Automatic Certification of Resource Consumption

Alberto Momigliano
Laboratory for Foundations of Computer Science
University of Edinburgh

In collaboration with: see credits at the end of the talk

Work carried out in the EU-project "Mobile Resource Guarantees" (MRG), IST-2001-33149

Comète-Parsifal Seminar, March 7th, 2005
MRG: PCC infrastructure for resource-related properties

- MRG is a joint University of Edinburgh / LMU Munich project funded for 2002-2005 by the European Commission’s pro-active initiative in Global Computing.
- The aim is to endow mobile code with independently verifiable certificates describing resource requirements, following the *proof-carrying code* paradigm.
- Applications with resource considerations: portable devices (phones, PDA’s,…), Smartcards, embedded processors (car electronics,…), satellites, GRID services,…
- Example resources: memory (heap & stack), time, energy, network bandwidth, parameter values of system calls
- PCC: code consumer requires transmitted program to come with verifiable proof that his resource policy is fulfilled
- Approach (certifying compilation): translation from user language into machine language derives independently verifiable certificates
Outline

- Architecture of MRG
- Syntax and semantics of Grail
- Grail’s Program Logic
- Derived Assertions
- Web demo
- Conclusions
Components of MRG

- We write programs in a custom high-level language Camelot, a functional language with an OCaml-like syntax.

- Camelot is compiled into Grail, a functional intermediate code, which is isomorphic to a subset of JVML.

- We use an abstract cost model for the JVM which counts instructions and measures stack and heap sizes.

- Costs are calculated using an annotated operational semantics for Grail, reflecting the expansion into JVML.

- Grail Logic is a program logic which can express resource assertions about the operational semantics.

- Camelot has a resource type inference system, which is used to produce proofs in a logic of derived assertions.

- The annotated semantics, logics, and meta-theorems have all been formalised in Isabelle, and Isabelle proof scripts are used as our proof transmission format.
MRG architecture

Camelot Type system
\[\text{Certifying Compiler}\]
Grail Certificate
\[\text{Expansion}\] \[\text{JVML}\]
\[\text{Network}\]

Resource Policy
\[\text{Certificate Checker}\]
Certificate
\[\text{Contraction}\]
\[\text{JVML}\]
\[\text{JVM}\]
\[\text{OK}\]?

Works because of reversible expansion of Grail into JVML subset.
Camelot

Camelot: ML-like first-order functional language (polymorphism, no references)

- Example program: insertion sort:

```ocaml
type iList = !Nil | Cons of int * iList
let ins a l =
    match l with Nil -> Cons(a,Nil)
    | Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))
    else Cons(x, ins a t)

let sort l = match l with Nil -> Nil | Cons(a,t)@_ -> ins a (sort t)
```

- Notation `@_` indicates destructive pattern match

- Whole program compilation where each Camelot function yields one JVM method

- Compilation includes an explicit memory manager (freelist)

Wish to certify memory consumption of compiled output.
Program analysis, certification & proof checking

let ins a l =
 match l with Nil -> Cons(a,Nil)
 | Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))
 else Cons(x, ins a t)

let sort l = match l with Nil -> Nil | Cons(a,t)@_ -> ins a (sort t)

• Memory consumption inferred from program annotations using a type system
• Result: ins consumes one memory cell, independent from actual input, sort does not consume any memory (in-place)
• In general: memory consumption expressed relative to size of input
• PCC-certificate: encoding of the result of the type inference in a program logic
• Certificate bundled with program for transmission
• JVM at consumer side uses modified class loader (security manager) that checks certificate in Isabelle before executing program
PCC: us and them

Existing approaches:

- Classic PCC: trusted special-purpose proof systems for proving light-weight properties of machine code (memory safety)
- Foundational PCC: operational model (processor) formalised in higher-order logic that is built on top of theorem prover Twelf, use Twelf proof terms as certificates

MRG:

- Formalise *instrumented* operational semantics of (virtual) machine language
- Use a general-purpose program logic (sound, complete & expressive, little automation)
- Derive special logics (interpreted type systems) in theorem prover
Grail: Characteristics

- Combine OO-aspects of bytecode (fields, methods) with (impure) low-level functional language
- Extends Appel-Kelsey-correspondence to machine level
- Functional view: first-order functions; no nesting; all free variables in parameters; applications only to values.
- Imperative view: easily convertible into various virtual machines formats
- registers = variables, jumps = tail-calls
- Coincidence between functional and imperative views makes conversion reversible
- Emitted bytecode is highly structured (Leroy’s conditions)
Syntax of Grail

- A Grail program is a list of *methods* each containing a list of tail-recursive *functions*.

\[e \in \text{expr} ::= \text{null} | i | x | \text{prim} p x x \]

\[| \quad \text{new} c [t_i := x_i] \]

\[| \quad x.t | x.t := x \]

\[| \quad \text{let} x = e \text{ in } e | e;e \]

\[| \quad \text{if} x \text{ then } e \text{ else } e \]

\[| \quad \text{call} f | c.m(\bar{a}) \]

\[a \in \text{args} ::= x | \text{null} | i \]

- Whole development formalized in Isabelle/HOL:
 - named syntax,
 - program encoded using global tables (functions and methods),
 - op. semantics based on (finite) maps:
Grail: resource-instrumented operational semantics

- Based on (impure) big-step functional view:

$$E ⊢ h, e \Downarrow (h', v, p)$$

where \(r \) is a resource value in some resource algebra \(\mathcal{R} \).

- Moreover, the resources \(r \) are a purely “non-invasive” annotation on an ordinary operational semantics; evaluation of an expression is not affected by the resources consumed in subexpressions.

- The resource algebra has families of operations for each of the syntactic constructs of Grail...

- A resource algebra \(\mathcal{R} \) has a carrier set \(\mathcal{R} \) consisting of resource values \(r \in \mathcal{R} \), with:
 - For the atomic expressions, families of constants \(\mathcal{R}^{null} \in \mathcal{R} \), etc.
 - For compound expressions, families of operations, e.g. \(\mathcal{R}_{\text{let}}^{\times} \in \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R} \).

- JVM case: \(\mathcal{R} \) consists of quadruples:
 \[
 r = (\text{clock}, \ \text{callc}, \ \text{invkc}, \ \text{invkdepth})
 \]

- Stack usage is approximated; heap usage calculated as the difference \(\text{size}(h') - \text{size}(h) \).
Operational semantics

\[E \langle x \rangle = \text{Ref} \; l \]

\[E \vdash h, x.t \downarrow (h, h(l).t, R^{\text{getf}}(x, t)) \] (GETF)

\[R^{\text{getf}}(x, t) = \langle 2 \; 0 \; 0 \; 0 \rangle. \]

\[E \vdash h, e_1 \downarrow (h_1, w, p) \quad w \neq \bot \quad E \langle x := w \rangle \vdash h_1, e_2 \downarrow (h_2, v, q) \]

\[E \vdash h, \text{let } x = e_1 \text{ in } e_2 \downarrow (h_2, v, R^{\text{let}}(x, p, q)) \] (LET)

\[R^{\text{let}}(r_1, r_2) = (1 + \max(r_1, r_2)) \]

\[E \vdash h, f_{\text{body}} \downarrow h', v, r \]

\[E \vdash h, \text{call } f \downarrow h', v, R^{\text{call}}_f(r) \]

\[R^{\text{call}}_f(t, c, i, d) = (t + 1, c + 1, i, d) \]
Other resource algebras (current work)

- Resource algebras usefully generalise the specific case to allow richer resource/security policies to be expressed. Examples include:
 - *parameter limit flags* set by parameter limit policies; here simply $R = \{ \text{true, false} \}$.
 - *traces of method invocation sequences*, so e.g. $R = \{ m^* \}$ where m ranges over method names.
 - *read-write effects on heap locations*, where $R = \{ \langle Rd, Or, RdWr \rangle \}$ for $Rd, Wr, RdWr \subseteq \text{Locations}$. Other e.g.s: live variables, complete traces of heaps during execution, . . .
- For some examples, additional indices/sorts are needed for the environment (stack) and heap, to extract or examine values.
- Further algebraic structure on R is perhaps useful and is currently under investigation.
 Current idea: a monoid with semi-lattice structure: composition of monoid + is composition of resources;
Program logic I

- Recent reappraisal of program (Hoare) logics: embeddings in theorem prover (Kleymann, Nipkow), Separation logics (Reynolds, O’Hearn), Java verification (Jacobs, de Boer, von Oheimb)

- Embedding a la Kleymann: deep embedding of language, shallow embedding of assertions, with soundness and (relative) completeness formally proven in theorem prover

- Pragmatic issue: meta-theoretic investigation vs program verification (automation). In MRG-PCC both issues are important!

- Judgements take the form $G 	riangleright e : P$
 - e is a Grail expression;
 - G is a set of assumptions context used for storing assumptions for recursive methods and functions;
 - P is an assertion, i.e. a predicate in the meta-logic
 - Assertions are simply predicates over semantic values:
 \[P[E, h, h', v, r] \]

 relating the environment, initial and final heaps, the result and the resource value.
Program logic II: proof rules

- No auxiliary variables (usage of pre-heap inspired by hooked variables in VDM)
- Judgements interpreted as partial “correctness” statements: validity $\models e : P$ defined as

$$\forall E h h' v p. \ (E \vdash h, e \downarrow (h', v, p) \rightarrow P[E, h, h', v, r]$$

- Termination considered orthogonal

\[
G \triangleright x.t : \lambda E h h' v p. \exists l. \ E(x) = Ref \ i \land h' = h \land v = h'(l).t \land p = R^{getf}(x, t)
\] \hspace{1cm} (VGETF)

\[
G \triangleright e_1 : P_1 \quad G \triangleright e_2 : P_2
\]

\[
G \triangleright \text{let } x = e_1 \text{ in } e_2 : \lambda E h h' v p. \exists p_1 p_2 h_1 w. \ P_1[E, h, h_1, w, p_1] \land w \neq \bot \land P_2[E(x := w), h_1, h', v, p_2] \land p = R^{let}(x, p, q)
\] \hspace{1cm} (VLET)

- Much simpler than Hoare-style logic (variable update in precondition)
- Structural and admissible rules: context lookup, rule of consequence, CUT.
Program logic III: soundness & completeness

- Soundness proven as usual, by relativised validity and induction on height of derivations
- “Relative” completeness (Cook, Aczel): in rule of consequence, the implication only needs to hold rather than being derivable: incompleteness of HOL is inherited by program logic since language of assertions is not formalised
- Completeness proven by induction over program structure, by defining strongest specifications (most general triples)
- Both theorems have been proven in our mechanised formalization. For details, see our paper in TPHOLs ’04.
- A Grail program consists of a number of mutually methods/functions. To prove that each method and function satisfies a specification/invariant, we use a specification table SPEC which associates an assertion to each method/function.
- A context G is table consistent (“good”) for a program if it contains assumptions only of the form used in the procedure rules, and moreover the body of each procedure satisfies the claimed specification.
Program logic IV: example specification (insertion sort)

\[\text{insSpec} \equiv \text{SPEC List ins } [a_1, a_2] = \]
\[\lambda E \; h \; h' \; v \; p . \forall i \; r \; n \; X . \]
\[(E \langle a_1 \rangle = i \land E \langle a_2 \rangle = \text{Ref } r \land h, r \models_X n \]
\[\rightarrow |\text{dom}(h)| + 1 = |\text{dom}(h')| \land p \leq \langle (An + B) (Cn + D) (En + F) (Gn + H) \rangle) \]

\[\text{sortSpec} \equiv \text{SPEC List sort } [a] = \]
\[\lambda E \; h \; h' \; v \; p . \forall i \; r \; n \; X . \]
\[(E \langle a \rangle = \text{Ref } r \land h, r \models_X n \rightarrow |\text{dom}(h)| = |\text{dom}(h')| \land p \leq \ldots) \]

Lemma: \(\text{insSpec} \land \text{sortSpec} \rightarrow \triangleright \text{List.sort } ([xs]) : \text{SPEC List sort } [xs] \)

- \(h, r \models_X n \) defined inductively, introduces case-splits during verification
- Proof rules contain existentials over intermediate heaps and instrumentations
- \(\rightarrow \) automatic proof search impractical (and not desirable in MRG) even after applying all proof rules (VCG): automation by compiler difficult
- Certificate Generation: exploit program structure and compiler analysis by proving properties that are more closely related to the type system
Insertion sort: compiler output

```
method static public List ins(int a, D l) = ...D.make(a, null)...

method static public List sort(D l) =
    if l = null then null
    else let h = l.HD in let t = l.TL in let _ = D.free(l) in
    let l = List.sort(t) in List.ins(h, l)
```

...plus code for memory management and runtime environment methods

- `D.make(...)`: takes object from freelist, or calls `new`
- `D.free(x)`: inserts object into freelist
- `D.main(l)`: constructs initial freelist, calls `List.sort(s2i(l))`

We wish to verify that

- any memory allocation throughout an invocation of `main` is performed during the initial construction of the freelist, and in particular that
- during the execution of `List.sort(l)`, all invocations of `make` are executed on a non-empty freelist, i.e. no call to `new` is performed
Type-based analysis of Camelot programs

Type system by Hofmann and Jost (POPL 2003):

- Input: program containing a function \texttt{start: string list -> unit}

 Output: a \textit{linear function} \(s \) such that \(\texttt{start(l)} \) will not call \texttt{new} when evaluated in a heap \(h \) where

 - \(l \) points in \(h \) to a linear list of some length \(n \)
 - the freelist which forms a part of \(h \) is well-formed
 - the freelist does not overlap with \(l \)
 - the freelist has length not less than \(s(n) \)

- How does this work?

 - Annotate types with freelist annotations for each constructor: \(L(k) \)
 - Judgements \(\Gamma, \eta \vdash e : \mathcal{T}, \mu \) include information about \textit{initial} and \textit{final} size of freelist
 - Express final size of freelist as function of the size of the output
 - Complement this type system with some method for preventing deallocation of live cells (linear typing, usage aspects, layered sharing,...)
What is certificate generation?

- Verify the soundness of the type system w.r.t. the Camelot compilation by
 - interpreting the judgements in the program logic, using basic predicates about freelist representation and length, disjointness conditions of data-structures, footprint of program fragments
 - formally proving (in Isabelle/HOL) derived proof rules in the base logic
- Formulate the rules such that automated verification is possible
 - simple side conditions, no \exists-instantiations, syntax-directed;
 - provided that results of the compile-time analysis are communicated as method-level specifications (invariants)

\[
\begin{align*}
\text{List.ins} & : 1, I \times L(0) \rightarrow L(0), 0 \\
\text{List.sort} & : 0, L(0) \rightarrow L(0), 0
\end{align*}
\]

- Fixed assertion format $[[U, n, [\Delta] \gg T, m]]$

\[
\begin{align*}
\text{List.ins} & : \llbracket \{a, l\}, 1, [a : I, l : L(0)] \gg L(0), 0 \rrbracket \\
\text{List.sort} & : \llbracket \{l\}, 0, [l : L(0)] \gg L(0), 0 \rrbracket
\end{align*}
\]
Proof rules

- LFD rule (Let):

\[
\Gamma_1, n \vdash e_1 : A, k \quad \Gamma_2, x : A, k \vdash e_2 : B, m
\]

\[
\Gamma_1 \Gamma_2, n \vdash \text{let } x = e_1 \text{ in } e_2 : B, m
\]

- Note linearity condition for eliminating deallocation of live cells

- Certificate logic: linear context implemented in two components

- Proof rule (Let):

\[
G \triangleright e_1 : [\llbracket U_1, n, [\Gamma] \triangleright S, k] \\
G \triangleright e_2 : [\llbracket U_2, k, [\Gamma, x : S] \triangleright T, m]
\]

\[
G \triangleright \text{let } x = e_1 \text{ in } e_2 : [\llbracket U_1 \cup (U_2 \setminus \{x\}), n, [\Gamma] \triangleright T, m]
\]

\[
U_1 \cap (U_2 \setminus \{x\}) = \emptyset
\]

- Proof rules are expressed at a level where program variables occur (affinely) linear

- Atomic rules for (destructive and non-destructive) match-statements and for invocations of make

- Only the verification of the wrapper (uniform for all programs) needs to unfold the interpretation into the core logic
Certificates and automated verification

Producer-generated certificate:

- Content: method-level specifications in derived-assertions form
- Representation: Isabelle/HOL script that invokes a standard tactic \texttt{proveMe}

Consumer side:

- Tactic \texttt{proveMe} that
 - invokes derived proof rules (syntax-directed) and
 - discharges side conditions (set inclusions, arithmetic (in-)equalities).
 - Methods verified once, combination for mutual recursion via cut rule and parameter adaptation
 - Functions (basic blocks) verified once, via optimised treatment of merge points that combines imperative (dominator property) and functional (function parameters) viewpoints
 - Currently verified programs: functions over lists and trees (append, flatten, insertion sort & heap sort, \ldots)
 - On-going generalization to algebraic data-type.
Discussion

Future work:

- Generalise existing system of derived assertions (sharing, usage-aspects, separation), and evaluate on bigger examples
- Extract stand-alone proof checker
- Derive specialised logics and certificate generation for other resources: frame stack, time, limits and separation conditions on method parameters

Conclusion:

- MRG-motto: certificate generation by interpreting type-systems in program logic
- Presented expressive program logic for low-level language
- Chain of abstractions: operational semantics → general program logic → derived specialised logics with automation
- Development backed up by implementation in Isabelle/HOL
- Sweet spot in debate “Classic vs. Foundational” PCC:
 ~ Negotiation between proof size and TCB size
Credits

Numerous researchers and students have contributed to work on the MRG project, including:

- Don Sannella, Ian Stark, Stephen Gilmore, Martin Hofmann, David Aspinall;
- Kenneth MacKenzie, Lennart Beringer, Michal Konečný;
- Hans-Wolfgang Loidl, Olha Shkaravska;
- Matthew Prose, Nicholas Wolverson, Laura Korte;
- Robert Atkey, Steffen Jost;
- Robert Amadio.