of a variabfesuch that: ifX is ranked, the flip is indif-
ferent inCPT(X); otherwise wrt all CPT, the change in the valueXofeaves the outcome in
the same position.

— Incomparable flipsre all those flips which are neither worsening, nor imprgyivor indiffer-
ent.

As before, an outcomeis preferred to outcomé (o >~ o) iff there is a chain of flips frono’ to o
which are all improving or indifferent, with at least one iroging one. An outcome is indifferent
wrt o’ (0 ~ 0) iff at least one chain of flips between them consists onlyndifferent flips.o is
incomparable t@' iff none ofo - o/, 0’ = 0 oro~ o hold.



Unlike classical CP-nets, partial CP-nets with indiffezertan have more than one optimal out-
come even if their dependency graph is acyclic. However, are still easily determine a best
outcome, using tharward sweeprocedure [4] for outcome optimization (this proceduresisis

in instantiating variables following an order compatiblghithe graph, choosing for each variable
(one of) its preferred value given the value of the parents).

Partial CP-nets are expressive enough for the examples veestizadied in the Verbmobil corpus.
Section 5 will show how discourse structure typically letas dependence among preferences
that is similar to the one exploited in CP-nets.

4 From EDUs to Preferences

Speech acts are relations between sets of commitmentggudattual statements in dynamic se-
mantics are relations between information states. Whiteesgepeech acts, like greetings, don't
affect preference commitments, many speech acts do dfiiect, tas we have seen. We must there-
fore extract (commitments to) preferences from speech Wétswill compute preferences in two
stages: we extract them froepus; and modify them recursively via the discourse structaee (
Section 5).

EDUs include what we calatomic preference statements (e.gwant X or We need X They
can be complex, expressing boolean combinations of pratese(e.gl want X and Yj; they can
also express preferences in an indirect way (e.qg., intatiges likeShouldn’t we go home now?
or expressions of sentiment or politeness). We regimerit samplexities via a functio® that
recursively exploits the logical structure of anu’s logical form to produce &oolean preference
representationBPR), expressed as a propositional formula. For the purposési®paper, we
define theBPR output of P manually, although in principle it is possible to learn thispping
from labelled corpus data. ThiserR will then affect preferences expressed as partial CP-sets (
Section 5).

SDRTs description logic ¢lue logicor GL) is designed to express statements about the logical
structure osbrsformulae, and so we use it here to define the fundioRormulae inGL partially
describebsbRss in general, and the formulae associated gitius in particular. For instance,
11: Not(Ty) means that the labet in the DSDRS being described is associated with a formula
—@r , Where— is the constructor from thebrslanguage that's denoted by Not, agg is the
sbRrsformula associated witity,. We defineP recursively over theseL-formulae.

We treat disjunction non-exclusively: i.é¢ want X or Ymeans | prefer one of the literals or both.
If the preference is exclusive, we rely on model constraimtsile out states wherg andY are
satisfied. Conjunctions are ambiguous with respect to peées, but in certain cases we can
resolve the ambiguity. want X and Ycan mean that my most preferred state is one where both
X andY are satisfied, but | would still prefer to satisfy one of themmeither being satisfied. This
disambiguation foendwill be represented with theL predicate &. On the other hand, trE®U
could mean that | prefer the “fusion” &f andY while not preferring eitheX orY separately; we
mark this inGL with A. A final case has to do with questions. Although not all questientail that
their author commits to a preference, in many cases they lolat i, if A askscan we meet next
week?he implicates a preference for meeting. For negativevemahterrogatives, the implication
is even stronger. This yields the following axiomsan for mappingeDbus to aBPR:

. P(1) = Xy for atomictt
1t: Not(ty ) — P(11) = —-P(1Ty)
1: Or(Ty, T2) — P(1) = P(Th) V P(TR)

wnh e



5 From Discourse Structure to Preferences

We now define how to update CP-nets representing an ageefarpnces with thePrs of EDUS
and by discourse structure. More formally, we define a fams@iommitfrom a labelrtor discourse
relationR(1y, ) and a contextually given CP-ng{ to an updated CP-net. We focus here on the
relations that are prevalent in the Verbmobil corpus (seti@el).

Below, X denotes a propositional variable apd propositional formula frorsPRr. Var(g) are the
variables ing, and>-x the preference relation associated Wit T(X). Sat@) is a conjunction of
literals fromVar(g) that satisfyg, while non-Satg) is a conjunction of literals frorvar(¢) that

do not satisfyp. Saf{@) — X is the formula that results from removing the conjunct witlirom

Sat(@).

1. WhereP(m) = X (e.g.,I want X), Committ, 2\) updates\( by addingX >~ X.
2. WhereP(m) = @A Y (the agent prefers bothandy, but is indifferent if he can’t have both),
Committ, ) updatesi as follows:
— For eachX € Var(g), addvar(y) to Pa(X) and modifyCPT(X) as follows:
a. IfSaf(y), Sag (@) - X (resp.X), thenSaf(y), Sag(p) — X: X = X (resp.X > X), for
all satisfierd andj.
b. If Saf(y), Sai(g) ¥ X andt/ X, thenSaf(y), Sag(g) —X: X ~ X, for all satisfiers
andj
c. non-Sat(y), Saf () — X: X ~ X andSat(), non-Sat(p) — X: X ~ X for all satis-
fiersi and]j
— Similarly for eachyY € Var(y). L B
Where@ and  are literalsX andY, this rule yields the followingX : Y =Y, X:Y ~Y.
Y: X=X, Y:X~X. XY
And we obtain the following preference relation: YYi )i?bﬁ
Even though the dependencies are cyclic here, the use &iratice allows us to find the best
outcomeXY easily.
3. P() = &Y (the agent prefers to have bagrandy and prefers either one if he can’t have
both). We use a similar definition to that for, where if@ andy are literalsX andY we get
Y =Y andX > X. XY

We obtain the following preference relation: YY\W/ XY

4. P(m) = @V Y (the agent prefers to have at least onepaind Y satisfied). The definition is
similar to that forA, where if@ andy areX andY, we get:
— Var(X) e Pa(Var(Y)) andX :Y ~Y, X:Y > Y.
— Var(Y) e Pa(Var(X)) andY : X ~ X, Y: X = X. gy yy<>XY
NV S

We have the following preference relation: X5

As before, the use of indifference allows us to find the begtames KY, XY andXY) easily.

Due to lack of space, we won'’t describe rule Rimt) = —@.
lexplanation. lexplanatiorim, 1), as illustrated with example (2), means tRéty ) (here, going
to the mall) is causally dependent upBfry) (eating something).



(2) ™™ Ilwantto go tothe mall
T to eat something

Being a veridical relation (and assuming that a commitmeiebintent implies a commitment also

to the preferences expressed by@mmitlexplanatioriy, ™), A() starts by applyin@ommi{ o,

Commi{(y, A()) to the contextually given CP-n&{. Then, the preferences arising from the illocu-

tionary effects ofexplanation given its semantics, must ensure that CPTs are modifiecatedich

variable inP(1y) depends on each variableR(m,): i.e.,VX € Var(P(mm)), VY € Var(P(1p)), Y €

Pa(X). So,vX € Var(P(m)), CPT(X) is constructed by simply adding all conjunctidatP(T))

to the conditional part dEPT(X). On the other hand; x when the condition includesn-SatP(Tw))

is undefined (i.e., we don’t know preferences)ii P(1p) is false).

For example, leP(y) = X VZ andP(1p) =Y. That is, the agent explains his preferenceXofzZ

by Y: he wants eitheX or Z if Y is satisfied. We first appl€ommitY, CommitX Vv Z,(0,0))). B

rules 4 and 1, we obtain:
— X ePa(Z)andX: Z ~
— ZePa(X)andZ: X ~
-Y=Y

Then, the rule fotexplanationmodifiesCPT(X) andCPT(Z):
—YePaX)andZAY:X ~ X, ZAY: X = X.
—YePaZ)andX AY:Z~Z,XAY:Z > Z.

This yields the following, partial, preference relatiors we do not have /(YZ\*

any information on the preference &nandZ if Y is false, the states in YYZ<—>XYZ<—>XYZ

XYZ XYZ XYZ
The causal dependenceéxplanationis very close to the logical dependence exhibited ik ki

whichY is false are incomparable, as required.

(8) m Ilwantwine
o | want white wine

Thatis, a preference for white wine depends on a preferemedfie. This leads us to the following

Elab rule: CommitElab(ty, ), A') = Commiflexplanationity, T4 ), A’) whenty andT, express

a preference (i.eR(m) andP(1y) are defined); otherwise there is no modification of the given

CP-net.

Plan-Elab marks those cases where the second term of the relatiorlsdatpian to achieve

the preferences expressed in the first term (see Table 1L dBumi{Plan-Elakm, ™), A)) =

CommitElab(ty, 10), A).

We now turn to questions.

Q-Elab Q-Elaby(1y, T0) implies that the speakeéywho utters the question, takes over the pref-

erences expressedim (in future, we may often identify the agent who’s committedte speech

act as a subscript on the relation, as done here). More forn@Elab, Ty, T2) implies that we

updateA’s CP-netA by applying the rule foElab(m, ™), where ifp expresses no preferences

on their own, we simply se®(1p) = P(11;). Note that this means thafs CP-net is updated with

the preferences expressed by utteramceegardless of who sain.

QAP Answers to questions affect preferences in complex ways.fifht case concerns yes/no

guestions and there are two cases, depending on wHgtlegtiesyesor no:

Yes QAPR; (T, T») wheretn isyes B's preferenced\ are updated by applyir@ommitElabs(1u, @), A)
(and sdB's preferences include those expressedtbgndrp).



No QAPs(T,TR) whereTn is no. If P(Ty) andP(1p) are consistent, thel's preferences\( are
updated by applyin€ommig(Elabs(my, ™), \); if they are not consistenB’s preferences
are updated by applyingommifPlan-Correctior{ty, @), A) (see below).

Now considerQAPR(1, ™), wherertt is awh-question. TherB's preferences over variables in

Ty andTp are exactly the same as the ones defined for a yes/no quedtane the answer iges

variables inm, will refine preferences over variablesin. So,B’s preferences\( are updated by

applyingCommig(Elabg (i, %), A().

Alternatives The last and most complex sort of question and answer paitvies so calledl-

ternativequestions such asould you like fish or pizza3uppose ageri asksB an alternative

questionmy involving n variables. TheB's answerQAP; (11, ) provides information abol®’'s
preferences. Suppose : & (X;,...X,). Intuitively, this response provides several answers asl go
as any other: for < j < n, B wants to satisfy the literaX;. Therefore, we add the following pref-

erences for eack;, or we change the existing preferences if appropriaé€x;) = 0 andX; > X;.

Plan-Correction may affect preferences in several ways. For example, iteeect what variables

are operative. That is, giveRlan-Correctiority, ), some variables ifP(1) are replaced by

variables inP(Tp). We have a set of rules of the for¥— {Vi,...,Ym}, which means that the
variableX € Var(P(1y)) is replaced by the set of variabl€¥, ..., Yn} C Var(P(Ty)). We assume
thatX cannot depend ofiYy, ..., Ymn} before thePlan-Correctionis performed. Then replacement
proceeds as follows:

6. If Pa(X) =0, we addYy > Yi forall k € {1,...,m} and removeX = X (or X > X). Otherwise,
we replace every preference statementT®iT(X) with an equivalent statement usiivg (to
createCPT(Yy)), forallk e {1,...m}.

7. For allW such thatvar(X) € Pa(W), we re-defineCPT(W) so that every occurrence of
andX is replaced by a set df statements where each statement replaces repfaveth X
respectively with/\ ;<< Yk andV/ << m Y-

Plan-Corrections, like the one in (1), can also remove gedptions from consideration in re-

alizing a particular plan or it can put certain options intaypthat were previously excluded. In

particular, supposear countenances k optiong, ..., Xk and rules out optionsYs, ..., Ys; thus,

P(T%) = V1<i<k Xi A A1<r<n—Yr. Supposeatn removes an optioiXy, from 1. Then we must re-

placeP(Tr) with V (1<i < (m} Xi A (A1<r<n—Yr) A =Xm. The rule for putting an option into play

that was previously excluded is similar; one removes onb@tbnjuncts irP(15) and adds to the
disjunction. It seems impossible to state the effecBlah-Correctionwithout the level of boolean
preference representations afforded by the fund®ome have not found a way to modify CP-nets
directly.

6 Treatment of our example

Dialogue (1) illustrates how our rules work to refine prefexes as conversation proceeds. While
this dialogue doesn'’t feature all of our rules, other exasph the Verbmobil corpus verify the
other rules.

T A: Shall we meet sometime in the next week?
Commii(Ty, (0,0)) = P(Ty) = M, whereM means Meet.

®

Fig. 1. A’s preferences



T A: What days are good for you?

Q-Elabm, ™). A continues to commit té1 on T and no new preferences are introduced by
™ (i.e. P(Th) = P(1m)).

B: Well, | have some free time on almost every day except FEday

B: Fridays are bad.

Ty is linked to 1 with explanation, but this has no effect on preferencesilnB says he
has some free time on Monday, Tuesday, Wednesday and Thyestthso can meet on these
days); he does not want to meet on Friday. So, we uiai€P-net(0, 0) with Q-Elah(ty, )

and thenQAPR(Ty, 1), whereP(1i) = (J1V XV I3V J4) A —=Js, with J; being Monday,J,
TuesdayJ; Wednesdayls Thursday ands Friday. Wherd = {1,2,3,4,5} this update yields:

M =M
MA(VIGl\{S)Ji>:j5>"]5
@ MA(Aier\{s}3i) 35 ~J5

MA (Vier\ (a3 %) 3 ~Jg

3
U

MAVign (g9 -3 ~3

MA(Nien (13 3) =91 - 31
MAVign\ (23 9) 192 ~ 32

(%)

3
MA(/\|E|\\{2)j|)332>j2 MA(\/i€|\\{3)Ji):J3N33

M/\(/\|6|\\{4)j,):.14>j4
MA[/\iC|\(3}j|) 133 >-J3

Fig. 2. B's preferences
T B: In fact, I'm busy on Thursday too.

This is aPlan-Correctionwith P(15) = —Js, and thusly < —Js. ThusJ, is no longer an op-
tion. The above rule for updating a CP-mgtwith this dialogue mov@lan-Correctior{Tt, Ti5)
(whereTt outscopesi and1y) therefore removes the disjundt from the BPR for the first
argumentt, and adds the conjunetly. The effect of the resultingPR is this update td’s

CP-net: _

M~ M

MA Vg (13 9) 3 ~T1

MAVier\(sp ) 35 = J5
( :) MAjer g5 3) 95 ~ T

MA(VIel\{A)Ji) g3

MA (Ajgp 1331 91 = 1
MAVign (239 32~z

(%)
MA (Vien (a9 133~ 33
M/\(/\Iél\{S)ji):‘]3>'j3
Fig. 3. B's preferences
T A: Well next week | am out of town Tuesday, Wednesday and Tlayrsd
The above rule for updating’s prior CP-net (see Figure 1) witRlan-Elal{ty, %), where

P(T6) = ~J2 A —J3 A —Jy, yields the foll?nvyimng CP-net.

M/\(/\icl\\{z)ji>:J2>'jZ M/\(/\ic|\\{4)ji):J4N34

MAVie(zap%) 12~ 32 ) /JS\ J4 MAVig2,3y %) Ja~Ja
MA(Nie(aaydi) 32 - %2 MA(Vie(h‘){):‘bN% MA(Niegz,3)3) 9a = Ja

MA[A|6{2_4)3,):33>J3
Fig. 4. A's preferences
7 A: So perhaps Monday?
Commitupdates the CP-netin Figure 4 with the m@x&lab(ty, 17), whereP(1t) = J;. Using
the same rules as before this yields:
M>M
M:Jp>-J;
MA(Vicqzapd) 2~ T2

MA (Niggz.ay3) 32 = %2

% ) D MA(Vieq23%) % ~Ta

3
MA (Vie(z.aph) 33~ 3 M Niegz.z) )3 =%

MA[/\lE{ZA)j,):j;; =J3
Fig.5. A’'s preferences

Our rules suffice to analyse the dialogues we have examioettfie Verbmobil corpus. We have
also analyzed examples from a tourism corpus where our suléise to extract preferences.



7 Conclusion

Computing preferences expressed in texts is important &y LP applications. We have shown
how to use CP-nets and models of discourse structure, tagefth the intermetiate levedpPr,

to investigate this task formally. Our rules for preferenoedelling are straightforward, intuitive
and of low complexity. While CP-nets can loose their polymarime complexity for computing
best outcomes, if conjunctive) or disjunctive {/) preferences occur, on the whole the formalism
remains tractable. Once we can extract preferences, we afgasition to broaden current analyses
of dialogue beyond the usual Gricean cooperative setti6fsq which agents’ preferences are
assumed to be aligned, and to use game-theoretic techrimaaalyze strategic conversations, in
which preferences are not aligned or not known to be aligheds, our work here opens a way
to attack the complex interaction between what agents dagt their preferences are, and what
they take the preferences of other dialogue agents to beo@se, all this depends on extracting
discourse structure from text, which has proved to be a diffiask. Nevertheless [3,12] show
how one can begin to extract discourse structure autontigiticam texts like those found in the
Verbmobil corpus. So we hope that our proposal will evemydidd its way into automatic systems.
In any case, our formal approach serves as a model for whiasystems should aim to accomplish
with respect to preference modeling.
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