Technical Supplement

1 Proofs of Lemmas and Theorems

Lemma 1. [f an MDP has a proper policy T, then any
policy which is e-greedy with respect to A is also proper.

Outline Proof. Lemma 1 follows directly from the Def-
inition 1 of a proper policy: If there exists some proper
policy 7, then in all states s, any e-greedy policy has a
non-zero probability of executing action a = 7 (s). Since
the e-greedy policy has a non-zero chance of mimicking
proper policy 7 in every state, it is also proper. O

Lemma 2. Consider an FMDP where . is proper, an
agent with awareness Xt C X+, At C AT, and expert
acting with respect to (10-13). If 3a € image(ry),a ¢
At then as k — oo, either Err(t,t +k) — cwithc < 8
or the expert utters (12) such that a’ ¢ A'.

Outline Proof. If Err(t,t+k) — ¢ < 3, we are done. If
not, we must consider two cases—one where an e-greedy
policy over A? is proper, and one where it is not. If it
is, (11) will eventually be satisfied, since the expert will
gather enough samples to approximate the agent’s policy
error (which is above (). Further, we know Js, 74 (s) =
a’ Na' ¢ A?, and that s is reachable by the agent, so (12)
will eventually be satisfied. If the agent’s policy is not
proper, the agent may visit some set of states S C S\ Se
infinitely often (thus satisfying (11) for finite). Since
74 is proper, there must exist some s € S’ such that
Ja’ ¢ A"\ Va € A',Qx, (s,a') > Qr, (s,a), thus satis-
fying (12). In either case, (10) will eventually be satisfied
for finite x. Since (10-12) are not mutually exclusive, all
three will eventually be true simultaneously, causing the
expert to utter (13). O

Lemma 3. Consider an FMDP where . is proper and
an agent with awareness X' C X7T image(my) C
At C AT If 3538’ # s,s[X = §'[XY), and mo(s) #
w4 (8'), then as k — oo, either Err(t,t + k) — ¢
(c < B), or the expert utters (20) such that X ¢ X*

Outline Proof. The e-greedy agent is aware of all actions
in image(my.), so can visit all states reachable via 7,
including s and s'. If Err(t,t + k) — ¢,c < B3, we
are done. If not, then at some time ¢ + k; the agent will
do @ in s, causing the expert to utter Q(wy,, ,a) >
Q(wy ks a'). Similarly, at some time ¢ + ko, the agent
will receive advice Q(w;,,;, ,a") > Q(wf,,,,a). Since
Stak, [XY] = s¢1k,[X?], the two pieces of advice appear
to the agent to conflict, so the agent will ask (19) with
answer X ¢ X', O

Lemma 4. Consider an FMDP where T is proper
and an agent with awareness At C AT, Xt C XT,
scoper(R) C scopes(R). As k — oo, there exists a
K such that for all k > K, Ryy1(s) = Ry (s) for all
states s reachable using A'.

Outline Proof. If s is reachable using At, then as k —
0, an e-greedy agent will eventually enter s at some time
i, receive reward R4 (s), and update its current reward
function so that R;(s) = R4 (s). If the agent has previ-
ously encountered another s’ such that s[scope;(R)] =
§'[scoper(R)] and R4 (s) # R4 (s), the partial descrip-
tions (21) for s and s’ will conflict. The agent resolves
this by asking (22), receiving an answer differentiating s
from s’ in R . O

Theorem 1. Consider an FMDP where 1 is proper and
an agent with initial awareness X° C X+, A° C AT,
and scopeg(R) C scopey(R) acts according to algo-
rithm 2. If for all X € X, there exists a pair of states
s, s such that s[X+ \ X| = s'[X+\ X|, s[X] # §'[X],
and 74(8) # w4 (s'), then as t — oo, Err(0,t) — ¢
such that c <

Outline Proof. By repeatedly applying theorems 2 - 4,
we have that if Err(0,¢) has not yet converged to ¢ < 3,
then there exists a K where image(m,) C AKX, XK =
X+, and Rk (s) = R (s) for all s reachable with AX .
Thus XK, AKX R define a separate MDP for which the

agent is fully aware, but has the same 7 as the origi-
nal. All episodes terminate, so the agent’s estimate of T
eventually approximates the true transition function, V;
converges to the V7, and thus Err(0,t) — 0. O

2 DBN structures from Coffee-Robot
Experiment

Figure 1 below shows the structure of probabilistic de-
pendencies between variables for each of the four actions
in the coffee-robot problem. Figure la shows the true
structure of the problem, while Figures 1b and 1c show
an example of the structures learned by the default and
high tolerance agents as described in Section 4 of the
main paper.

The figures show that the default agent successfully
learns the true structure of the decision problem. The
agent paired with the high tolerance expert is also able to
learn the correct dependencies, but only for the subset of
variables it was made aware of by the expert.

3 Expert Messages from the Factory
Experiments

This section provides additional information on the ex-
pert messages sent during the factory experiments in Sec-
tion 4.2 of the main paper. Table 1 shows the average
number of expert messages sent to the agent for each
of the three settings for expert tolerance. It shows that,
as expected, higher tolerances correspond to fewer mes-
sages.

Figure 2 shows the average number of expert messages
sent over time. As can be seen in all three charts, the
agents tend to receive the majority of expert messages
early in learning. This amount tails-off towards the end
of the experiment. The reason for this is that, as learn-
ing progresses, the agent learns an increasingly accurate
model of the problem, and is therefore less prone to make
mistakes which will be corrected by the expert, or to dis-
cover unexpected scenarios which conflict with its cur-
rent understanding of the world.

4 The Language for Partially Describing
Factored Markov Decision Networks

The model for learning the true FMDP (fmdp_) in the
main paper made use of a language £ for partially de-
scribing FMDPs. This language was used in two ways:
to represent monotonic information from evidence, and
as a language in which the learner and expert can com-
municate (partial) information about the true FMDP. Its

syntax and semantics are defined below.

4.1 The syntax of the language £

Terms of the sort: X,Y ... are state variable (SV) con-
stants; Pay, X, scope(R), are Sets of State Variables
(SSV) constants (denoting sets of state variables in the
model). Similarly, there are actions (A) like move, buy-
coffee, pick-up etc. and sets of actions (SA).

An atomic state (AS) term (e.g Sp,,,) denotes a full
atomic state in the model. Where) is an SSV and s
an AS, s[))] is a partial-state assignment (PS) term, de-
noting a value assignment to each SV constant in). The
language also includes SV variables and AS variables.

Additionally, there are numeric terms (N), which denote
the real numbers.

A well-formed formula within the language L is then
given by the following grammar:

(L) :=(AS) = (AS) | (PS) = (PS) | (SV) = (SV)

[(4)

|R((AS) = (N))

1Q((S), (4)) > (N) [Q((S), (4)) > (N)
= (L) [(L) A (L)

3CS)L) [3SV)(L)

[7ASV)(L)

Each model fmdp for interpreting £ corresponds to a
(unique) complete FMDP (see Section 2 of the main paper
for a definition). Section 4.2 then evaluates the formulae
of L as partial descriptions of fmdp.

4.2 The semantics of £

Let fmdp = (Xfmdp, Afmdp Paf’”dp, gImdp. Rfmdp> be
an FMDP and g a variable assignment function.

e For an SV constant X, [X]Y"%9) = X; similarly
for SSV, A, and SA constants.'

e For an AS variable s, [s]""9) = ¢(s) where

g(s) € wo(Xfm¥P). For an A variable a,
[a]Y™P9 = g(a) where g(a) € A For an

SV variable V, [V]Y"%9 = (V) where g(V) €
xfmdp,

f X ¢ X% then [X] ™9 is undefined and our se-
mantics ensures that any formula ¢ featuring X is such that
fmdp = ¢; similarly for propositional terms p featuring a
value of a variable that is not a part of fmdp.

e For an SV term a and an SSV term b,
[a € b] (fmdp.g) _ 1 iff [a] (fmdp.g) 18] (fmdp.g)

e Where p is an AS or PS term and X an SSV con-
stant, [[p[X]ﬂUmd%w _ [[p]](fmdp,g> [[[X]](fmdp,gq

(i.e., the projection of the denotation of p onto the
set of variables denoted by &).

e For an AS term s and number n,
[R(s) = n] ™9 = 1iff Rppnap([s]) = n (with
[Q(s,a) > n] "9 and [Q(s,a) < n] "9
defined analogously).

e where p and ¢q are AS, PS, or SV terms,

Ip = q] (fmdp.g) _ 1 iff [Lp]]<fmdpyg) _ Hqﬂvmdp,g)_
e For formulac ¢, o: [pAg]""P9 = 1
iff [[(bﬂ (fmdp.g) = 1 and [[(b]] (fmdp.g) — 1;

[~o] 9 = 1 iff [¢] "9 = 0. Where s
is an AS, [3s¢]™ 9 = 1 iff there is a vari-
able assignment function ¢’ = g[s/p] such that
[[qs]}(fmdpvy’) -1

e Where V is a SV variable and ¢ is a formula:
[BV]9 = 1 iff there exists an SV constant
X such that [¢[V/X]]V™%P9) = 1.

[2AV @] ™9 = ($[V/X] : X is SV const A
[plv/ x| =13,

These interpretations yield a satisfaction relation in the
usual way: fmdp |= ¢ iff there is a function g such that

[¢] (fmdp,g) _ |

DBN for action: move

b

2

DBN for action: move

b

2

DBN for action: buyc

So068

DBN for action: buyc

$o068

(b) Learned FMDP at ¢ = 1000, Expert 5 = 0.1

DBN for action: delc

99

G
()
{0

DBN for action: delc

9

K

DBN for action: delc

!

DBN for action: buyc

CO—CD
()
<,

)«

Cotme)
D

(c) Learned FMDP at t = 1000, Expert 5 = 0.5

Figure 1: The true and learned DBN structures on the coffee-robot problem.

Agent Type Better Action Misunderstanding Unexpected Reward Total
Default 75.3 9.8 2.2 87.3
Low Tolerance 168.9 10.9 2.2 182.0
High Tolerance 56.6 8.6 2.3 67.6

Table 1: The average number of messages sent of each type for each setting of expert tolerance in the factory problem

BetterAction Misunderstanding

1754
104
1501
125 A 84
& 1004 ke
3 $ 6l
< <
T 754 8
2 g ,]
501
2
251 — default — default
—— lowTolerance —— lowTolerance
0 —— highTolerance 0 —— highTolerance
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
t t
UnexpectedReward
L
o [
1.54
o
L2
>
°
<
©
5 1.04
2
0.5
—— default
—— lowTolerance
0.0 —— highTolerance
0 2000 4000 6000 8000 10000

Figure 2: The average number of expert messages sent over time on the facfory experiment. Results are separated
according to advice type

	Proofs of Lemmas and Theorems
	DBN structures from Coffee-Robot Experiment
	Expert Messages from the Factory Experiments
	The Language for Partially Describing Factored Markov Decision Networks
	The syntax of the language L
	The semantics of L

