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Overview

• Good translation quality requires lots of parallel training data

• Only small datasets may be available in some domains

• Fine tuning
• Train on a large out-of-domain dataset first

• Continue training on a small in-domain dataset

• How do we avoid overfitting to the in-domain dataset?

Regularization

• Overfitting can be prevented with early stopping
• Effective, but requires a separate in-domain validation set

• We empirically investigate explicit regularization techniques

• Variational dropout (Gal and Ghahramani, 2016)
• Randomly drop activations to zero the same way for each time step

v = W · 1
p
diag(Bernoulli⊗n(p)) · h

• Not a specific domain adaptation method

• MAP-L2 penalization (Chelba and Acero, 2006)
• Penalize the L2-distance between the weights of the in-domain and out-of-domain

models
LW = λ · ‖W −Wout-of-domain‖

2
2

• We are the first to apply it to the domain adaptation of neural networks

• Tuneout
• For each layer, randomly drop activations towards those computed with the weights of

the out-of-domain model
v = (Wout-of-domain +∆W · 1

p
diag(Bernoulli⊗n(p))) · h

Experimental setup

• Language pairs: English-to-German and English-to-Russian

• Out-of-domain data: WMT16 parallel + backtranslated
monolingual data

• In-domain data: IWSLT 2015 (En→De) / 2014 (En→Ru)

• Model: GRU sequence-to-sequence with attention

• System: Nematus toolkit with BPE subword segmentation

Results

Table: Translation BLEU scores

En→De En→Ru
System validation test (avg.) validation test (avg.)

Out-of-domain only 27.19 27.76 15.74 16.81
Early-stopping baseline 30.53 31.20 17.47 18.67
Early-stopping + dropout 30.63 31.33 17.68 18.80
Early-stopping + MAP-L2 30.81 31.25 17.77 18.91†
Early-stopping + tuneout 30.49 30.78† 17.51 18.78

Early-stopping + dropout + MAP-L2 30.80 31.48† 17.74 19.10†
†: different from the fine-tuning baseline at 5% significance.

Training curves

0 2 4 6 8 10

27

28

29

30

31

Training mini-batches (·104)

B
l
e
u

fine-tune
fine-tune + dropout
fine-tune + L2-MAP
fine-tune + tuneout

Figure: English→German validation Bleu over training mini-batches.

Effects of data size
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Figure: English→German test Bleu with fine-tuning on different in-domain data set size.

Findings

• On full-sized IWSLT training data
• Dropout and MAP-L2 stabilize training, preventing overfitting

• Dropout + MAP-L2 significantly improve over Early-stop alone

• Tuneout did not yield improvements

• We evaluate Dropout + MAP-L2 over different indomain data
sizes (10-206,000)
• Logarithmic relation between data size and bleu

• Even for fixed number of epochs perform equally or better than Early-stop

• Don’t require held-out validation set

• Fine-tuning without Early-stop or reguluarizers underfits or overfits

• We recommend using Dropout + MAP-L2 for fine-tuning,
especially for very small amounts of in-domain data

Links

Nematus (includes Dropoout and MAP-L2)
https://github.com/EdinburghNLP/nematus

Nematus (Tuneout branch) https://git.io/v7jSZ
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