Linearly-used Continuations and Self-duality

Alex Simpson

LFCS, School of Informatics
University of Edinburgh, UK

Joint work with: Jeff Egger (LFCS, Edinburgh)
Rasmus Møgelberg (ITU, Copenhagen)
Computational effects

Computational effects are the non-functional aspects of computation, such as:

- nontermination, nondeterminism, probabilistic choice,
- exceptions, side effects, input/output, continuations,
- resumptions, …

Moggi (1989) introduced the type TA of computations that produce values of type A.

A value $e : TA$ is invoked as a computation by executing it. On execution, e may perform effects. On termination (if this occurs!), a value of type A is produced.
(Generalised) computation types

Filinski (1996) and Levy (1999, 2004) consider TA as a (basic) computation type amongst a richer class of (generalised) computation types.

If B, C are computation types then so are:

- $A \to B$.
 A function $f : A \to B$ is **invoked** as a computation by applying it to a value $a : A$ and proceeding with the computation of $f(a)$.

- $B \times C$.
 A pair $(b, c) : B \times C$ is **invoked** as a computation either by selecting the computation b and proceeding with it, or by selecting c and proceeding with it.
Effect calculus (EMS, CSL 2009)

We write A, B, C, \ldots for general value types.

Certain (value) types are distinguished as computation types. We write A, B, C, \ldots for computation types.

$$A, B, \ldots ::= \alpha \mid \alpha \mid 1 \mid A \times B \mid A \to B \mid TA$$ \hfill (value types)

$$A, B, \ldots ::= \alpha \mid 1 \mid A \times B \mid A \to B \mid TA$$ \hfill (computation types)

Every computation type has an associated method for invoking its values as computations.
Cbv and cbn translations

The call-by-value (cbv) translation [Moggi] translates a simple type σ to a value type σ^{cbv}.

The call-by-name (cbn) translation (cf. [Filinski, Levy]) translates σ to a computation type σ^{cbn}.

$$
\alpha^{cbv} = \alpha \\
1^{cbv} = 1 \\
(\sigma \times \tau)^{cbv} = \sigma^{cbv} \times \tau^{cbv} \\
(\sigma \rightarrow \tau)^{cbv} = \sigma^{cbv} \rightarrow T\tau^{cbv} \\
\alpha^{cbn} = \alpha \\
1^{cbn} = 1 \\
(\sigma \times \tau)^{cbn} = \sigma^{cbn} \times \tau^{cbn} \\
(\sigma \rightarrow \tau)^{cbn} = \sigma^{cbn} \rightarrow \tau^{cbn} .
$$

Typing judgements $\Gamma \vdash t : \sigma$ get translated to:

$$
\Gamma^{cbv} \vdash t^{cbv} : T\sigma^{cbv} \\
\Gamma^{cbn} \vdash t^{cbn} : \sigma^{cbn}.
$$
Linearity in effect calculus

Basic dichotomy.

— In general, a value is a pervasive static object, it just is. Values can be copied and discarded. There is no natural notion of linear function between general value types.

— However, a value of computation type has a dynamic side: it can be invoked. There is the basis for a natural intuition of linearity: the computation is invoked exactly once. (Actually, we shall impose a slightly stricter requirement. See next slide!)

Our treatment of linearity is thus intimately tied up with the distinction between value types and computation types
Enriching effect calculus with \searrow

We add type constructor $A \searrow B$ for linear function space between computation types.

Intuition: A linear $f : A \searrow B$ must transform a value $a : A$ to a value $f[a] : B$ in such a way that:

- the invocation of $f[a]$ as a computation begins by invoking a,
- and this is the only time that a is ever invoked.

It is helpful to think of $f[-]$ as a (generalised) evaluation context.
Function decomposition

The intuitive isomorphism

\[A \to B \cong TA \to B \]

is derivable from the relevant rules

\[
\begin{align*}
\frac{\Gamma, x: A | \Delta \vdash t: B}{\Gamma | \Delta \vdash \lambda x: A. t: A \to B} & \quad \frac{\Gamma | \Delta \vdash s: A \to B \quad \Gamma | - \vdash t: A}{\Gamma | \Delta \vdash s(t): B} \\
\frac{\Gamma | - \vdash t: A}{\Gamma | - \vdash \lfloor t \rfloor: TA} & \quad \frac{\Gamma | \Delta \vdash t: TA \quad \Gamma, x: A | - \vdash u: B}{\Gamma | \Delta \vdash \text{let } x \leftarrow t \text{ in } u: B} \\
\frac{\Gamma | z: A \vdash t: B}{\Gamma | - \vdash \lambda z: A. t: A \to B} & \quad \frac{\Gamma | - \vdash s: A \to B \quad \Gamma | \Delta \vdash t: A}{\Gamma | \Delta \vdash s[t]: B}
\end{align*}
\]
Girard decomposition

By changing TA to $!A$ we have that

$$A \to B \cong !A \to \circ B$$

is derivable from the rules:

\[
\begin{align*}
\Gamma, x : A \mid \Delta \vdash t : B & \quad \Gamma \mid \Delta \vdash s : A \to B \quad \Gamma \mid \vdash t : A \\
\Gamma \mid \Delta \vdash \lambda x : A. t : A \to B & \quad \Gamma \mid \Delta \vdash s(t) : B \\
\Gamma \mid \vdash t : A & \quad \Gamma \mid \Delta \vdash t : !A \quad \Gamma, x : A \mid \vdash u : B \\
\Gamma \mid \vdash !t : !A & \quad \Gamma \mid \Delta \vdash \text{let} !x \text{ be } t \text{ in } u : B \\
\Gamma \mid z : A \vdash t : B & \quad \Gamma \mid \vdash s : A \to \circ B \quad \Gamma \mid \Delta \vdash t : A \\
\Gamma \mid \vdash \lambda z : A. t : A \to \circ B & \quad \Gamma \mid \Delta \vdash s[t] : B
\end{align*}
\]
Enriched effect calculus (EMS, CSL 2009)

Extend effect calculus with selection of linear type constructors:

\[
A ::= \ldots | A \leftarrow B | \!A \otimes B | 0 | A \oplus B \\
A ::= \ldots | \!A \otimes B | 0 | A \oplus B .
\]

N.B., \(A \leftarrow B \) is not assumed to be a computation type itself. Thus:

\[
(A \rightarrow B) \rightarrow C \quad \text{value type} \\
(A \leftarrow B) \rightarrow C \quad \text{computation (hence value) type} \\
(A \leftarrow B) \leftarrow C \quad \text{not available} \\
A \leftarrow B \leftarrow C \quad \text{not available}
\]

N.B., \(\!A \otimes B \) is the application of the single primitive type-constructor \(\!(_ \otimes _) \) to \(A \) and \(B \)
Some isomorphisms

Isomorphisms that hold in the enriched effect calculus, cf. linear logic:

\[
\begin{align*}
A \rightarrow B & \cong !A \rightarrow B \\
(!A \otimes B) \rightarrow C & \cong A \rightarrow (B \rightarrow C) \\
& \cong B \rightarrow (A \rightarrow C) \\
!1 \otimes A & \cong A \\
!A \otimes !B & \cong !(A \times B) \\
!A \otimes 0 & \cong 0 \\
!A \otimes (B \oplus C) & \cong (!A \otimes B) \oplus (!A \otimes C)
\end{align*}
\]

(As value types)

(As computation types)
Semantics

A model of the enriched effect calculus is given by (EMS, CSL 2009):

— categories \mathcal{V} (value types) and \mathcal{C} (computation types)
— \mathcal{V} is cartesian closed (models $1, A \times B, A \to B$)
— \mathcal{C} is \mathcal{V}-enriched (models $A \multimap B$)
— \mathcal{C} has \mathcal{V}-powers (models $A \to B$) and \mathcal{V}-copowers (models $!A \otimes B$)
— \mathcal{C} has finite \mathcal{V}-enriched products (models $1, A \times B$) and coproducts (models $0, A \oplus B$)
— a \mathcal{V}-enriched adjunction $F \dashv U : \mathcal{C} \to \mathcal{V}$ (models $!A$)

We write the entire model as $F \dashv U : \mathcal{C} \to \mathcal{V}$.
(All structure other than the adjunction is determined by universal properties.)
Syntactic model

\[\mathcal{V}: \text{Value types for objects} \]

\[\mathcal{V}(A, B) = \{ t \mid x : A \vdash t : B \} / \text{equations} \]

\[\mathcal{C}: \text{Computation types for objects} \]

\[\mathcal{C}(A, B) = \{ t \mid x : A \vdash t : B \} / \text{equations} \]

\[U(A) = A \quad U([t]_C) = [t]_\mathcal{V} \]
\[F(A) = !A \quad F([t]_\mathcal{V}) = [\text{let } y \text{ be } x \text{ in } !t[y/x]]_C \]

Theorem (EMS, CSL 2009) The syntactic model is initial (up to coherent natural isomorphism) w.r.t. structure preserving functors.
Models of ILL

A linear/nonlinear model (Benton 1995) is given by symmetric monoidal closed category \mathcal{C} (the linear category), a cartesian closed category \mathcal{V} (the intuitionistic category) and a monoidal adjunction $F \dashv U : \mathcal{C} \to \mathcal{V}$. If \mathcal{C} also has finite products and coproducts then the model is said to have additives.

Proposition (EMS, CSL 2009) If $F \dashv U : \mathcal{C} \to \mathcal{V}$ is a linear/nonlinear model with additives then it is a model of the enriched effect calculus.

N.B. the linear-logic syntax of EEC agrees with the interpretation of ILL in a linear/nonlinear model.

EEC is a fragment of ILL interpretable in a wider class of models.
Adjunction models of CBPV

Adjunction models (Levy 2005) are the natural models of call-by-push-value (CBPV)

Every strong monad on a cartesian-closed category \mathcal{V}, gives rise to an adjunction model (possibly in several non-equivalent ways).

Every model of EEC is an adjunction model of CBPV

Theorem (EMS, CSL 2009) Every adjunction model of CBPV fully embeds in a model of the enriched effect calculus.

EEC is a conservative extension of CBPV (hence Moggi’s computational metalanguage) with a gain in expressivity and essentially no loss in range of applicability
Set-based models

Let \mathcal{C} be a locally small category with small products and coproducts.

Let I be a chosen object of \mathcal{C}

Define $F \dashv U : \mathcal{C} \to \textbf{Set}$ by:

$$U(A) = \mathcal{C}(I, A)$$

$$F(X) = \coprod_X I$$

Proposition $F \dashv U : \mathcal{C} \to \textbf{Set}$ is a model of the enriched effect calculus.
Dual models

Given an EEC model $\mathcal{M} = (F \dashv U : \mathcal{C} \to \mathcal{V})$ and an object $R \in \mathcal{C}$, define the R-dual model:

$$\mathcal{M}^R := (\mathcal{R}^{(-)} \dashv \mathcal{C}^{(-), R} : \mathcal{C}^{\text{op}} \to \mathcal{V})$$

Lawvere calls the induced monad $\mathcal{C}(\mathcal{R}^{(-)}, R)$ on \mathcal{V} the R-dual monad of $T = UF$. (Such a “dual” is determined from T by assuming U to be monadic.)

Our construction of a dual model is a duality in the following sense.

Theorem For any EEC model \mathcal{M}, there is an equivalence of EEC models between \mathcal{M} and $\mathcal{M}^{R^{F1}}$.

In particular, there is an equivalence between \mathcal{M} and \mathcal{M}^{F1F1}.

Linearity Workshop, September 2009
Improved formulation: dual pointed models

The dual of a pointed model $\mathcal{M} = (F \dashv U : \mathcal{C} \to \mathcal{V}, R)$ is the pointed model

$$\mathcal{M}^\perp := (R^{(-)} \dashv \mathcal{C}(-, R) : \mathcal{C}^{\text{op}} \to \mathcal{V}, F1)$$

Theorem For any pointed EEC model \mathcal{M}, there is an equivalence of pointed models between \mathcal{M} and $\mathcal{M}^\perp\perp$.

(To avoid choosing an arbitrary point, the canonical pointing of a model $F \dashv U : \mathcal{C} \to \mathcal{V}$ is the pointed model $(F \dashv U : \mathcal{C} \to \mathcal{V}, F1)$.)
Dual ILL models

Let $\mathcal{M} = (F \dashv U : \mathcal{C} \to \mathcal{V}, R)$ be a pointed model where $F \dashv U : \mathcal{C} \to \mathcal{V}$ is a linear/nonlinear model with additives.

In general, the dual model \mathcal{M}^\perp is not a linear/nonlinear model.

Unlike models of EEC, models of ILL are not closed under the dual model construction.

Proposition If $F \dashv U : \mathcal{C} \to \mathcal{V}$ is a classical linear/nonlinear model (i.e., \mathcal{C} is \ast-autonomous) with additives and $R = \bot$ then \mathcal{M}^\perp is equivalent to \mathcal{M}, and hence again a classical linear/nonlinear model.

The proposition describes a situation in which \mathcal{M} is self dual. (N.B., this \mathcal{M} is not canonically pointed.)
A set-based self-dual model

Let \mathcal{C} be the free completion of the terminal (single morphism) category with small products and coproducts (Cf. Joyal’s free bicompletions; Cockett and Santocanale CSL 2009)

\mathcal{C} has a distinguished object $*$ which is a fixed point of the self duality $(-)^*: \mathcal{C} \to \mathcal{C}^{\text{op}}$.

Exhibit \mathcal{C} as an EEC model \mathcal{M} over \textbf{Set} by defining $I = *$ (hence $F1 \cong *$).

Proposition The model \mathcal{M} is canonically self dual.
Syntactic self duality

Let \mathcal{S} be the syntactic model for EEC

By initiality, there is an (essentially) unique map of models:

$$L : \mathcal{S} \rightarrow \mathcal{S}^\bot$$

satisfying:

$$L(\alpha) = \alpha$$

$$L(\overline{\alpha}) = \overline{\alpha}$$

Theorem L is an equivalence of canonically pointed models.

Thus the syntactic model \mathcal{S} is canonically self dual.
Non-canonical self duality

Now let S_{R} be the syntactic model for EEC with a distinguished computation type constant R as point.

By initiality, there is an (essentially) unique map of models:

$$L: S_{R} \to S_{R}^\perp$$

satisfying:

$$L(\alpha) = \alpha$$
$$L(\alpha) = \alpha$$
$$L(R) = !1$$

Theorem L is an equivalence of pointed models.

Thus the free model S is also non-canonically self dual.
Syntactic version

Syntactically, \(L: S_R \rightarrow S_R^\perp \) amounts to a translation of EEC into itself.

A value type \(A \) translates to a value type \(A^{\nu R} \).

A computation type \(A \) translates to a computation type \(A^{\nu C R} \).

These translations satisfy \(A^{\nu R} \simeq A^{\nu C R} \rightarrow R \).

A typing judgement \(\Gamma \vdash t : A \) translates to
\[
\Gamma^{\nu R} \vdash t^{\nu R} : A^{\nu R}
\]

A typing judgement \(\Gamma \vdash z : A \vdash u : B \) translates to
\[
\Gamma^{\nu R} \vdash z : B^{\nu C R} \vdash u^{\nu C R} : A^{\nu C R}
\]
\[
\begin{align*}
\alpha^\nu_R &= \alpha \\
\alpha^\nu_R &= \alpha^c_R \to R \\
1^\nu_R &= 1 \\
(A \times B)^\nu_R &= A^\nu_R \times B^\nu_R \\
(A \to B)^\nu_R &= A^\nu_R \to B^\nu_R \\
(!A)^\nu_R &= (!A)^c_R \to R \\
(A \to B)^\nu_R &= B^{c_R} \to A^c_R \\
(!A \otimes B)^\nu_R &= (!A \otimes B)^{c_R} \to R \\
(0)^\nu_R &= (0)^{c_R} \to R \\
(A \oplus B)^\nu_R &= (A \oplus B)^{c_R} \to R \\
R^\nu_R &= R \\
\alpha^{c_R} &= \alpha \\
1^{c_R} &= 0 \\
(A \times B)^{c_R} &= A^{c_R} \oplus B^{c_R} \\
(A \to B)^{c_R} &= !A^\nu_R \otimes B^{c_R} \\
(!A)^{c_R} &= A^\nu_R \to R \\
(A \otimes B)^{c_R} &= A^\nu_R \to B^{c_R} \\
(0)^{c_R} &= 1 \\
(A \oplus B)^{c_R} &= A^{c_R} \times B^{c_R} \\
R^{c_R} &= !1
\end{align*}
\]
The self duality of the syntactic model manifests itself syntactically as the involutivity of the above translation.

Theorem (Involution property) We have isomorphisms

\[
A \rightarrow A^\nu R^\nu R \quad \quad A \rightarrow A^{CR CR}
\]

modulo which \(t = t^\nu R^\nu R \) and \(u = u^{CR CR} \).

Our proof of this is semantic, using self duality. (Obtaining a syntactic proof looks like a formidable exercise.)

Corollary The translations \((\cdot)^\nu R\) and \((\cdot)^{CR}\) are full and faithful.
Linearly-used continuations

Programs from X to Y with control operators are modelled as continuation transformers:

$$(Y \rightarrow R) \rightarrow (X \rightarrow R) \cong X \rightarrow (Y \rightarrow R) \rightarrow R$$

Cbv for the continuations monad $TY = (Y \rightarrow R) \rightarrow R$.

For many common structured forms of control the continuation transformers are linear [Berdine et al. 2002]:

$$(Y \rightarrow R) \Rightarrow (X \rightarrow R) \cong X \rightarrow (Y \rightarrow R) \Rightarrow R$$

Cbv for the linearly-used continuations monad $TY = (Y \rightarrow R) \Rightarrow R$.
Linearly-used Continuations and Self-duality

Simple types σ translate to ILL types σ_{Rv} (cbv) and σ_{Rn} (cbn):

\[
\begin{align*}
\alpha_{Rv} &= \alpha \\
1_{Rv} &= 1 \\
(\sigma \times \tau)_{Rv} &= \sigma_{Rv} \times \tau_{Rv} \\
(\sigma \to \tau)_{Rv} &= (\tau_{Rv} \to R) \to (\sigma_{Rv} \to R)
\end{align*}
\]

\[
\begin{align*}
\alpha_{Rn} &= \alpha \to \circ R \\
1_{Rn} &= 1 \\
(\sigma \times \tau)_{Rn} &= \sigma_{Rn} \times \tau_{Rn} \\
(\sigma \to \tau)_{Rn} &= \sigma_{Rn} \to \tau_{Rn}
\end{align*}
\]

Typing judgements $\Gamma \vdash t : \sigma$ translate to:

\[
\begin{align*}
\Gamma_{Rv} \vdash t_{Rv} : (\sigma_{Rv} \to R) \to R \\
\Gamma_{Rn} \vdash t_{Rn} : \sigma_{Rn}
\end{align*}
\]

This translation directly lands in EEC!
Linearly-used CPS translations from self-duality

Theorem (cbv) There is an isomorphism \(\sigma_{RV} \cong \sigma_{cbv}^{VR} \), modulo which we have \(t_{RV} = t_{cbv}^{VR} \).

Corollary cf. [Hasegawa 2002] The cbv linearly-used CPS translation \((\cdot)^{RV}\) gives a full and faithful translation from Moggi’s \(\lambda_v\)-calculus into EEC.

Theorem (cbn) There is an isomorphism \(\sigma_{RN} \cong \sigma_{cbn}^{VR} \), modulo which we have \(t_{RN} = t_{cbn}^{VR} \).

Corollary cf. [Hasegawa 2004] The cbn linearly-used CPS translation \((\cdot)^{RN}\) gives a full and faithful translation from simply-typed \(\lambda_{\beta\eta}\)-calculus into EEC.

Hasegawa has the corresponding results for ILL rather than EEC.
Summary

- The enriched effect calculus extends effect calculi (Moggi’s computational metalanguage, CBPV, the effect calculus) with some of the expressivity of intuitionistic linear logic; and also implements an intuitive notion of linearity.

- Models of EEC strictly generalise models of ILL.

- Unlike models of ILL, models of EEC are closed under an (interesting) dual model construction.

- Standard linearly-used CPS transforms and their properties fall out from the self-duality of the initial (syntactic) model.