
Proof-Theoretic and Higher-Order Extensions of Logic
Programming

Alberto Momigliano1,2 and Mario Ornaghi1

1 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Italy
{momiglia,ornaghi}@dsi.unimi.it

2 Laboratory for the Foundations of Computer Science, School of Informatics,
The University of Edinburgh, Scotland

Abstract. We review the Italian contribution to proof-theoretic and higher-order
extensions of logic programming; this originated from the realization that Horn
clauses lacked standard abstraction mechanisms such as higher-order program-
ming, scoping constructs and forms of information hiding. Those extensions were
based on the Deduction and Computation paradigm as formulated in Miller et al’s
approach [51], which built logic programming around the notion of focused uni-
form proofs The Italian contribution has been both foundational and applicative,
in terms of language extensions, implementation techniques and usage of the new
features to capture various computation models. We argue that the emphasis has
now moved to the theory and practice of logical frameworks, carrying with it a
better understanding of the foundations of proof search.

1 Introduction and Motivation

We start by trying to clarify the reasons behind our choice, discussion and classifi-
cation of the literature stemming from the Italian contribution to proof-theoretic and
higher-order extensions of logic programming (LP). These papers belong to the mul-
titude of proposals of extensions of the foundations of logic programming, i.e. Horn
clauses (HC). We can trace that both to the purported limited expressibility of HC —
see the thorny issue of a logically motivated notion of negation — and to the lack of
abstraction mechanisms that are present in modern programming languages to support
the modular construction of software. Here we are referring to higher-order program-
ming, modules, abstract datatypes, scoping constructs, state encapsulation and other
forms of information hiding. One can argue that from the very beginning this has led to
the introduction of “impure”, i.e. extra-logical, features, such as cut, negation-as-failure
or assert/retract. This outcome is not specific to LP and has been named “recreating
the Turing Machine” syndrome [48]: starting from a computationally clean and seman-
tically motivated language, one tends to add external mechanisms in order to make it
suitable for programming-in-the-large. This inevitably tends to clutter the formal defi-
nition of the language (if any), making trusting the language itself and thus reasoning
about it problematic.

Hence the opposing trend in the literature to go back to the original setting and base
new constructs on more solid theoretical grounds, in our case, logic. A well-known

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 254–270, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Proof-Theoretic and Higher-Order Extensions of Logic Programming 255

(and somewhat worn out) example is again the logical foundations of negation. More
in general, it is by now usual to contrast the traditional model-theoretic approach (see
Chapter [11] in this volume) to the proof-theoretic one, which “happens” to be at the
core of most of the work about higher-order extensions of logic programming.

Arguably, many theoretical developments in logic have had an important impact in
Computer Science. Concerning proof theory, we can isolate two different research di-
rections, broadly corresponding to two different paradigms: Proofs as Programs and
Deductions as Computations (DAC). In the Proof as Programs setting, proofs can be
seen as programs (a.k.a. λ-terms), while computations correspond to (β)-reductions
in a λ-calculus. The proof-theoretic basis is the normalisation or cut-elimination pro-
cedure. This approach fits with the foundations of functional programming, as well
as of constructive program synthesis. In DAC, proofs themselves become the com-
putations, while programs are specifications of non-logical symbols within the logic.
Here, cut-elimination is the conditio sine qua non and proof-theory offers sophisti-
cated restrictions to proof search in a cut-free system, while preserving completeness: a
computation is modeled as a search for a proof, under suitable “uniformity” assump-
tions [51]. LP naturally falls in the DAC approach, which has been eloquently argued
as one of its possible logical foundations elsewhere, e.g. [59].

In DAC, we distinguish between a non-logical signature, related to the problem do-
main, and the domain independent logical language. Each extension of the logical lan-
guage has a corresponding extension of the proof system, bringing at the level of logic
aspects that pertain to the computational level and allowing us to reason about them log-
ically. A paradigmatic example of DAC is Miller et al’s approach, which led to λProlog
in the late 80’s. The paper [47] clearly illustrates the basic ideas, starting from a pre-
cise notion of uniform proofs (to be defined shortly) and characterizing as “abstract
logic programming systems” those where each goal has a uniform proof. The paper
proves that (first-order) HC is an abstract LP system and then considers various exten-
sions. In particular, it is shown how scoping and encapsulation can be modeled at the
logical level, as well as how interesting higher-order programming techniques can be
supported. Essentially, the idea behind abstract LP systems is that a sequent such as
Σ : Γ −→ G represents the state of an idealized LP interpreter with current program Γ,
goal G and signature Σ. Both Γ and Σ may dynamically change during the computation.
A goal-directed or uniform proof is then a cut-free proof in which every occurrence of
a sequent whose right-hand side is non-atomic is the conclusion of a right-introduction
rule. It uses a suitable backchaining rule to “invoke” the definitions of the non-logical
symbols provided by Γ when an atomic goal A is reached. Examples of right (introduc-
tion) rules are ∀R and ⊃R, while BC is the backchain rule.

Σ, c : Γ −→ G(c) ∀R
Σ : Γ −→ ∀x. G(x)

Σ : Γ,D −→ G ⊃R
Σ : Γ −→ D ⊃ G

Σ : Γ −→ G
BC,G ⊃ A ∈ 〈Γ〉

Σ : Γ −→ A

The ∀R rule augments the signature by a new constant c of the type of x, while ⊃R

augments the program by the clause D. The backchaining rule selects a program clause
G ⊃ A in the closure 〈Γ〉 of Γ under the ∀L,∧L rules and backchains on it (see Section
2.1 when this idea is realized via focusing). An abstract logic programming

256 A. Momigliano and M. Ornaghi

language is then a logical system for which uniform proofs are complete. To make our
discussion more concrete we consider an example taken from [44], illustrating scoping
and modularity.

Example 1. Consider the well known Prolog reverse program;

reverse(L,R) :- r(L,R,[]).

r([],Ys,Ys).

r([X|Xs],R,Ys) :- r(Xs,R,[X|Ys]).

reverse/2 uses an auxiliary accumulator-based predicate r/3 to implement the fol-
lowing simple algorithm: start with the pair 〈L, []〉 and iteratively push the elements
of the first list into the second one. This example shows two problems. Firstly, the defi-
nition of r ought to be used locally, inside the scope of the main predicate, but Prolog
cannot (declaratively) hide it against undesired redefinitions. Secondly, the simple re-
verse algorithm needs only the variables L and Ys of r(L,R,Ys): R merely captures
the final result and passes it to the reverse predicate. Both problems can be solved
by introducing suitable scoping mechanisms. The following shows how this can be ac-
counted for using higher-order universal quantification and embedded implication to
provide scope to the definition of the auxiliary predicate and to the individual variables
used in it.

reverse(L,R) :-

all rev\ (

(rev([],R),

all X,Xs,Ys\ (rev([X|Xs],Ys) :- rev(Xs,[X|Ys])))

=> rev(L,[])

)

The notation follows [44], in particular all r\ G(r) is concrete syntax for ∀x :τ.G(x).
�

Roughly, an interpreter based on uniform proof search will proceed as follows. To prove
a goal, such as reverse([1,2],V), it will replace r by a new binary predicate symbol,
say c, and add to the current program the clauses:

c([],V), (all X,Xs,Ys\ c([X|Xs],Ys) :- c(Xs,[X|Ys])).

Then it will try to prove c([1,2],[]) backchaining on the rightmost clause. The vari-
able V will be instantiated to [2,1]with two further backchain steps, when the compu-
tation will eventually succeed with the goal c([],[2,1]).

Logically, the module corresponds to the following formula, where ls is the sort of
lists, i the sort of integers, and o, as usual, is the type of propositions:

Drev : ∀ls l r. (∀ls→ls→orev. rev([], r) ∧
∀i x. ∀lsxs ys. rev(xs, [x|ys]) ⊃ rev([x|xs], ys)) ⊃ rev(l, []) ⊃ (reverse(l, r))

Proof-Theoretic and Higher-Order Extensions of Logic Programming 257

In terms of logical rules, the behaviour of the interpreter corresponds to the gradual
construction of the following proof tree, where we informally label the clauses on which
we backchain:

Σ, c : Γ,Dc1 : c([],V),Dc2 : ∀ x ys xs. (c(xs, [x|ys]) ⊃ c([x|xs], ys)) −→ c([], [2, 1])
BC,Dc2

Σ, c : Γ,Dc1 : c([],V),Dc2 : ∀ x ys xs. (c(xs, [x|ys]) ⊃ c([x|xs], ys)) −→ c([2], [1])
BC,Dc2

Σ, c : Γ,Dc1 : c([],V),Dc2 : ∀ x ys xs. (c(xs, [x|ys]) ⊃ c([x|xs], ys)) −→ c([1, 2], [])
== ⊃R,∧L
Σ, c : Γ −→ c([],V) ∧ ∀ x ys xs. (c(xs, [x|ys]) ⊃ c([x|xs], ys)) ⊃ c([1, 2], [])

∀R−→ ∀ rev. (rev([],V) ∧ ∀x ys xs. (rev(xs, [x|ys]) ⊃ rev([x|xs], ys)) ⊃ rev([1, 2], []))
BC,Drev

Σ : Γ −→ reverse([1, 2],V)

We remark that the generation of new names required by the proof rule for ∀ protects
the definition of r, since different uses will employ different names. Here, its definition
is visible only to calls to reverse and will be discharged upon success. Furthermore,
the possibility of using the definition of a predicate in the body of a clause and the
explicit use of quantifier all X,Xs,Ys allows us to link the variable R in the definition
of reverse precisely to the variable R of the predicate that will accumulate the final
result, i.e., to c([],R).

The previous example typifies our viewpoint: seeking extensions of LP in terms of
languages endowed with a notion of uniform proofs, more precisely focused uniform
proofs [2]. This shows a twofold duality:

– Between goals and clauses: a negative subformula of a goal is a program clause and
a negative subformula of a program clause is a goal.

– Between goal-oriented proof search and clause selection (focusing), once
backchaining is seen in a more general light.

This duality is more clearly seen in linear logic, where following Andreoli [2], each
connective carries an unique intrinsic attribute called a polarity that determines its
behaviour under search. Hence connectives can can be partitioned into asynchronous
(those whose right rule is invertible) and synchronous (those whose left rule is invert-
ible). This yields a highly normalized proof search mechanism, based on a systematic
interleaving between asynchronous and synchronous reductions: one decomposes the
asynchronous formulas until none remains, then picks a synchronous formula and de-
composes it until new asynchronous subformulae arise, and so on. Proofs of this kind
are called focused proofs and can be shown to be complete for entire classical linear
logic. In the linear setting the polarity of a connective coincides with its being pos-
itive/negative: however Andreoli noted that an arbitrary, albeit fixed, assignment of
polarity to atoms (a bias) will preserve completeness of focusing, with the understand-
ing that a [negative] positive bias denote [a]syncronous behaviour. Notwithstanding its
asymmetry, this observation applies to intuitionistic logic as well. In fact, it can be
shown that, for the Horn fragment, a positive bias to atoms yields hyper-resolution (for-
ward chaining), while a negative one SLD-resolution (backward chaining) [25]. More in
general, uniform proofs can be seen as a special case of focusing, where atoms are given

258 A. Momigliano and M. Ornaghi

negative bias, which happens to be complete only when existentials and disjunctions
are excluded from the syntax. These observation have been significantly generalized
in [42].

However, there is another angle to “higher-order” extensions to which we have not
done justice yet: work related to languages based on some form of λ-calculus. This is
indeed the second way a language such as λProlog extends ordinary LP, an issue which
was often argued for, when not distrusted since the early 80’s [64]. The original ratio-
nale was adding some of the higher-order features of functional programming, namely
handling functions (here predicates) as first-class citizens, without changing the com-
putation paradigm. A classic example is the mappred predicate, corresponding to the
map combinator in a language such as Standard ML:

Example 2

mappred(P,[],[]).

mappred(P,[X|Xs],[Y|Ys]) :- P(X,Y), mappred(P,Xs,Ys).

A sample goal could be

P = (lambda x y\ reverse(x,y)), mappred(P,[[1,2],[3,4]],Ys).

with answer substitution Ys = [[2,1],[4,3]]. �

Although some nifty applications based on these features emerged early on, e.g. [32],
predicate-as-values, we argue, never managed to attain the same prominence that it has
in functional programming. Functional quantification instead has had a pivotal role in
the theory and practice of logical frameworks [60], in so much as it supports higher-
order abstract syntax (HOAS) [61]. This is a declarative treatment of the syntax of
object logics, whose binding operators are all rendered via the λ-abstraction of the
meta-logic, while bound variables of the object and meta-logic are identified. In this
way seemingly banal but tediously complicated issues induced by α-equivalence and
substitution principles are taken care once and for all by the meta-logic, making the
specification and reasoning over object logic more concise and effective. This opened
up an all new field, as we briefly touch upon in the Conclusions.

The rest of this overview is organized as follows: Section 2 succinctly presents the
syntax and proof rules underlying the main LP language that we consider in separate
subsections. In Section 3 we follow the same schema, highlighting the Italian contri-
bution to the corresponding broad areas. Section 4 concludes by trying to evaluate the
impact of these works on LP and computational logic more in general.

2 Calculi for Intuitionistic and Linear Logic Programming

Uniform proofs and abstract LP systems were presented in [51] as the basis for proof-
theoretic extensions of LP. At about the same time, Girard’s 1987 “Linear Logic” paper
had a rippling effect in computer science and logic programming was quick to follow
suit. In his 1990 thesis Andreoli established the foundation of focusing proofs in linear
logic [2]. In 1991 the uniform proof approach was extended to linear logic programming
by Miller & Hodas [41]. We start with the logic underlying λProlog.

Proof-Theoretic and Higher-Order Extensions of Logic Programming 259

 �
Σ : Γ −→ �

Σ : Γ −→ G1 Σ : Γ −→ G2
∧
Σ : Γ −→ G1 ∧G2

Σ : (Γ,D) −→ G
 ⊃
Σ : Γ −→ D ⊃ G

(Σ, c:A) : Γ −→ [c/x]G

∀c

Σ : Γ −→ ∀x :τ.G

Σ : Γ
D−−→ A
 fcs,D ∈ Γ

Σ : Γ −→ A

. .

Σ : Γ
 Ar
·
= A : o

fcsAt
Σ : Γ

Ar−−→ A

Σ : Γ
Di−−→ A

fcs∧i

Σ : Γ
D1∧D2−−−−−→ A

Σ : Γ
[t/x]D−−−−→ A

fcs∀, Σ
 t : τ

Σ : Γ
∀x:τ. D−−−−−→ A

Σ : Γ −→ G Σ : Γ
D−−→ A

fcs ⊃
Σ : Γ

G⊃D−−−→ A

Fig. 1. Focused intuitionistic proofs for HOHF

2.1 λProlog

It is based on the so-called Higher-Order Hereditary Harrop Formulas, an intuitionistic
fragment of Church higher-order logic. As we have mentioned in the Introduction, it
enhances Prolog in two directions. The term language is extended to allow arbitrary λ-
terms under full higher-order unification and the formula language is extended to allow
usage of arbitrarily nested universal quantifiers and implications. It can be synthesized
by the following grammar:

Terms t ::= c | x | λx:τ. t | t1 t2
Atoms A ::= Ar | A f

Clauses D ::= Ar | G ⊃ D | D1 ∧ D2 | ∀x :τ.D
Goals G ::= A | � | G1 ∧G2 | D ⊃ G | ∀x :τ.G

Signatures Σ ::= · | Σ, x:τ
Programs Γ ::= · | Γ,D

We shall be fairly loose with typing issues, noting only that we use a ML-like prenex
polymorphic system, so that for example universal quantification is given the type
∀α. (α ⊃ o) ⊃ o. To preserve the operational reading of logic programs as predicate
definitions we require clause heads to be rigid atoms, denoted Ar, i.e. the head symbol
is not a (free) variable.1 Otherwise, we call the atom flexible, denoted A f . Note that we
could add existentials and disjunctions to the syntax of goals, but with no real expressive
enhancement—see [56] for an investigation into maximal abstract logic programming
languages.

1 We gloss over other minor syntactic restrictions of occurrences of logical connectives in the
scope of rigid atoms required to preserve goal-orientedness during proof search.

260 A. Momigliano and M. Ornaghi

Some terminology: the above language is named HOHF; with HfOHF we denote
its restriction to quantification over variable and function symbols, that is o is only
allowed as a range type. Examples of HfOHF are Miller’s Lλ [45] and LF [39]. FOHF
is the further restriction to first-order quantification.

We now introduce a focused version of the uniform proofs system of [51] (Fig. 1);
it defines the following judgements, where Γ contains the program and the possible
dynamic assumptions; the judgment Σ : Γ
 Ar

·
= A : o, whose definition we omit and

refer to the judgmental version in [22]), denotes higher-order unification.

Σ : Γ −→ G Program Γ under signature Σ uniformly entails goal G.

Σ : Γ
D−−→ A Focused clause D from Γ under signature Σ entails atom A.

We remark that the backchain rule BC of [44], considered in the introduction, can be
derived by applying the focusing rules until the head of a clause is deemed to unify the
atom on the right and then recursively applying the
 rules.

2.2 Lolli

Based on the first-order language freely generated by multiplicative implication�, ad-
ditive unit, implication, conjunction and universal quantification, Lolli’s uniform proofs
system [41] uses a single-conclusion sequent calculus (Fig. 2) that distinguishes two
zones, Γ containing the (reusable) program together with the possible intuitionistic dy-
namic assumptions and Δ, containing the linear ones, seen as a multiset. Notice that
while Lolli is first-order, its type-theoretic counterpart, the Linear Logical Framework
LLF [23], has functional quantification; however, they have the same proof search as-
pects, safe from linear unification, as we detail in Section 3.2.

Σ : Γ;Δ −→ G Clauses Γ;Δ under signature Σ uniformly entails goal G.

Σ : Γ;Δ
D−−→ A Focused clause D from Γ or Δ \ D under signature Σ entails atom A.

We briefly examine the crucial rules, deviating from the literature by using the same
notation for additive connectives as for their intuitionistic counterparts: the fcsAt rule
encodes both initial rules of a linear calculus, by requiring the linear context to be
empty: in fact, if the focus is on a linear A, then this must be the only assumption that
can and must be consumed. If instead the focus is intuitionistic, there must be no leftover
resources, lest the computation is failed. Note also the non-deterministic partitioning of
the linear context in the focusing rule for�, highlighted by the notation ·∪ for multiset
union, to be read backwards as resource splitting. From an additive viewpoint, rule
 �
features an implicit weakening, while
 ∧ an implicit contraction, both w.r.t. Δ.

We now give a first linear algorithm for reversing a list.

Example 3
reverse(Xs, Ys) :- once(perm(Xs, Ys)).

perm([X|Xs], Ys)� (elm(X)� perm(Xs, Ys)).
perm([], Ys)� perm(Ys).

perm([]).
perm([X|Xs])� elm(X) ∧ perm(Xs).

Proof-Theoretic and Higher-Order Extensions of Logic Programming 261

 �
Σ : Γ; Δ −→ �

Σ : Γ; Δ −→ G1 Σ : Γ;Δ −→ G2
∧
Σ : Γ;Δ −→ G1 ∧G2

Σ : (Γ,D);Δ −→ G
 ⊃
Σ : Γ;Δ −→ D ⊃ G

Σ : Γ; (Δ ·∪ {D}) −→ G
�
Σ : Γ;Δ −→ D� G

Σ : Γ;Δ
D−−→ A
 fcsΓ,D ∈ Γ

Σ : Γ;Δ −→ A

Σ : Γ; Δ
D−−→ A
 fcsΔ

Γ; (Δ ·∪ {D}) −→ A

. .

fcsAt
Σ : Γ; · A−−→ A

Σ : Γ;Δ
Di−−→ A

fcs∧i

Σ : Γ;Δ
D1∧D2−−−−−→ A

Σ : Γ; · −→ G Σ : Γ; Δ
D−−→ A

fcs ⊃
Σ : Γ; Δ

G⊃D−−−→ A

Σ : Γ;Δ1 −→ G Σ : Γ;Δ2
D−−→ A

fcs�
Σ : Γ; (Δ1 ·∪Δ2)

G�D−−−−→ A

Fig. 2. Main rules of a focused calculus for Lolli

The perm/2 predicate simply loads (in reversed order) the elements of the input list
in the linear context in the form of elm(·) assumptions; then calls perm/1, which con-
sumes those assumptions. Because of the non-deterministic splitting induced by focus-
ing on the second clause of perm/1, we generate, upon backtracking, all permutations
of the given list. Hence the main reverse predicate selects the first solution with the
meta-predicate once/1. �

2.3 LO

Linear Objects [4, 5] was the first proposal for a linear logic programming language.
It extends Horn logic by generalizing clause heads to multisets of atoms connected by
multiplicative disjunction (�), i.e. clauses have the form

G � A1�, . . . ,�An

The starting point was the family of concurrent LP languages (see Chapter [35] in this
volume) as a way to provide a logical account of object-oriented computations: objects
are viewed as AND-concurrent, stream-communicating via shared variables (proof)
processes, where the arguments in a goal are the slots and communication streams of
an object. State transitions are realized with inference steps. For a canonical example,
the goal

point(InStrm,5,7,OutStrm)

encodes a point with the given coordinates and communication streams InStrm and
OutStrm, where a method (clause) such as
point([proj-x|InStrm],X,Y,OutStrm) :- point(InStrm,X,0,OutStrm)

specifies the transition resetting Y to 0 upon reception of the proj-x message.

262 A. Momigliano and M. Ornaghi

In this sense, LO inherits an effect-free view of objects and does not exploit the
linear logic context for state manipulation as in Lolli, since it lacks any form of scoping
constructs. On the other hand, when seen as OR-concurrency� directly supports a view
of objects as multiset of independent units. The above object becomes

point� in(InStrm)� x(5)� y(7)� out(OutStrm),

where different atoms encode a point, its coordinates and communication mediums. In
this way objects are amenable of inheritance, since a more specialized objects such as

point� in(InStrm)� x(5)� y(7)� out(OutStrm)� colour(red)

can call a method (a clause with multiple heads) such as

point� in([proj − x|InStrm])� y(Y)� point� in(InStrm)� y(0)
by matching only a sub-multiset of the atoms encoding an object. Synchronizations of
this kind can be managed using multiset rewriting techniques, but, as we will see in
Section 3.2, such synchronization is expensive.2

LO’s original proof theory [4] did not make focusing explicit, but the crucial rules
can be reconstructed as in Figure 3, where we use as a one-sided multi-succedent cal-
culus; since proof search has no dynamics, we can fix the programP and dispose of the
signature.

−→ G Program P uniformly entails multiset of goals G.
D−−→ A Focused clause D from P entails multiset of atomsA.

−→ {G1,G2} ·∪G
 �−→ {G1 �G2} ·∪G
. .

−→ {G} ·∪A1
A1�,...,�An−−−−−−−−→ A2

fcs�
G�A1�,...,�An−−−−−−−−−−−→ A1 ·∪A2

−→ G
A1�,...,�An−−−−−−−−→ A

fcs ⊃
G⊃A1�,...,�An−−−−−−−−−−→ A

D1−−→ A1
D2−−→ A2

fcs�
D1�D2−−−−−→ A1 ·∪A2

Fig. 3. �-related rules in LO

To better illustrate the operational semantics of LO, we revisit once more the simple
reverse algorithm, where we manage to attain the same behavior of Example 1 even in
the absence of scoping constructs: in fact, we exploit OR-concurrency to capture the
final result and pass it to the main predicate.

2 Historically, this is the first observation that the operational semantics of linear LP brings into
intuitionistic proof search an additional “don’t know” non-determinism.

Proof-Theoretic and Higher-Order Extensions of Logic Programming 263

Example 4

dr : reverse(Xs, Ys) :- rev(Xs, [])� result(Ys).

dc : rev([X|Xs], Ys)� rev(Xs, [X|Ys]).
dn : rev([], V)� result(V).

Intuitively, we backchain on the method dc until the input list is exhausted. Then we
awaken the result(V) object by matching it with the dnmethod and return the instan-
tiation for V. �
This corresponds to this proof-tree, where again we informally use a BC rule, decorated
with the label of the clause on which we focus.

L
·
= [2, 1]

rev([],L)−→ rev([], [2, 1])

L
·
= V

result(L)−→ result(V)
BC, dn−→ rev([], [2, 1]), result(V)
 �−→ rev([], [2, 1])� result(V)

============================ BC, dc−→ rev([1, 2], [])� result(V)
BC, dr−→ reverse([1, 2],V)

Note that it is crucial that dc uses linear implication, allowing one to split resources as
required.

We conclude this Section noting that LO’s � can also be seen as a form of con-
structive disjunction yielding indefinite answers; we will touch upon this links between
linear and disjunctive logic programming in Section 3.3.

2.4 Forum

Forum [49] can be seen as the fusion of Lolli and LO and allows one to view entire linear
logic as an abstract LP language. Indeed, simply adding multiplicative falsity ⊥ to Lolli
yields a “goal-oriented” presentation of linear logic. Thus linear negation B⊥ can be
defined as expected (B � ⊥) and hence the other connectives by de Morgan dualities.
In particular we can also view B�C as (B� ⊥)� C. Note that while these encodings
do not interfere with the soundness and completeness of focused uniform proofs, they
do not yield a predictable operational semantics such as the one a programmer would
expect. In fact, focusing on ⊥ is rather non-informative, leading a naive interpreter into
a tight and endless loop. Thus, the view of Forum as a specification language [26] and
efforts, some of which we mention in Section 3.4, to find a meaningful sub-language
amenable to a programming language interpretation.

The relevant judgments comprise two-sided multi-succedent sequents where Γ,Φ
have intuitionistic maintenance, and Δ,G have a linear one.

Σ : Γ;Δ −→ G;Φ Clauses Γ;Δ under signature Σ uniformly entails
multisets of goals G;Φ.

Σ : Γ;Δ
D−−→ A;Φ Focused clause D from Γ or Δ \ D under signature Σ entails

multisets of atomsA and goals Φ.

We refer to [50] for the twenty proof rules.

264 A. Momigliano and M. Ornaghi

3 The Italian Contribution

The origin of the Italian interest in proof-theoretic extensions of LP can be traced back
to Gabbay and Reily’s N-Prolog [34,33], which featured embedded implication in goals,
but no universal quantification: free variables can be shared in an implicational goal,
creating certain difficulties especially when coupled with negation-as-failure. This lan-
guage sparked a lot of interest, especially in Torino: A. Martelli, Giordano and others
extensively researched applications w.r.t. modules and scoping constructs and extension
to modal analysis, see e.g. [9]. We will not analyze this further as already well detailed
in [17]. We will, however, briefly mention [37] that fixes some of the problems raised
in [33]. The authors propose an operational semantics extending Stärk’s ESLDNF, es-
tablishing a soundness and completeness for non-floundering queries is with respect to
a completion theory interpreted in a three-valued modal logic.

3.1 λProlog

The second “wave” was initiated by Miller’s sabbatical in Edinburgh, where he su-
pervised Pareschi’s thesis [58]; the latter exploited hypothetical reasoning and λ-terms
to encode in a computational environment the features of certain linguistic theories,
e.g. the rendering of filler-gap dependencies. Pareschi then hooked up with Andreoli
to develop LO as we have mentioned in Section 2.3. Miller also supervised Arcelli’s
thesis [6] in Milano, where she related second-order λProlog to Reflective Prolog [27].
She and coauthors went on investigating applications of the language for example to
program transformations [7]. Independently, Momigliano [52] extended Miller’s [46],
providing a way of encoding via the double negation translation of all classical logic
into a focused uniform system. The language was FOHF, but the approach would apply
to HfOHF as well.

In [53] the issue of endowing a logical framework (namely HfOHF) with a logically
justified notion of negation is re-addressed, adapting the idea of elimination of nega-
tion [10] to the higher-order setting. This includes two separate phases. Complementing
terms, i.e. in this case higher-order patterns: due the presence of partially applied λ-
terms, intuitionistic λ-calculi are not closed under complementation, thus requiring one
to develop a strict, i.e. relevant, λ-calculus, where we can directly express whether a
function (here typically a higher-order logic variable) ought or not depend on its ar-
guments. Complementing clauses, which can be seen as a negation normal form pro-
cedure which is consistent with intuitionistic provability. It entails finding a middle
ground between the CWA usually associated with negation and the OWA typical of
logical frameworks. This has come to be known as the Regular World Assumption that
has shown to be a central notion in inductive meta-theorem proving [63, 40] in systems
such as Twelf [62].

3.2 Lolli

A problem specific to proof search in linear logic is how to effectively split resources
when dealing with multiplicative connectives, without trying exponentially many par-
titions of the linear context. Hodas and Miller developed a lazy splitting approach for

Proof-Theoretic and Higher-Order Extensions of Logic Programming 265

the operational semantics of Lolli, called the input-output model of resource consump-
tion [41]. This turns out to be just an instance of a more general resource management
problem in linear logic programming (and, with a somewhat different emphasis, in lin-
ear theorem proving). As pointed out and addressed in [21], a properly understood
operational semantics has to deal with two additional features. First, the � connective
is allowed to consume any resource, a feature which is handy to wind up with success
certain computations without burdening the user with tracking and consuming any re-
maining assumption. Secondly, additive conjunction requires strict resources, i.e. those
which can be duplicated but must be used during the solution of a given goal. A final
contribution of this paper is the residuation calculus, a form of resolution for sequent
calculi that pushes all non-determinism out of focusing and into the introduction rules.
This has also applications in proof-theoretic compilation [19].

The (linear) spine calculus [24] is an answer to a related issue: devising an efficient
representation of the (linear) λ-calculus, tailored to make building blocks of LP such
as unification efficient even in the higher-order case. In fact, and differently from the
first-order case, even restricting to terms of atomic type, in a token such as

(. . . (h M1) . . .Mn) (1)

the head is deeply buried and hence not immediately accessible. This is further com-
plicated in the linear case, where destructors can be arbitrarily interleaved. In the spine
calculus every atomic term has the form H · S , where H is the root and S the spine: a
term such as (1) translates into h · (U1; . . . ; Un; NIL), where ′;′ associates to the right,
Ui translates Mi and NIL represents the end of the spine.

The relevance of this contribution is twofold:

1. The restriction of this calculus to the intuitionistic case is the internal representation
adopted in Twelf and it is also at the basis of the Tejus compiler for λProlog [57].

2. Exploiting the Curry-Howard correspondence, spines can be seen as a term assign-
ment language for uniform provability, in particular for Lolli, LLF [23], and for any
subsystem thereof, as we exemplify in Figure 4.

We modify the main provability judgments to account for proof-terms, unifying Σ and
Γ as usual in type theory:

Γ −→ U : G U is a term (proof) of type (goal) G given assumptions Γ

Γ
D−−→ S : A S is a spine (proof) consisting of heads of type (clause) D to terms S of

type (goal) A given assumptions Γ.

Of course, once the spine representation was in place, there was still the need to provide
an unification algorithm for this language. In [22] the authors fill this gap, providing a
judgmental view of a linear pre-unification procedure in the style of Huet. Being a
conservative extension of ordinary higher-order unification, it may not terminate and
if it does, it returns a system of equations between flexible atoms, possibly yielding
infinite numbers of incomparable unifiers. The paper shows also that it is not possible
to simulate higher-order linear unification by generating standard higher-order solutions
and promoting those which satisfy the linearity constraints. Even more noteworthy, an
analogous notion to Miller’s intuitionistic higher-order patterns [45], for which mgu’s
can be effectively found, does not seem to exist in the linear setting.

266 A. Momigliano and M. Ornaghi

Γ, x : D −→ U : G
 ⊃
Γ −→ (λx : D. U) : D ⊃ G

Γ
h:D−−→ S : A
 fcs,D ∈ Γ

Γ −→ (h · S) : A

fcsAt
Γ

NIL:A−−−−→ A

Γ −→ U : G Γ
S :D−−−→ A

fcs ⊃
Γ

(U;S):G⊃D−−−−−−−−→ A

Fig. 4. Proof terms for focused uniform proofs

3.3 LO

Most of the research about linear logic programming as far as LO and Forum are
concerned was spearheaded by Giorgio Levi and his school, in their research aiming
to integrate (linear) logic programming with other paradigm such as concurrency and
object-orientation, beginning with Guglielmi and Delzanno’s thesis [38, 28]. The latter
then moved to Genoa, where he collaborated with M. Martelli, Bozzano and others.

The relationship between linear and disjunctive LP mentioned in [4] is taken up
in [12], where the authors show that LO can be seen as a sub-structural fragments of
DLP, where contraction on the right is disallowed. More extensive connections between
a fragment of LO and DLP are further established using abstract interpretation meth-
ods [13]. A propositional bottom-up semantics for LO (and its extension with mul-
tiplicative unit LO1) is proposed via a fixed point operator operating on (ideals of)
multisets. Note that the semantics is effective for LO, but not for LO1; the former, in
fact, lacks the expressivity of counting resources, while in the latter it is possible to
encode formalisms such as Petri nets with transfer arcs. Emphasis on the propositional
side was also motivated by earlier work on partial evaluation of LO programs [3]. This
yielded an approach to model-checking where verifying a safety problem encoded in
temporal logic is akin to computing the fixed point of a linear logic program. This is
further studied in [14], where bottom-up evaluation is extended to first order LO pro-
grams with universally quantified goals and possibly empty heads. See for more details
the Chapter [29] in this volume.

We remark that bottom-up evaluation has now gained an important role in general
sequent-based automated theorem proving [42, 25], as well as in the operational se-
mantics of LolliMon [43], the first-order logic programming language underlying the
Concurrent Logical Framework [66]. The latter integrates Lolli with a monadic modal-
ity encapsulating synchronous connectives.

3.4 Forum

Some early work exploited the connection between linear logic and multiset rewrit-
ing to encode aspects of planning and concurrency [15, 18]. More developed research
was concerned with finding a logical counterpart of object-based languages such as the
Object Calculus; [16] introduced Ob�, an object language where methods are rep-
resented as logical formulae and whose operational semantics is realized via proof
search. The language is then encoded in a linear extension of second-order N-Prolog,

Proof-Theoretic and Higher-Order Extensions of Logic Programming 267

with a limited form of predicate quantification In [30] the authors present a restric-
tion of Forum with the aim of integrating logic programming with the rewrite-based
specification languages; intended applications are modelling of concurrent systems and
meta-programming. Clauses have the form G1 ⊃ . . .Gn ⊃ (�A � G) and may again
incorporate a form of predicate quantification, provided the underlying term language
is basically first-order. State-based computations are specified similarly as in LO, i.e.
storing resources on the right-hand side of the sequent and matching them with multi-
headed clauses.

4 Conclusions

We have tried to show how the proof-theoretic approach to LP has led to a series of log-
ically motivated logic programming languages of increasing power, supporting mod-
ern abstraction mechanisms via higher-order extensions and imperative features via
resource-consciousness. The Italian contribution has been both foundational and ap-
plicative, in terms of language extensions, implementation techniques and usage of the
new features to capture various computation models. We cannot leave out, however,
that the original emphasis on endowing logic programming with some of the more suc-
cessful features of functional programming has died down or, better, it has changed
emphasis. Indeed, the design of LolliMon is heavily influenced by Moggi’s computa-
tional monads, which are omnipresent in functional languages such as Haskell. What
has thrived, beyond a better understanding of the foundations of proof search that is
showing promising fruits in general theorem proving, is the theory and practice of log-
ical frameworks. We argue that this development from logical representation to meta-
reasoning over the latter is a natural and welcomed one, which could not have happened
without the proof-theoretical standpoint. We can isolate two trends in which Italian re-
searchers have an active role:

1. The development of more expressive type-theoretic frameworks, from linear [23]
to concurrent ones [65, 66].

2. The integration of HOAS and principle of (co)induction, both in standard sys-
tems [54] and in ones directly derived from logic programming such as the Bedwyr
model-checker [8] and the Abella interactive theorem prover [36], see [55] for work
on their logical foundations.

Acknowledgments. This survey owes to many of Miller’s papers, especially “An
Overview of Linear Logic Programming” [50]. We thank Iliano Cervesato and Laura
Giordano for bibliographic suggestions and the anonymous referees for many useful
remarks.

References

1. Alpuente, M., Sessa, M.I. (eds.): 1995 Joint Conference on Declarative Programming,
GULP-PRODE 1995, Marina di Vietri, Italy (1995)

2. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log. Com-
put. 2(3), 297–347 (1992)

268 A. Momigliano and M. Ornaghi

3. Andreoli, J.-M., Castagnetti, T., Pareschi, R.: Abstract interpretation of linear logic program-
ming. In: Miller, D. (ed.) Proceedings of the International Logic Programming Symposium,
Vancouver, Canada, pp. 295–314. MIT Press, Cambridge (1993)

4. Andreoli, J.-M., Pareschi, R.: LO and behold! Concurrent structured processes. In: Proceed-
ings of OOPSLA 1990, Ottawa, Canada, October 1990, vol. 25(10), pp. 44–56. Published as
ACM SIGPLAN Notices (1990)

5. Andreoli, J.-M., Pareschi, R.: Linear objects: Logical processes with built-in inheritance.
New Generation Computing 9, 445–473 (1991)

6. Arcelli, F.: Aspetti di ordine superiore e di metalivello della programmazione logica. PhD
thesis, DSI, Universitá di Milano (1991)

7. Arcelli, F., Formato, F.: Implementing higher-order term-rewriting for program transforma-
tion in λProlog. In: Alpuente, Sessa [1], pp. 245–256

8. Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.: The Bedwyr system for model
checking over syntactic expressions. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 391–397. Springer, Heidelberg (2007)

9. Baldoni, M., Giordano, L., Martelli, A.: A modal extension of logic programming: Modular-
ity, beliefs and hypothetical reasoning. J. Log. Comput. 8(5), 597–635 (1998)

10. Barbuti, R., Mancarella, P., Pedreschi, D., Turini, F.: A transformational approach to negation
in logic programming. Journal of Logic Programming 8, 201–228 (1990)

11. Bossi, A., Meo, M.C.: Theoretical Foundations and Semantics. In: Dovier, A., Pontelli, E.
(eds.) 25 Years of Logic Programming in Italy. LNCS, pp. 15–36. Springer, Heidelberg
(2010)

12. Bozzano, M., Delzanno, G., Martelli, M.: On the relations between disjunctive and linear
logic programming. Electr. Notes Theor. Comput. Sci. 48 (2001)

13. Bozzano, M., Delzanno, G., Martelli, M.: An effective fixpoint semantics for linear logic
programs. Theory Pract. Log. Program. 2(1), 85–122 (2002)

14. Bozzano, M., Delzanno, G., Martelli, M.: Model checking linear logic specifications.
TPLP 4(5-6), 573–619 (2004)

15. Bruscoli, P., Guglielmi, A.: Expressiveness of the abstract logic programming language Fo-
rum in planning and concurrency. In: Alpuente, M., Barbuti, R., Ramos, I. (eds.) GULP-
PRODE (2), pp. 221–237 (1994)

16. Bugliesi, M., Delzanno, G., Liquori, L., Martelli, M.: Object calculi in linear logic. J. Log.
Comput. 10(1), 75–104 (2000)

17. Bugliesi, M., Lamma, E., Mello, P.: Modularity in logic programming. J. Log. Pro-
gram. 19/20, 443–502 (1994)

18. Cervesato, I.: Petri nets and linear logic: a case study for logic programming. In: Alpuente,
Sessa [1], pp. 313–320

19. Cervesato, I.: Proof-theoretic foundation of compilation in logic programming languages.
In: Jaffar, J. (ed.) Proceedings of the 1998 Joint International Conference and Symposium on
Logic Programming (JICSLP 1998), Manchester, UK, pp. 115–129. MIT Press, Cambridge
(1998)

20. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear logic proof
search. In: Herre, H., Dyckhoff, R., Schroeder-Heister, P. (eds.) ELP 1996. LNCS (LNAI),
vol. 1050, pp. 67–81. Springer, Heidelberg (1996)

21. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear logic proof
search. Theoretical Computer Science 232(1-2), 133–163 (2000); Extended version of [20]

22. Cervesato, I., Pfenning, F.: Linear higher-order pre-unification. In: Winskel, G. (ed.) Pro-
ceedings of the Twelfth Annual Sumposium on Logic in Computer Science (LICS 1997),
Warsaw, Poland, pp. 422–433. IEEE Computer Society Press, Los Alamitos (1997)

23. Cervesato, I., Pfenning, F.: A linear logical framework. Information and Computation (1998);
Special issue with invited papers from LICS 1996, Clarke, E. (ed.)

Proof-Theoretic and Higher-Order Extensions of Logic Programming 269

24. Cervesato, I., Pfenning, F.: A linear spine calculus. J. Log. Comput. 13(5), 639–688 (2003)
25. Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and backward

chaining in the inverse method. J. Autom. Reasoning 40(2-3), 133–177 (2008)
26. Chirimar, J.L.: Proof Theoretic Approach to Specification Languages. PhD thesis, University

of Pennsylvania (May 1995)
27. Costantini, S., Lanzarone, G.A.: A metalogic programming language. In: ICLP, pp. 218–233

(1989)
28. Delzanno, G.: Logic and Object-Oriented Programming in Linear Logic. PhD thesis, Uni-

versitá di Pisa (February 1997)
29. Delzanno, G., Giacobazzi, R., Ranzato, F.: Static Analysis, Abstract Interpretation and Ver-

ification in (Constraint Logic) Programming. In: Dovier, A., Pontelli, E. (eds.) 25 Years of
Logic Programming in Italy. LNCS, vol. 6125, pp. 136–158. Springer, Heidelberg (2010)

30. Delzanno, G., Martelli, M.: Proofs as computations in linear logic. Theoretical Computer
Science 258(1-2), 269–297 (2001)

31. Dovier, A., Pontelli, E. (eds.): 25 Years of Logic Programming in Italy. LNCS, vol. 6125.
Springer, Heidelberg (2010)

32. Felty, A.P.: Implementing tactics and tacticals in a higher-order logic programming language.
J. Autom. Reasoning 11(1), 41–81 (1993)

33. Gabbay, D.M.: N-Prolog: An extension of Prolog with hypothetical implication II - logical
foundations, and negation as failure. J. Log. Program. 2(4), 251–283 (1985)

34. Gabbay, D.M., Reyle, U.: N-Prolog: An extension of Prolog with hypothetical implications
I. J. Log. Program. 1(4), 319–355 (1984)

35. Gabbrielli, M., Palamidessi, C., Valencia, F.D.: Concurrent and Reactive Constraint Pro-
gramming. In: Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming in Italy. LNCS,
vol. 6125, pp. 231–253. Springer, Heidelberg (2010)

36. Gacek, A.: The Abella interactive theorem prover (system description). In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 154–161.
Springer, Heidelberg (2008)

37. Giordano, L., Olivetti, N.: Combining negation as failure and embedded implications in logic
programs. J. Log. Program. 36(2), 91–147 (1998)

38. Guglielmi, A.: Abstract Logic Programming in Linear Logic Independence and Causality in
a First Order Calculus. PhD thesis, Universitá di Pisa (April 1996)

39. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Associ-
ation for Computing Machinery 40(1), 143–184 (1993)

40. Harper, R., Licata, D.R.: Mechanizing metatheory in a logical framework. J. Funct. Pro-
gram. 17(4-5), 613–673 (2007)

41. Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. In-
formation and Computation 110(2), 327–365 (1994); A preliminary version appeared in
the Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science,
pp. 32–42, Amsterdam, The Netherlands (July 1991)

42. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logics.
Theoretical Computer Science 410(46) (2009)

43. López, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent linear logic program-
ming. In: Barahona, P., Felty, A.P. (eds.) PPDP, pp. 35–46. ACM, New York (2005)

44. Miller, D.: Lexical scoping as universal quantification. In: Levi, G., Martelli, M. (eds.) Pro-
ceedings of the Sixth International Conference on Logic Programming, Lisbon, Portugal,
pp. 268–283. MIT Press, Cambridge (1989)

45. Miller, D.: A logic programming language with lambda-abstraction, function variables,
and simple unification. In: Schroeder-Heister, P. (ed.) ELP 1989. LNCS (LNAI), vol. 475,
pp. 253–281. Springer, Heidelberg (1991)

270 A. Momigliano and M. Ornaghi

46. Miller, D.: A logical analysis of modules in logic programming. Journal of Logic Program-
ming 6(1-2), 79–108 (1989)

47. Miller, D.: Abstractions in logic programming. In: Odifreddi, P. (ed.) Logic and Computer
Science, pp. 329–359. Academic Press, London (1990)

48. Miller, D.: A proposal for modules in λProlog. In: Dyckhoff, R. (ed.) ELP 1993. LNCS
(LNAI), vol. 798. Springer, Heidelberg (1994)

49. Miller, D.: Forum: A multiple-conclusion specification logic. Theoretical Computer Sci-
ence 165(1), 201–232 (1996)

50. Miller, D.: Overview of linear logic programming. In: Ehrhard, T., Girard, J.-Y., Ruet, P.,
Scott, P. (eds.) Linear Logic in Computer Science. London Mathematical Society Lecture
Note, vol. 316, pp. 119–150. Cambridge University Press, Cambridge (2004)

51. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic
programming. Annals of Pure and Applied Logic 51, 125–157 (1991)

52. Momigliano, A.: Minimal negation and Hereditary Harrop Formulae. In: Nerode, A., Taitslin,
M.A. (eds.) LFCS 1992. LNCS, vol. 620, pp. 326–335. Springer, Heidelberg (1992)

53. Momigliano, A.: Elimination of negation in a logical framework. In: Clote, P.G.,
Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 411–426. Springer, Heidelberg
(2000)

54. Momigliano, A., Ambler, S.: Multi-level meta-reasoning with higher-order abstract syntax.
In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 375–391. Springer, Heidelberg
(2003)

55. Momigliano, A., Tiu, A.F.: Induction and co-induction in sequent calculus. In: Berardi,
S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 293–308. Springer,
Heidelberg (2004)

56. Nadathur, G.: Correspondences between classical, intuitionistic and uniform provability.
Theoretical Computer Science 232, 273–298 (2000)

57. Nadathur, G.: The metalanguage λProlog and its implementation. In: Kuchen, H., Ueda, K.
(eds.) FLOPS 2001. LNCS, vol. 2024, pp. 1–20. Springer, Heidelberg (2001)

58. Pareschi, R.: Type-Driven Natural Language Analysis. PhD thesis, University of Edinburgh.
University of Pennsylvania, Department of Computer and Information Science, Technical
Report No. MS-CIS-89-45 (July 1989)

59. Pfenning, F.: Computation and deduction. Unpublished lecture notes, p. 217 (Revised March
2001) (May 1992)

60. Pfenning, F.: Logical frameworks. In: Robinson, A., Voronkov, A. (eds.) Handbook of Auto-
mated Reasoning. Elsevier Science Publishers, Amsterdam (1999)

61. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Proceedings of the ACM SIGPLAN
1988 Symposium on Language Design and Implementation, Atlanta, Georgia, June 1988,
pp. 199–208 (1988)

62. Pfenning, F., Schürmann, C.: System description: Twelf — A meta-logical framework
for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632,
pp. 202–206. Springer, Heidelberg (1999)

63. Schürmann, C.: Automating the Meta-Theory of Deductive Systems. PhD thesis, Carnegie-
Mellon University, CMU-CS-00-146 (2000)

64. Warren, O.H.D.: Higher-order extensions to Prolog: Are they needed? In: Hayes, J.E.,
Michie, D., Pao, Y.-H. (eds.) Machine Intelligence, vol. 10, pp. 441–454. Halsted Press
(1982)

65. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical framework: The
propositional fragment. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS,
vol. 3085, pp. 355–377. Springer, Heidelberg (2004)

66. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: Specifying properties of concurrent com-
putations in CLF. Electr. Notes Theor. Comput. Sci. 199, 67–87 (2008)

	Introduction and Motivation
	Calculi for Intuitionistic and Linear Logic Programming
	Prolog
	Lolli
	LO
	Forum

	The Italian Contribution
	Prolog
	Lolli
	LO
	Forum

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

