Learning from Data, Tutorial Sheet for week 6

School of Informatics, University of Edinburgh

Instructor: Amos Storkey

- 1. A Naive Bayes Classifier for binary attributes $x_i \in \{0,1\}$ is parameterised by $\theta_i^1 = p(x_i = 1|class = 1)$, $\theta_i^0 = p(x_i = 1|class = 0)$, and $p_1 = p(class = 1)$ and $p_0 = p(class = 0)$. Show that the decision boundary to classify a datapoint \boldsymbol{x} can be written as $\boldsymbol{w}^T \boldsymbol{x} + b > 0$, and state explicitly \boldsymbol{w} and b as a function of $\boldsymbol{\theta}^1, \boldsymbol{\theta}^0, p_1, p_0$.
- 2. Given a dataset $\{(\boldsymbol{x}^{\mu}, c^{\mu}), \mu = 1, \dots, P\}$, where $c^{\mu} \in \{0, 1\}$, logistic regression uses the model $p(c = 1|\boldsymbol{x}) = \sigma(\boldsymbol{w}^T\boldsymbol{x} + b)$. Assuming that the data is drawn independently and identically, show that the derivative of the log likelihood L of the data is

$$\nabla \boldsymbol{w} L = \sum_{\mu=1}^{P} \left(c^{\mu} - \sigma \left(\boldsymbol{w}^{T} \boldsymbol{x}^{\mu} + b \right) \right) \boldsymbol{x}^{\mu}$$

- 3. Consider a dataset $\{(\boldsymbol{x}^{\mu}, c^{\mu}), \mu = 1, \dots, P\}$, where $c^{\mu} \in \{0, 1\}$, and \boldsymbol{x} is a N dimensional vector.
 - Show that if the training data is linearly separable with the hyperplane $\mathbf{w}^T \mathbf{x} + b$, the data is also separable with the hyperplane $\tilde{\mathbf{w}}^T \mathbf{x} + \tilde{b}$, where $\tilde{\mathbf{w}} = \lambda \mathbf{w}$, $\tilde{b} = \lambda b$ for any scalar $\lambda > 0$.
 - What consequence does the above result have for maximum likelihood training of linearly separable data?
- 4. Consider a dataset $\{(\boldsymbol{x}^{\mu}, c^{\mu}), \mu = 1, \dots, P\}$, where $c^{\mu} \in \{0, 1\}$, and \boldsymbol{x} is a P dimensional vector. (Hence we have P datapoints in a P dimensional space). If we are to find a hyperplane (parameterised by (\boldsymbol{w}, b)) that linearly separates this data we need, for each datapoint \boldsymbol{x}^{μ} ,

$$\boldsymbol{w}^T \boldsymbol{x}^{\mu} + b = \epsilon^{\mu}$$

where $\epsilon^{\mu} > 0$ for $c^{\mu} = 1$ and $\epsilon^{\mu} < 0$ for $c^{\mu} = 0$.

- Show that, provided that the data $\{x^{\mu}, \mu = 1, \dots, P\}$ are linearly independent, a solution (\boldsymbol{w}, b) always exists for any chosen values ϵ^{μ} .
- Discuss what bearing this has on the fact that the 600 handwritten digit training points are linearly separable in a 784 dimensional space.
- (Difficult) Comment on the relation between maximum likelihood training and the algorithm suggested above.