Overview

- Good translation quality requires lots of parallel training data
- Only small datasets may be available in some domains
- Fine tuning
 - Train on a large out-of-domain dataset first
 - Continue training on a small in-domain dataset
 - How do we avoid overfitting to the in-domain dataset?

Regularization

- Overfitting can be prevented with early stopping
 - Effective, but requires a separate in-domain validation set
- We empirically investigate explicit regularization techniques
 - Variational dropout (Gal and Ghahramani, 2016)
 - Randomly drop activations to zero the same way for each time step
 - Not a specific domain adaptation method
 - MAP-L2 penalization (Chelba and Acero, 2006)
 - Penalize the L2-distance between the weights of the in-domain and out-of-domain models
 - We are the first to apply it to the domain adaptation of neural networks
 - Tuneout
 - For each layer, randomly drop activations towards those computed with the weights of the out-of-domain model

Experimental setup

- Language pairs: English-to-German and English-to-Russian
- Out-of-domain data: WMT16 parallel + backtranslated monolingual data
- In-domain data: IWSLT 2015 (En→De) / 2014 (En→Ru)
- Model: GRU sequence-to-sequence with attention
- System: Nematus toolkit with BPE subword segmentation

Results

<table>
<thead>
<tr>
<th>System</th>
<th>En→De validation</th>
<th>En→De test (avg.)</th>
<th>En→Ru validation</th>
<th>En→Ru test (avg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-of-domain only</td>
<td>27.19</td>
<td>27.76</td>
<td>15.74</td>
<td>16.81</td>
</tr>
<tr>
<td>Early-stopping baseline</td>
<td>30.53</td>
<td>31.20</td>
<td>17.47</td>
<td>18.67</td>
</tr>
<tr>
<td>Early-stopping + dropout</td>
<td>30.63</td>
<td>31.33</td>
<td>17.68</td>
<td>18.80</td>
</tr>
<tr>
<td>Early-stopping + MAP-L2</td>
<td>30.81</td>
<td>31.25</td>
<td>17.77</td>
<td>18.91†</td>
</tr>
<tr>
<td>Early-stopping + tuneout</td>
<td>30.49</td>
<td>30.78†</td>
<td>17.51</td>
<td>18.78</td>
</tr>
<tr>
<td>Early-stopping + dropout + MAP-L2</td>
<td>30.80</td>
<td>31.48†</td>
<td>17.74</td>
<td>19.10†</td>
</tr>
</tbody>
</table>

†: different from the fine-tuning baseline at 5% significance.

Training curves

Findings

- On full-sized IWSLT training data
 - Dropout and MAP-L2 stabilize training, preventing overfitting
 - Dropout + MAP-L2 significantly improve over Early-stop alone
 - Tuneout did not yield improvements
- We evaluate Dropout + MAP-L2 over different in-domain data sizes (10-206,000)
 - Logarithmic relation between data size and BLEU
 - Even for fixed number of epochs perform equally or better than Early-stop
 - Don’t require held-out validation set
 - Fine-tuning without Early-stop or regularizers underfits or overfits
- We recommend using Dropout + MAP-L2 for fine-tuning, especially for very small amounts of in-domain data

Links

- Nematus (includes Dropout and MAP-L2)
 - https://github.com/EdinburghNLP/nematus
- Nematus (Tuneout branch) https://git.io/v7j8Z

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements 644333 (TraMOOC) and 645487 (ModernMT). We also thank Booking.com for their support.