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Deep architectures

@ What is the depth of a recurrent neural network?
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Transition depth
@ Used for LM [Zilly et al., 2016]

Stacked depth
@ Baidu [Zhou et al., 2016]
@ Google [Wu et al., 2016]
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Deep architectures

@ What is the depth of a recurrent neural network?
[Pascanu et al., 2014]

i

Transition depth
@ Used for LM [Zilly et al., 2016]

Stacked depth
@ Baidu [Zhou et al., 2016]
@ Google [Wu et al., 2016]

@ This work
e Provide a systematic comparison of deep architectures for NMT
o Investigate the effects of different kinds of depth
e Propose a combined "BiDeep" architecture
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Deep transition encoder
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@ Bidirectional encoder

@ Compute the next state using a deep feed-forward network made of
multiple GRU transition blocks

@ GRU blocks not individually recurrent, recurrence at time-step level
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Deep transition decoder

sji = GRU1 (yj-1,8j-1,L,)
Sj2 = GRU2 (ATT(C, 8j71), 8j71)
Sjk = GRUk (O, Sj,k—l)

for2 <k <L;

@ Attention mechanism between 1st and 2nd layers (Nematus)

@ Minimum transition depth is 2 even in the baseline
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Alternating stacked encoder

Baidu [Zhou et al., 2016]

Multiple levels of individually recurrent GRU cells

Residual connections between levels

Bidirectional: two columns with opposing scanning directions
Each level inverts scanning direction of the previous one
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Biunidirectional stacked encoder

Google [Wu et al., 2016]

Multiple levels of individually recurrent GRU cells
Residual connections between levels

First levels are bidirectional, then states are merged
Higher levels are unidirectional left-to-right
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Stacked decoder

D

Multiple levels of individually recurrent GRU cells

Residual connections between levels

Different variations depending on how attention is used in the higher
layers

o (details in the paper)
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BiDeep Architectures
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@ Our proposal

@ Combine the two kinds of depth

@ Stacked levels of recurrent cells, each with multiple layers of
transition depth
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Experimental setup

@ Data

e Training: WMT-2017 English-to-German
e Validation: newstest 2013
o Test: newstest 2014+201542016 (we report averages)

e System: Nematus [Sennrich et al., 2017b]

o GRU sequence-to-sequence with attention [Bahdanau et al., 2015]
o Layer normalization [Ba et al., 2016]

@ Training on single Titan X (Pascal) GPU
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Results: Deep Encoders
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@ Depth-4 encoders improve translation quality
@ Deep transition fastest and most accurate
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Results: Deep Decoders
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@ Depth-4 decoders improve translation quality
@ Deep transition fastest and second most accurate
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Results: Deep Encoders and Decoders
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@ Depth-4 on both encoder and decoder yields small improvement
@ Biunidirectional+rGRU ~[Wu et al., 2016] performs the worst
@ Alternating+rGRU ~[Zhou et al., 2016] and BiDeep are tied at this depth
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Results: Deep Encoders and Decoders (depth
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@ Stacked-only plateaus
@ BiDeep keeps improving
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Error analysis

@ Deep transition decoders have a longer information path
@ In principle, might cause fading memory and vanishing gradients
@ Does this affect long-distance dependencies?
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Error analysis

Deep transition decoders have a longer information path

In principle, might cause fading memory and vanishing gradients

Lingeval97 subject-verb agreement [Sennrich, 2017]

°
°
@ Does this affect long-distance dependencies?
°
@ Contrastive evaluation
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Conclusions

@ Findings
e Depth improves translation BLEU especially in the encoder
Alternating stacked encoders outperform Biunidirectional
Deep transition encoders performs better or equal
BiDeep architectures perform the best
We validated these findings on the WMT-17 news translation task
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Conclusions

@ Findings
e Depth improves translation BLEU especially in the encoder
Alternating stacked encoders outperform Biunidirectional
Deep transition encoders performs better or equal
BiDeep architectures perform the best
We validated these findings on the WMT-17 news translation task

@ Recommendations

e Use deep transition for speed and model size
e Use BiDeep for maximum quality
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Conclusions

@ Code in the main Nematus repository
@ Scripts and paper: https://git.io/vEW2Q

Thanks for your attention

Miceli Barone, Helcl, Sennrich, Haddow, Birch Deep Architectures for NMT 16 /16


https://git.io/v5W2Q

Conclusions

@ Code in the main Nematus repository
@ Scripts and paper: https://git.io/vEW2Q

Thanks for your attention
Questions?
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Results: WMT 2017 news translation task
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@ Transition depth: 8 + 4
@ 7§ Czech: stacked

@ Improvement on all
language pairs except
Latvian<>English
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