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Abstract

Simulation is an invaluable tool for develop-
ing and evaluating controllers for self-driving
cars. Current simulation frameworks are driven
by highly-specialist domain specific languages,
and so a natural language interface would
greatly enhance usability. But there is often
a gap, consisting of tacit assumptions the user
is making, between a concise English utterance
and the executable code that captures the user’s
intent. In this paper we describe a system that
addresses this issue by supporting an extended
multimodal interaction: the user can follow
up prior instructions with refinements or revi-
sions, in reaction to the simulations that have
been generated from their utterances so far. We
use Large Language Models (LLMs) to map
the user’s English utterances in this interaction
into domain-specific code, and so we explore
the extent to which LLMs capture the context
sensitivity that’s necessary for computing the
speaker’s intended message in discourse.

1 Introduction

Developing self-driving vehicles is a highly com-
plicated process. In particular, a long tail of edge
cases, in which the controller’s current policies are
likely to yield bad outcomes, needs to be discov-
ered and tackled.

Testing self-driving vehicles on public roads is
expensive and potentially dangerous (BBC News,
2018): safety-critical near-crash scenarios occur
with low probability during normal operation, and
for ethical reasons they cannot be created delib-
erately. Testing on closed circuits or other artifi-
cial environments is only a partial solution since
it cannot easily account for the high variability of
conditions on public roads. Simulation is a po-
tentially cheaper, faster and safer alternative that
can complement road testing. It allows developers
to evaluate rare, dangerous or even counterfactual
scenarios (e.g. scenarios that involve road configu-
rations or vehicle hardware components that do not

yet exist). Furthermore, some simulation methods
may be amenable to formal verification.

However, realistic simulation is hard. Over the
years, many simulation frameworks for self-driving
have been developed, each focusing on different
aspects and hence different abstraction levels of the
task (Hoss et al., 2021). Each simulation frame-
work is accompanied with an application program-
ming interface (API) or a domain specific lan-
guage (DSL), so that users can specify scenarios
and control algorithms programmatically. Despite
the ongoing standardization efforts (ASAM e. V.,
2020a,b; Thorn et al., 2018; British Standard In-
stitution, 2020), different frameworks still use dif-
ferent interfaces, ontologies and paradigms. This
creates a steep learning curve for engineers. Ide-
ally, we would like to have systems that allow engi-
neers to specify simulation scenarios with minimal
specific knowledge of these details, using natural
language as an interface.

Recently, coding assistants based on Large Lan-
guage Models (LLMs) have become good enough
to be of practical use (GitHub, 2021; Nijkamp et al.,
2022; GitHub, 2023; OpenAI, 2023). In this ap-
proach, the user specifies programming problems
by providing natural language instructions and op-
tionally partial programs, and the assistant provides
program completions. The most recent systems,
such as GitHub Copilot X, OpenAI ChatGPT/GPT-
4 and Anthropic Claude, allow multiple rounds
of interaction with the user through dialogue, en-
abling an iterative refinement of solutions. These
systems usually perform well on common program-
ming languages such as Python (though they can
fail systematically on unusual coding tasks that re-
quire non-trivial reasoning (Miceli-Barone et al.,
2023)). It would be desirable to leverage them to
aid the generation of scenario specifications for
self-driving vehicle evaluation from natural lan-
guage descriptions. This is a non-trivial task, since
in contrast to Python, it is unlikely that these large



pretrained models have seen many scenario specifi-
cations in all the specific DSLs accompanying the
various simulation frameworks within their train-
ing data. Therefore, they cannot be used directly in
zero-shot mode.

An additional challenge occurs because typical
natural language scenario descriptions are often
highly concise, with many aspects of the user’s
intended configuration remaining linguistically im-
plicit. For example "The ego vehicle, which is in the
left lane, overtakes the car in front" does not make
explicit that this action is intended to be not at a
crossroads. But a simulator may randomly sample
aspects of the scenario that are absent from the de-
scription, and therefore may generate a crossroads,
conflicting with the user’s intent.

In this project, we explore a methodology to
develop a dialogue-based coding assistant for the
generation of self-driving vehicle simulation sce-
narios using LLMs. Our main objective is to gen-
erate Scenic scenarios (Fremont et al., 2022) from
English descriptions. We focus on the NHTSA-
inspired pre-crash scenarios for the Carla Au-
tonomous Driving challenge1. Due to the extremely
low-resource nature of this problem (we were able
to collect only 32 examples of scenarios with an
English description) we make extensive use of in-
context learning techniques. We evaluate to what
extent dialogue-based interaction can contribute to
this task, under the hypothesis that it allows the
user to iteratively evaluate and refine the generated
scenarios by identifying which implicit assump-
tions are being violated and making them explicit
to the system.

2 Experiments

2.1 Frameworks

A Scenic scenario is a probabilistic program which
defines a distribution over scenes, which specify the
initial positions and velocities of vehicles, pedestri-
ans and other objects on a map representing an ur-
ban environment, and also specify their behaviours.
This probabilistic formulation enables the concise
specification of a large number of test cases, in
which the implicit aspects are randomly sampled
by the scenario compiler. The sampled scenes are
executed by a backend— in our work, the CARLA
Urban Driving Simulator (Dosovitskiy et al., 2017)
(Figure 1).

1https://carlachallenge.org/challenge/nhtsa/

Figure 1: A Scenic scenario generated by our model
and executed in the CARLA simulator. The description
is: "Ego vehicle goes straight at 3-way intersection and
must suddenly stop to avoid collision when adversary
vehicle makes a left turn."

For scenario generation from English descrip-
tions we use the OpenAI GPT-4 model version
0314, available through the OpenAI API.2 GPT-4 is
an instruction-tuned LLM optimized for dialogue-
based interaction.

2.2 Available data resources
The Scenic repository has only 32 scenario speci-
fications with both code and natural language de-
scriptions.3 We use 16 scenarios as training exam-
ples and 16 as test examples. Each scenario de-
scription consists of one or two English sentences,
mainly describing behaviours and a location type
where the simulated incident happens (e.g. "on a
highway", "at a 4-way crossroad", etc.), although
the location may be left implicit. The scenario
code, while being probabilistic, is more specific
than the English description, as it includes ranges
for initial vehicle distances and velocities, algo-
rithmic instructions for how to locate a suitable
starting point on the map, and agent behaviours
specified by composing elementary behaviours in
a subsumption-style architecture (Brooks, 1986).
Therefore, there are two levels of underspecifica-
tion here: one from the English description to the
probabilistic scenario code, and another from the
probabilistic code to the executable scene. This
reflects how humans communicate with language:
they often leave implicit aspects of their intended
message, especially when it can be inferred from
what they have made explicit via commonsense
inference.

2https://platform.openai.com/docs/
api-reference

3https://github.com/BerkeleyLearnVerify/
Scenic/tree/main/examples/carla

https://carlachallenge.org/challenge/nhtsa/
https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference
https://github.com/BerkeleyLearnVerify/Scenic/tree/main/examples/carla
https://github.com/BerkeleyLearnVerify/Scenic/tree/main/examples/carla


2.3 Workflow

In our experiments, we focus on a use case where a
simulation scenario is generated through multiple
rounds of interaction between an engineer (the user)
and the system (the assistant).

Specifically, the user first provides a short En-
glish description of the scenario consisting of one
or two sentences in the style of the Carla Au-
tonomous Driving scenarios, for instance "Ego-
vehicle is driving in the left lane of a highway and
must perform a lane change to avoid a slow moving
or parked vehicle on the shoulder.". The assistant
queries the instruction-tuned LLM to generate the
initial code for a Scenic scenario that corresponds
to the meaning of the description. We then invoke
the Scenic compiler, which will attempt to parse the
code, randomly sample a particular scene and run it
in the CARLA simulator. Since the LLM decoding
process is unconstrained, the generated code may
be syntactically incorrect or it may reference un-
known behaviours, functions, or asset names, mak-
ing the code non-executable.4 These issues will
be detected when execution is attempted, in which
case Scenic returns an exception. In such cases,
the exception message is sent back to the LLM,
concatenated to the previous generation and all its
prompts (up to the length limit of the LLM context
window). This process is iterated, without user in-
tervention, until an executable scenario is produced
or a maximum number of rounds (specifically, 5)
is reached. If this initial phase is successful, the
user observes both the code and simulation runs of
multiple scenes. The user can then judge whether
they adhere to the requirements, and if necessary
ask the assistant for further variations. The user
can then express further content, and the process
iterates.

For instance, assume that in the aforementioned
example scenario, the assistant generated code in-
stantiates two slow-moving vehicles rather than
one, which violates Gricean scalar implicatures
of the description (Grice, 1975) (i.e., it implicates
there is only one slow moving or parked vehicle)
and interferes with the termination condition5. The
user may comment "Create only one vehicle be-
sides the ego vehicle.". This comment is appended

4Scenario execution can also fail if the rejection sampling
algorithm used by Scenic fails to generate a scene that satis-
fies the specified constraints within a predefined number of
iterations, namely 2,000.

5This example is taken from an exploratory experiment
that we executed.

to the LLM context and a new scenario is gener-
ated, performing automatic iteration if exceptions
are detected, until another executable scenario is
presented to the user.

At this time, for instance, the user may notice
that a crash occurs in some of the runs because the
ego-vehicle is driving too fast, and they may com-
ment "Execute the lane change at a speed no more
than 10.", and the assistant may respond by chang-
ing the parameter that controls the ego-vehicle’s
speed in the scenario code. If at some point during
the process the assistant fails to generate an exe-
cutable scenario within the specified maximum of
rounds, the user can examine the generated code
and provide hints to fix it back to the LLM. Hope-
fully, the user will eventually be satisfied with the
generated scenario.

2.4 LLM interaction

In order to generate scenario programs from their
English descriptions, we use in-context few-shot
learning (Brown et al., 2020). For the first query of
a given test scenario, we randomly sample training
examples up the a total of 6,500 out of 8,000 tokens
of the GPT-4 context window. Since training ex-
amples are on average 512 tokens long, this results
in about 12 examples out of 16 being selected. Af-
ter appending the test scenario English description,
we query the model with softmax temperature 0.1.
We extract the code from the model response and
post-process it before sending it to the Scenic com-
piler. See appendix A for details on the prompting
templates and code processing.

For each the following queries, the model output
message and then the Scenic exception or the user
comment are appended to the prompt and training
examples are removed in order to keep the prompt
length under 6,500 tokens.

3 Evaluation

In our evaluation protocol, we allow for a maxi-
mum of 5 dialogue turns per test scenario, includ-
ing the initial generation. For each turn, we allow
up to 5 LLM queries. When an executable sce-
nario is generated, the user views multiple scenes
sampled by Scenic until they are satisfied (scenes
usually last 10-30 seconds), then the user either
declares the scenario a success, or provides a com-
ment to the system until the maximum number of
turns is reached. The user can also view the gen-
erated code at each turn, but not the gold-standard
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Figure 2: Cumulative success probability over number of dialogue turns (left), and over total number of LLM
queries (right).

reference code. See appendix B for an example of
scenario generation with user interaction.

In this work, one of the authors acts as the user.
The OpenAI API cost for running our experiments
was 19.12 USD. The code to replicate our experi-
ments is available on GitHub6.

3.1 Results

We generate 8 successful scenarios out of 16 (50%).
We report the cumulative success probability over
the number of dialogue turns and over the total
number of LLM queries in Figure 2.

We observe that two turns of dialogue increase
success probability from 37.5% of single turn gen-
eration to 50%. When the system successfully
generates a scenario, it does so within two LLM
queries, whether they happen in the first or the sec-
ond turn, with success probability increasing from
31.3% to 50%. Additional turns or queries do not
improve success probability, which is somewhat
disappointing, although even with one turn we ob-
tain a substantial gain over the direct generation
baseline.

Qualitative analysis reveals that the system is
often able to generate executable code within one
or two queries per turn, but unless it generates
the correct scenario semantics early on, it tends to
struggle with details such as the relative movement
direction of cars and pedestrians. In a small number
of cases, the system keeps generating incorrect
keyword or identifier names (essentially trying to
guess the syntax and standard library of Scenic) or
generates scenarios that can compile but fail in the
sampling stage due to excessively tight constraints

6https://github.com/Avmb/DialogLLMScenic.git

that cause the Scenic rejection sampler to run out
of iterations. In these cases, the user can sometimes
correct the model by looking at the generated code
and providing suitable hints. See appendix B for
examples of both a successful and a failed scenario
generation.

4 Conclusions

We investigated the generation of stochastic self-
driving simulation scenarios using dialogue-based
interaction between an user and a LLM. We con-
sidered a very challenging task due to the very
small number of training examples and the use of
a domain-specific language which the LLM has
probably not seen neither during its pre-training
nor its instruction fine-tuning.

Using iterative model querying and multiple
turns of interaction with the user we were able to
achieve success in half of our test scenarios, a sub-
stantial improvement over the direct single-query
generation baseline. While the user still need ex-
pertise in the scenario specification language, our
approach may allow faster prototyping compared
to writing scenarios from scratch.

We believe that this work constitutes a promising
research direction in the field of natural language
interfaces for self-driving vehicle engineering and,
more generally, robotics. Future work may extend
this approach to semi-automatic scenario validation
or formal verification, where algorithmic evalua-
tion criteria are also generated by the LLM through
user interaction.

https://github.com/Avmb/DialogLLMScenic.git


Limitations

• Due to time constraints, our human evalua-
tion was conducted with only one test sub-
ject which is also an author of this work.
This might introduce bias. A better approach
would involve multiple independent evalua-
tors.

• Our approach uses a simple few-shot in-
context learning setup with random example
selection. More advanced LLM example se-
lection techniques (e.g. similarity-based), pos-
sibly combined with example augmentation
or more advanced prompting strategies (e.g.
chain-of-thought) might lead to better perfor-
mance.

• The LLM processing of error messages and
user comments is zero-shot. Creating a dataset
of such interactions obtained on the training
examples and using them as additional con-
text during deployment might increase perfor-
mance.

• We only evaluated a single, closed-source,
API-only, model. Better performance and bet-
ter usability might be achieved on open source
models which may be fine-tuned on our train-
ing examples.

Ethics Statement

Our experiments involve the participation of a hu-
man subject (one of the authors). Due to the nature
of the experiments, we believe that there were no
plausible risks for the human subject.

Our work may enable a more extensive use of
simulation in the development of self-driving vehi-
cles. This can have positive implications for public
safety, as it may reduce the amount of testing on
public roads of early-stage prototypes which may
endanger the public (as in the case of the Uber self-
driving car crash). However, it should be remarked
that simulation can never fully replace real-world
testing and post-marketing monitoring.

Our work uses a closed-source LLM which is
available only as an API which may be discontin-
ued at any time and which has been trained on un-
known data. There may be intrinsic ethical issues
with such models due to their extreme black-box
nature. We recommend that production systems
should be based on open-source models that can
be independently audited and can be run on local
hardware.
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A Prompt templates and data processing

A.1 Templates
For each scenario, in the initial query to the LLM,
we start with a message in the GPT-4 "system"
conversation role, providing an instruction describ-
ing the task: "You are a helpful agent that gener-
ates specifications for car driving scenarios in the
Scenic language.
Scenic is a domain-specific probabilistic program-
ming language for modeling the environments of
cyber-physical systems like robots and autonomous
cars. A Scenic program defines a distribution
over scenes, configurations of physical objects and
agents; sampling from this distribution yields con-
crete scenes which can be simulated to produce
training or testing data. Scenic can also define
(probabilistic) policies for dynamic agents, allow-
ing modeling scenarios where agents take actions
over time in response to the state of the world.
Your task is to generate Scenic scenarios, each ac-
cording to its corresponding description in English
included as a docstring. Write each scenario in a
separate code box. Follow the examples below:"7

7This text has includes the first paragraph of the home-
page of the Scenic documentation website: https://
scenic-lang.readthedocs.io/en/latest/

Then we provide a sequence of training ex-
amples, each specified by a message in the
"example_user" role, which contains the En-
glish description of the scenario extracted from
its docstring, followed by a message in the
"example_assistant" role which contains the sce-
nario code (without the docstring) inside a code
block with "scenic" language tag. Finally we pro-
vide the English description of the test scenario in
a message in the "user" role. The model responds
to this query with a message in the "assistant" role.
We search for a code block with "scenic" language
tag in this message and we extract the code inside
it.

For subsequent queries, we append to the prompt
the "assistant" message generated by the model,
followed by a message in the "user" role contain-
ing either the Scenic exception prefixed with "An
error has occurred:", or the user comment prefixed
with "Comment:". We drop examples from the
top (while keeping the "system" message) in order
to keep the prompt length to less than 6,500 to-
kens. The prompt is retained and updated between
queries, effectively representing the dialogue state.

A.2 Data processing
We perform minimal data regex-based pre-
processing on the scenario code before sending
it to the LLM: we remove comments, empty lines,
we fix the vehicle asset name and simulator back-
end names (which are sometimes incorrect due to
version mismatch between Scenic and CARLA)
and we remove the map filename (it is a waste of
tokens which can be reconstructed from the map
name). Similarly, on the generated code we add the
original English description as a docstring and we
add the map filename derived from the map name.

https://github.com/features/preview/copilot-x
http://arxiv.org/abs/2102.08460
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B Generation example

B.1 Successful generation
In this example, the user starts with the scenario description: "Ego vehicle makes a right turn at 4-way
intersection while adversary vehicle from lateral lane goes straight."
The model generates the following code, which is immediately executable:
param map = localPath('Scenic/tests/formats/opendrive/maps/CARLA/Town05.xodr')
param carla_map = 'Town05'
model scenic.simulators.carla.model
MODEL = 'vehicle.lincoln.mkz_2017'
EGO_INIT_DIST = [20, 25]
param EGO_SPEED = VerifaiRange(7, 10)
param EGO_BRAKE = VerifaiRange(0.5, 1.0)
ADV_INIT_DIST = [10, 15]
param ADV_SPEED = VerifaiRange(7, 10)
param SAFETY_DIST = VerifaiRange(10, 20)
CRASH_DIST = 5
TERM_DIST = 70
behaviour EgoBehavior(trajectory):

try:
do FollowTrajectoryBehavior(target_speed=globalParameters.EGO_SPEED, trajectory=trajectory)

interrupt when withinDistanceToAnyObjs(self, globalParameters.SAFETY_DIST):
take SetBrakeAction(globalParameters.EGO_BRAKE)

interrupt when withinDistanceToAnyObjs(self, CRASH_DIST):
terminate

intersection = Uniform(*filter(lambda i: i.is4Way, network.intersections))
egoInitLane = Uniform(*intersection.incomingLanes)
egoManeuver = Uniform(*filter(lambda m: m.type is ManeuverType.RIGHT_TURN, egoInitLane.maneuvers))
egoTrajectory = [egoInitLane, egoManeuver.connectingLane, egoManeuver.endLane]
egoSpawnPt = OrientedPoint in egoInitLane.centerline
advManeuver = Uniform(*filter(lambda m: m.type is ManeuverType.STRAIGHT, egoManeuver.conflictingManeuvers))
advInitLane = advManeuver.startLane
advTrajectory = [advInitLane, advManeuver.connectingLane, advManeuver.endLane]
advSpawnPt = OrientedPoint in advInitLane.centerline
ego = Car at egoSpawnPt,

with blueprint MODEL,
with behaviour EgoBehavior(egoTrajectory)

adversary = Car at advSpawnPt,
with blueprint MODEL,

with behaviour FollowTrajectoryBehavior(target_speed=globalParameters.ADV_SPEED, trajectory=advTrajectory)
require EGO_INIT_DIST[0] <= (distance to intersection) <= EGO_INIT_DIST[1]
require ADV_INIT_DIST[0] <= (distance from adversary to intersection) <= ADV_INIT_DIST[1]
terminate when (distance to egoSpawnPt) > TERM_DIST

While this code largely captures the intended behaviour, the user notices that sometimes it results
in near crashes between the two vehicles. Therefore the user starts a second turn of dialogue with the
comment: "Use a higher safety distance". The system responds with the code:



param map = localPath('Scenic/tests/formats/opendrive/maps/CARLA/Town05.xodr')
param carla_map = 'Town05'
model scenic.simulators.carla.model
MODEL = 'vehicle.lincoln.mkz_2017'
EGO_INIT_DIST = [20, 25]
param EGO_SPEED = VerifaiRange(7, 10)
param EGO_BRAKE = VerifaiRange(0.5, 1.0)
ADV_INIT_DIST = [10, 15]
param ADV_SPEED = VerifaiRange(7, 10)
param SAFETY_DIST = VerifaiRange(15, 25) # Increased safety distance
CRASH_DIST = 5
TERM_DIST = 70
behaviour EgoBehavior(trajectory):

try:
do FollowTrajectoryBehavior(target_speed=globalParameters.EGO_SPEED, trajectory=trajectory)

interrupt when withinDistanceToAnyObjs(self, globalParameters.SAFETY_DIST):
take SetBrakeAction(globalParameters.EGO_BRAKE)

interrupt when withinDistanceToAnyObjs(self, CRASH_DIST):
terminate

intersection = Uniform(*filter(lambda i: i.is4Way, network.intersections))
egoInitLane = Uniform(*intersection.incomingLanes)
egoManeuver = Uniform(*filter(lambda m: m.type is ManeuverType.RIGHT_TURN, egoInitLane.maneuvers))
egoTrajectory = [egoInitLane, egoManeuver.connectingLane, egoManeuver.endLane]
egoSpawnPt = OrientedPoint in egoInitLane.centerline
advManeuver = Uniform(*filter(lambda m: m.type is ManeuverType.STRAIGHT, egoManeuver.conflictingManeuvers))
advInitLane = advManeuver.startLane
advTrajectory = [advInitLane, advManeuver.connectingLane, advManeuver.endLane]
advSpawnPt = OrientedPoint in advInitLane.centerline
ego = Car at egoSpawnPt,

with blueprint MODEL,
with behaviour EgoBehavior(egoTrajectory)

adversary = Car at advSpawnPt,
with blueprint MODEL,
with behaviour FollowTrajectoryBehavior(target_speed=globalParameters.ADV_SPEED, trajectory=advTrajectory)

require EGO_INIT_DIST[0] <= (distance to intersection) <= EGO_INIT_DIST[1]
require ADV_INIT_DIST[0] <= (distance from adversary to intersection) <= ADV_INIT_DIST[1]
terminate when (distance to egoSpawnPt) > TERM_DIST

The only difference with the previous generated code is the highlighted line, where the model increased
the probabilistic range of possible distances to initiate the brake maneuver at. Note that the LLM added
a comment to the code to document the change, even without being instructed to. The user observes
multiple runs in CARLA simulator of scenes sampled from this code (Figure 3) and deems it satisfactory,
declaring the test scenario as a success.

Figure 3: A scene from the successfully scenario generated in appendix B.1.



B.2 Failed generation
In this example, the user starts with the scenario description: "Ego vehicle makes a left turn at an
intersection and must suddenly stop to avoid collision when pedestrian crosses the crosswalk."
The model generates the following code:

param map = localPath('Scenic/tests/formats/opendrive/maps/CARLA/Town05.xodr')
param carla_map = 'Town05'
model scenic.simulators.carla.model
MODEL = 'vehicle.lincoln.mkz_2017'
EGO_INIT_DIST = [20, 25]
param EGO_SPEED = VerifaiRange(7, 10)
EGO_BRAKE = 1.0
PED_MIN_SPEED = 1.0
PED_THRESHOLD = 20
param SAFETY_DIST = VerifaiRange(10, 15)
CRASH_DIST = 5
TERM_DIST = 50
behaviour EgoBehavior(trajectory):

flag = True
try:

do FollowTrajectoryBehavior(target_speed=globalParameters.EGO_SPEED, trajectory=trajectory)
interrupt when withinDistanceToAnyObjs(self, globalParameters.SAFETY_DIST) and (ped in network.drivableRegion) and flag:

flag = False
while withinDistanceToAnyObjs(self, globalParameters.SAFETY_DIST + 3):

take SetBrakeAction(EGO_BRAKE)
interrupt when withinDistanceToAnyObjs(self, CRASH_DIST):

terminate
intersection = Uniform(*filter(lambda i: i.is4Way or i.is3Way, network.intersections))
egoManeuver = Uniform(*filter(lambda m: m.type is ManeuverType.LEFT_TURN, intersection.maneuvers))
egoInitLane = egoManeuver.startLane
egoTrajectory = [egoInitLane, egoManeuver.connectingLane, egoManeuver.endLane]
egoSpawnPt = OrientedPoint in egoInitLane.centerline
tempSpawnPt = egoInitLane.centerline[-1]
ego = Car at egoSpawnPt,

with blueprint MODEL,
with behaviour EgoBehavior(egoTrajectory)

ped = Pedestrian right of tempSpawnPt by 5,
with heading ego.heading,
with regionContainedIn None,
with behaviour CrossingBehavior(ego, PED_MIN_SPEED, PED_THRESHOLD)

require EGO_INIT_DIST[0] <= (distance to intersection) <= EGO_INIT_DIST[1]
terminate when (distance to egoSpawnPt) > TERM_DIST

This code is executable, however it results in an incorrect behaviour: the pedestrian crosses the
intersection parallel to the Ego car and on its right side of the road, hence there is no possibility for a
collision. In order for the phrase "and must suddenly stop to avoid collision when pedestrian crosses the
crosswalk" to be relevant, the pedestrian must instead either cross perpendicularly on the near side of the
intersection, or parallel on the left side (Figure 4).

The user starts a second turn of dialogue with the comment: "Make sure the pedestrian crosses in front
of the ego car". The system generates:



Figure 4: Failed generation example: the pedestrian is on the wrong side of the road.

param map = localPath('Scenic/tests/formats/opendrive/maps/CARLA/Town05.xodr')
param carla_map = 'Town05'
model scenic.simulators.carla.model
MODEL = 'vehicle.lincoln.mkz_2017'
EGO_INIT_DIST = [20, 25]
param EGO_SPEED = VerifaiRange(7, 10)
EGO_BRAKE = 1.0
PED_MIN_SPEED = 1.0
PED_THRESHOLD = 20
param SAFETY_DIST = VerifaiRange(10, 15)
CRASH_DIST = 5
TERM_DIST = 50
behaviour EgoBehavior(trajectory):

flag = True
try:

do FollowTrajectoryBehavior(target_speed=globalParameters.EGO_SPEED, trajectory=trajectory)
interrupt when withinDistanceToAnyObjs(self, globalParameters.SAFETY_DIST) and (ped in network.drivableRegion) and flag:

flag = False
while withinDistanceToAnyObjs(self, globalParameters.SAFETY_DIST + 3):

take SetBrakeAction(EGO_BRAKE)
interrupt when withinDistanceToAnyObjs(self, CRASH_DIST):

terminate
intersection = Uniform(*filter(lambda i: i.is4Way or i.is3Way, network.intersections))
egoManeuver = Uniform(*filter(lambda m: m.type is ManeuverType.LEFT_TURN, intersection.maneuvers))
egoInitLane = egoManeuver.startLane
egoTrajectory = [egoInitLane, egoManeuver.connectingLane, egoManeuver.endLane]
egoSpawnPt = OrientedPoint in egoInitLane.centerline
tempSpawnPt = egoInitLane.centerline[-1]
ego = Car at egoSpawnPt,

with blueprint MODEL,
with behaviour EgoBehavior(egoTrajectory)

ped = Pedestrian left of tempSpawnPt by 5,
with heading ego.heading,
with regionContainedIn None,
with behaviour CrossingBehavior(ego, PED_MIN_SPEED, PED_THRESHOLD)

require EGO_INIT_DIST[0] <= (distance to intersection) <= EGO_INIT_DIST[1]
terminate when (distance to egoSpawnPt) > TERM_DIST

The only difference here is the starting position of the pedestrian. In this scenario the Ego car does
indeed stop for some time while the pedestrian is crossing the intersection, but restarts too soon, which in
most cases results in a collision. Moreover, the pedestrian starts and ends the crossing on the road rather
than on the sidewalk (Figure 5).



Figure 5: Failed generation example: the Ego car collides with the pedestrian, who is also incorrectly positioned.

The user attempts to correct the behaviour with the comment: "After braking, the ego car should wait
for the pedestrian to clear the intersection before starting to move again". The system generates:

param map = localPath('Scenic/tests/formats/opendrive/maps/CARLA/Town05.xodr')
param carla_map = 'Town05'
model scenic.simulators.carla.model
MODEL = 'vehicle.lincoln.mkz_2017'
EGO_INIT_DIST = [20, 25]
param EGO_SPEED = VerifaiRange(7, 10)
EGO_BRAKE = 1.0
PED_MIN_SPEED = 1.0
PED_THRESHOLD = 20
param SAFETY_DIST = VerifaiRange(10, 15)
CRASH_DIST = 5
TERM_DIST = 50
behaviour EgoBehavior(trajectory):

flag = True
try:

do FollowTrajectoryBehavior(target_speed=globalParameters.EGO_SPEED, trajectory=trajectory)
interrupt when withinDistanceToAnyObjs(self, globalParameters.SAFETY_DIST) and (ped in network.drivableRegion) and flag:

flag = False
while withinDistanceToAnyObjs(self, globalParameters.SAFETY_DIST + 3):

take SetBrakeAction(EGO_BRAKE)
while not withinDistanceToAnyObjs(self, globalParameters.SAFETY_DIST + 3):

take SetThrottleAction(0.5)
interrupt when withinDistanceToAnyObjs(self, CRASH_DIST):

terminate
intersection = Uniform(*filter(lambda i: i.is4Way or i.is3Way, network.intersections))
egoManeuver = Uniform(*filter(lambda m: m.type is ManeuverType.LEFT_TURN, intersection.maneuvers))
egoInitLane = egoManeuver.startLane
egoTrajectory = [egoInitLane, egoManeuver.connectingLane, egoManeuver.endLane]
egoSpawnPt = OrientedPoint in egoInitLane.centerline
tempSpawnPt = egoInitLane.centerline[-1]
ego = Car at egoSpawnPt,

with blueprint MODEL,
with behaviour EgoBehavior(egoTrajectory)

ped = Pedestrian left of tempSpawnPt by 5,
with heading ego.heading,
with regionContainedIn None,
with behaviour CrossingBehavior(ego, PED_MIN_SPEED, PED_THRESHOLD)

require EGO_INIT_DIST[0] <= (distance to intersection) <= EGO_INIT_DIST[1]
terminate when (distance to egoSpawnPt) > TERM_DIST

Now the Ego car does stop but fails to restart and keeps waiting forever (Figure 6).



Figure 6: Failed generation example: the Ego car stops but fails to restart even though the pedestrian is far away
(and still incorrectly positioned inside the road rather than on the sidewalk).

The user now attempts to focus on the position of the pedestrian before attempting to fix the Ego car
behaviour by specifying in two different turns of dialogue "Make sure that the pedestrian starts crossing
from a sidewalk and ends crossing at a sidewalk" and "Specify the pedestrian position as an offset from
the lane", but the system fails to fix the problem, in fact it gets "confused" and fails to even generate an
executable scenario in the last turn. Since we exhausted the stipulated number of turns, we consider this
scenario as a failure.


