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While the fMRI test–retest reliability has beenmainly investigated from the point of view of group level studies,
herewe present analyses and results for single-subject test–retest reliability. One important aspect of group level
reliability is that not only does it depend on between-session variance (test–retest), but also on between-subject
variance. This has partly led to a debate regarding which reliability metric to use and how different sources of
noise contribute to between-session variance. Focusing on single subject reliability allows considering
between-session only. In this study, we measured test–retest reliability in four behavioural tasks (motor
mapping, covert verb generation, overt word repetition, and a landmark identification task) to ensure
generalisation of the results and at three levels of data processing (time-series correlation, t value variance,
and overlap of thresholded maps) to understand how each step influences the other and how confounding
factors influence reliability at each of these steps. The contributions of confounding factors (scanner noise,
subject motion, and coregistration) were investigated using multiple regression and relative importance
analyses at each step. Finally, to achieve a fuller picture of what constitutes a reliable task, we introduced a
bootstrap technique of within- vs. between-subject variance. Our results show that (i) scanner noise and
coregistration errors have little contribution to between-session variance (ii) subjectmotion (especially correlat-
ed with the stimuli) can have detrimental effects on reliability (iii) different tasks lead to different reliability re-
sults. This suggests that between-session variance in fMRI is mostly caused by the variability of underlying
cognitive processes and motion correlated with the stimuli rather than technical limitations of data processing.

© 2012 Elsevier Inc. All rights reserved.
Introduction

For the past twenty years, the tool of choice for non-invasive study
of humanmind/brain relationships has been functional Magnetic Res-
onance Imaging (fMRI). Despite the fact that it has been used in thou-
sands of studies, many of which have been independently replicated,
there is as yet no consensus on how reliable fMRI measurements are
(Bennett and Miller, 2010). At the same time it is widely accepted
that fMRI can provide valuable insights into the human brain even
when used on the single subject level. In other words, the result of
analysing fMRI time-series is not random. However, it is also accepted
that there is some variability in the results that cannot be accounted
for by experimental variables. Understanding this variability of fMRI
is crucial to delineating limits of fMRI as a research tool.

The pursuit of scientific truth is not the only motivation behind
understanding the reliability of fMRI. Shortly after its inception fMRI
was adapted for clinical use. For example, presurgical mapping for
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tumour or epilepsy foci extraction is being performed on a regular
basis in a number of medical centres (Stippich et al., 2007). Neurosur-
geons appreciate the advantages of fMRI, but to be able to use this
data responsibly they have to understand its limitations. It is worth
noting, however, that single subject fMRI is not limited to presurgical
mapping. It potentially can be used as a diagnostic tool (Raschle et al.,
2012) and a way to plan and monitor rehabilitation (Dong et al.,
2011). It is also being used to define individual functional regions of
interest (ROIs) through functional localiser tasks (Duncan et al.,
2009).

The change of focus in single subject studies is reflected in a differ-
ent approach to analysing data. The Holmes–Friston (Holmes and
Friston, 1998) approach discards uncertainty of the first level analysis
and the within-subject variance, by using each subject's contrast
maps instead of t maps. The uncertainty that influences the group
level results comes from the between-subject variance. In contrast,
a single subject examination relies on t maps, instead of beta param-
eter maps, and thus depends on within-subject variance. This differ-
ence between which variance is relied upon has implications for
what levels and metrics of reliability are suitable for group and single
subject analyses. For group studies, it is reasonable to look at the
within- and between-session variance of contrast maps as well as
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the similarity of thresholded and unthresholded group level t-maps.
In contrast, for single subject studies, this is the within- and
between-session variance of the BOLD signal and the similarity of
t maps that are relevant.

Volume overlap is a simple measure to quantify reliability that as-
sesses howmany of the suprathreshold voxels frommany tmaps/ses-
sions occur in the same location. Depending on the normalisation
factor there are different variants of the overlap metric; the most
common are Dice (1945) and Jaccard (1901). This method has the ad-
vantage of examining the final product of the neuroimaging analysis,
the t maps, and the same procedure applies to group or single subject
maps. However, overlap values heavily depend on the threshold ap-
plied to the t maps, since the cluster overlap measures decrease
with increasing threshold (Duncan et al., 2009; Fernández et al.,
2003). Additionally, overlap scores are by definition dependent on
the volume of activation and when used over the whole brain rather
than for a specific cluster of interest, will give higher values. Worst,
when different thresholds are used over a large volume different ac-
tivation maps can be obtained, but similar measures of overlap can
be observed. Finally, this technique is sensitive to borderline cases;
two very similar t maps, one slightly above a threshold and another
slightly below, would give a false impression of high variability
(Smith et al., 2005). Nonetheless, thresholded maps are the typical
end product of fMRI analyses and are used for ROI definitions. Fur-
thermore, in the clinical context where single subject thresholded
maps are used, their variability is a major concern.

Another popular metric to assess reliability is the Intraclass Corre-
lation Coefficient (ICC). ICC was initially used in psychology to asses
between raters variability (Shrout and Fleiss, 1979), but has been
adapted to measure reliability (McGraw and Wong, 1996) by replac-
ing judges/raters by repeated measurement sessions. One of the most
commonly used ICC variants in fMRI is ICC(3,1), a two-way model
(subjects vs. sessions) with no interaction and a consistency criteria;
in other words allowing for a constant between-session effect such as
learning. ICC(3,1) is an estimate of
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where σr
2 is between-subjects (rows) variance and σe

2 is the
between-sessions variance (variance of the residuals after removing
the subject and session effect). Since this metric combines both
between-subject and between-session variance, it is suitable for pro-
viding insights into random effect group analyses. However, the same
value of ICC can come from both high σr

2 and low σe
2 or low σr

2 and
high σe

2, which makes the comparison between tasks harder. ICC is
in fact more heavily influenced by between-subject variance than
between-session variance (the variable of interest). For instance, if
different tasks have the same between-session variance (σe

2) but dif-
ferent between-subjects variance (σr

2), ICC will be stronger for the
task with the highest between-subjects variance, making its useful-
ness as a quality estimator for group studies debatable. From the sin-
gle subject point of view, between-subject variance is irrelevant and
therefore it is more informative to consider only between-session
variance. Furthermore, in contrast to volume overlap, this is not the
variance of contrast maps (between-subject) that must considered
but the variance of t maps (contrast maps weighted by error). In
the same way volume overlap is sensitive to the selected threshold,
t value variability in ICC can be influenced by the design matrix
used in GLM. This involves regressors, the hemodynamic response
function (HRF) and contrasts definitions. For instance, Caceres et al.
(2009) found that one can have highly correlated time-series but
with a poor model fit leading to low reliability. They concluded that
the wrong HRF model can lead to low reliability. However, inade-
quate regressors and contrast could also lead to similar results.
Apart from the issue of how to measure fMRI reliability, a further
important question is what causes the lack of reliability in the first
place and how this could be prevented. One of the suspected sources
of variation in brain activation patterns is the possibility that different
cognitive strategies and therefore different neuronal responses are
produced by different subjects. These effects don't necessarily have
to be task related. In a block design experiment, it would be enough
that the subject consistently performs different mental tasks during
the rest period to provide significantly variable results. The influence
of this kind of variability is very hard to quantify because of the lack of
access to the true neuronal activation patterns. It is, however, very
likely that the type of task can reduce this “cognitive noise”. For ex-
ample, a simple finger tapping task involving primary motor cortex
requires fewer possible cognitive strategies than the Iowa Gambling
Task. Other possible sources of reduced reliability are easier to quan-
tify. These include, but are not limited to, scanner noise (Bennett and
Miller, 2010), subject motion (Caceres et al., 2009), and between-
session coregistration errors (Fernández et al., 2003). Even though
these confounds have been recognised in the literature numerous
times, to our knowledge, there is no analysis on how much they con-
tribute to reliability metrics. To date, the only study examining such
effect was performed by Raemaekers et al. (2007) who showed a pos-
itive correlation between “sensitivity” (average absolute t value) and
between-session volume overlap.

In the following paper, with the aim to quantify and better under-
stand the observed fMRI reliability, we measured at the subject level
and in four different behavioural tasks, the correlation between
time-series, the between-session t value variance, and the Dice over-
lap coefficients between activation maps. The four tasks included
motor mapping, covert verb generation, overt word repetition and
landmark tasks, and were chosen because they are well established
through group studies and had potential use for presurgical cortical
mapping. We investigated how much the reliability measures can
be explained by, the task, scanner noise, subject motion, and
between-session coregistration, and how they relate to each other.

Methods

Participants and procedure

As a part of a larger study assessing suitability of different fMRI
paradigms for presurgical cortical mapping in tumour resection, a
group of normal healthy volunteers without contraindications to
MRI scanning were recruited using flyers distributed among Universi-
ty of Edinburgh staff in electronic and traditional form. To match the
mean age of diagnosis of the glioma patients undergoing resection
surgery (Ohgaki, 2009), all volunteers were over 50 years of age.
Out of 11 volunteers, data from one participant were discarded due
to problems with executing the tasks. Additionally one session from
the word repetition task was discarded for one of the subjects. The
remaining 10 subjects included four males and six females, of which
three were left-handed and seven right-handed according to their
own declaration, with median age at the time of first scan of
52.5 years (min=50, max=58 years). The study was approved by
the local Research Ethics Committee.

Tasks

All the behavioural taskswere implementedusing Presentation®Soft-
ware (Neuro Behavioural Systems http://www.neurobs.com/). Stimuli
synchronisation and presentation were provided by NordicNeuroLab
hardware (http://www.nordicneurolab.com/). During the first scanning
session, each subject was trained for each task with a few trials inside
the scanner. Care was taken to make sure that volunteers understood
and could properly perform the tasks. For each task, the first four volumes
before stimulus presentation were discarded for signal stabilisation.

http://www.neurobs.com/
http://www.nordicneurolab.com/
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Motor task
Subjects had to move a body part corresponding to a picture. The

following instructions were issued: "You have to tap your index fin-
ger when you see a picture of a finger, flex your foot when you see
a picture of a foot, and purse your lips when you see a picture of
lips". A block design with 15 s activation periods and 15 s rest periods
was employed, with four trials used for training. In every block, sub-
jects moved the index finger of their dominant hand, or flipped their
dominant foot or pouched their mouth. Movement was paced with a
frequency of 0.4 Hz using visual stimuli. There were five repetitions of
each activation/rest block for a total scan time of 7 min 40 s.

Covert verb generation task
Subjects were asked to think of a verb complementing a noun

presented to them visually. The following instructions were used:
"When a word appears it will be a noun. Think of what you can do
with it and then imagine saying ‘With that I can …’ or ‘That I can …’

". A block design with 30 s activation and 30 s rest blocks was
employed, with eight trials used for training. During the activation
blocks, ten nouns were presented for 1 s each followed by a fixation
cross during which subject had to generate the response. The nouns
were chosen at random from a set of 70 nouns (mean lexical frequen-
cy: 0.000087, min: 0.000005, max: 0.000392, std: 0.000092). Rest
blocks had an analogous structure but with each word replaced by
scrambled visual patterns generated by scrambling the phase of the
‘picture’ of each word, i.e. the control patterns were matched in the
amplitude spectrum. Seven activation/rest blocks were presented
for a total scan time of 7 min 12.5 s.

Overt word repetition task
Subjects had to repeat aloud words presented via headphones.

The following instructions were used: “When you hear the word, re-
peat it immediately”. A block design with 30 s activation and 30 s rest
blocks was employed in conjunction with a sparse sampling data ac-
quisition technique to present and record stimuli during the silent pe-
riods, with four trials used for training. After 2.5 s of blank screen
during which the fMRI data were acquired, subjects were presented
with an auditory stimulus which consisted of a pre-recorded native
British English speaker reading a noun chosen at random from a set
of 36 nouns (759 ms sound tracks length, mean lexical frequency:
0.000087, min: 0.000005, max: 0.000392, std: 0.000098). This was
followed by a question mark prompting the subject to repeat the
word. Question marks disappeared after 1741 ms and the sequence
was repeated 6 times. The nouns used were randomised for every
subject/session combination. A blank screen was also presented dur-
ing rest periods. There were six activation/rest blocks for a total scan
time of 7 min 40 s. Subject responses were recorded using an MRI
compatible microphone. During the scanning session, the radiogra-
phy staff listened to check if the subject was executing the task
correctly.

Landmark task
Subjects performed two alternate tasks, namely tell if a horizontal

line is crossed precisely in the middle (LANDMARK) and tell if a hor-
izontal line is crossed at all (DETECTION). The following instructions
were used: “Press the button with your left index finger if the line is
bisected in the middle otherwise press the button with your right fin-
ger” or “Press the button with your left index finger if the line is
crossed otherwise press the button with your right finger”. A block
design with 16.25 sec landmark/detection blocks was used, with ten
trials used for training. Each task was preceded by an instruction
screen which was presented for 8.25 s with a rest period of 8 s.
Each block consisted of 10 lines, four correct and six incorrect. Each
line was presented for 525 ms and subjects had 1100 ms to respond
before the next presentation. Lines were presented in the four corners
of the screen. For the landmark task and incorrect trials, the crossing
line was located at three different distances from the middle, specifi-
cally 12, 40, and 62 pixels from the true middle corresponding to
0.45, 1.5, and 2.325° of visual angle. There were eight landmark/de-
tection blocks for a total scan time of 9 min 55 s. All trials were
randomised and all responses were recorded.

MRI acquisition

All scans were acquired on a GE Signa HDxt 1.5 T clinical scanner at
the Brain Research Imaging Centre (http://www.bric.ed.ac.uk/), Univer-
sity of Edinburgh. Each volunteer was scanned twice, two (eight sub-
jects) or three (two subjects) days apart using the same sequence. All
fMRI data were acquired using a single-shot gradient-echo echo-
planar imaging (EPI) sequence with the following parameters: field of
view (FOV)=256×256 mm, slice thickness 4 mm, 30 slices per vol-
ume, interleaved slices order, voxel size 4×4×4 mm, acquisition ma-
trix 64×64, flip angle=90°, echo time (TE)=50 ms. The repetition
time (TR) was 2.5 s for all tasks, except for word repetition where the
TRwas 5 s (sparse sampling 2.5 s acquisition, 2.5 s silence). In addition
to the EPI data, a high-resolution 3D T1-weighted coronal scan was ac-
quired for each session (FOV=256×256 mm, slice thickness 1.3 mm,
156 slices, voxel size 1×1×1.3 mm and acquisition matrix 256×256).

Functional MRI pre-processing and analysis

Data was processed using SPM (http://www.fil.ion.ucl.ac.uk/spm/)
and FSL (http://www.fmrib.ox.ac.uk/fsl/) within the Nipype framework
Gorgolewski et al., 2011a.

Preprocessing
For every subject, the 3D T1-weighted volumes from both sessions

were coregistered, resliced and averaged. A DARTEL template was
created using the averaged T1-weighted volume from all subjects
(Ashburner, 2007). Additionally, a brain mask was estimated from
each average T1-weighted volume using BET (Smith, 2002).

As described above, the first four volumes of every EPI sequence were
discarded and the remaining volumes were slice-time corrected. Finger,
foot, and lips sequences of left-handed subjects (three subjects) were
flipped along the Z–Y plane. For every subject, all slice time corrected vol-
umes from all tasks and sessions were realigned and resliced to their
mean volume to remove motion artefacts. The mean EPI volume was
coregistered to the 3D T1-weighted between-session average volume
and the resulting affine transformation was applied to headers of the
realigned files. Each EPI volume was then normalised using the DARTEL
template and corresponding flow field, and smoothed with 8 mm full
width halfmaximumGaussian kernel. Apart from the fact that smoothing
improves SNR, it is necessary to maintain assumptions of the Random
Field Theorywhich is being used for thresholding. The smoothed volumes
supplementedwith thepreviously estimated brainmask and realignment
parameters were searched for artefacts using ArtifactDetection toolbox
(http://www.nitrc.org/projects/artifact_detect/).

1st level analysis
Each session was analysed separately. GLM (Friston et al., 1994)

was used to estimate the BOLD signal response by fitting a design ma-
trix that consisted of an autoregressive filtering matrix (AR1), task re-
lated regressors, realignment regressors (six parameters), a high pass
filter (128 Hz), and artefacts (one per artefact) regressors. Task re-
gressors for verb generation and word repetition were simple boxcar
functions convolved with a canonical HRF. For these tasks, a simple
contrast including the single task regressor was used, i.e. activation
vs. baseline. For the finger, foot and lips tasks, each body part was
modelled with a separate boxcar regressor and three contrasts oppos-
ing each body part against the two others were obtained. The design
matrix for the landmark task included five event related regressors
acquired from each subject/session experiment log: landmark stimuli

http://www.bric.ed.ac.uk/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fmrib.ox.ac.uk/fsl/
http://www.nitrc.org/projects/artifact_detect/
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with correct responses, landmark stimuli with incorrect response, de-
tection stimuli with any response (correct or incorrect), and detection
and landmark stimuli with no response. This allowed a “landmark
stimuli with responses vs. only detection stimuli with responses”
contrast to be estimated. Only voxels within the previously estimated
brain mask were included in model fitting.

2nd level (random effect) analysis
For every subject and task, contrast volumes were averaged be-

tween the two sessions. These averages were then used in a second
level group analysis following the Holmes–Friston approach (Holmes
and Friston, 1998), i.e. a one sample t test on each contrast was run to
estimate a group effect. The result of each t test was thresholded using
the topological false discovery rate (FDR) method (Chumbley and
Friston, 2009) with the cluster extent probability threshold set to 0.05
after FDR correction.

Reliability measurements and confounds

Measuring reliability
Between-session correlation on time-series. After the EPI sequences

has been realigned, normalised, spatially smoothed, and detrended
using second order polynomials, Pearson correlation coefficients be-
tween first and second session time-series were calculated for each
voxel and then averaged. This allowed to determine the similarity of
the measurements before any statistical and HRF models had been
fitted. This measure, in contrast to the two described below, was cal-
culated for each task rather than for each contrast. Because of this 39
values were entered into the analysis (10 subjects×4 task—1; since
we had to discard one run for one subject).

Between-session variance of unthresholded t maps. tMaps were first
corrected for global effects using estimates from the adaptive cluster
forming threshold method (Gorgolewski et al., 2011b, in review).
The mean of the squared between-session differences was calculated

tdiff ¼
1
n
∑i ti1−ti2ð Þ2 ð2Þ

where n is the number of voxels, ti1 and ti2 are the ith voxel t values
from the first or second session respectively. This measure is equiva-
lent to the between-session component of ICC, but adapted here for
single subject analysis. For full derivation of the relation between
ICC and tdiff see Appendix A. This as well as the following measure
was calculated for every contrast resulting in 59 values entering the
analysis (10 subjects×6 contrasts—1; since we had to discard one
run for one subject).

Volume overlap of threasholded t maps. Single subject t maps were
thresholded using cluster FDR (q=0.05) with an adaptive cluster
forming threshold (Gorgolewski et al., 2011b, in review). This method
uses a combination of Gamma–Gaussianmixturemodels and topolog-
ical thresholding (based on RFT) and has been shown to provide re-
sults less prone to different levels of SNR and global effects, thus
giving maximum overlap estimates. Using the suprathreshold maps
the between-session Dice overlaps was calculated. In the case where
both maps were empty (no suprathreshold voxels), a Dice overlap of
zero was assumed to penalise for lack of signal. In addition, to test if
the tasks were reliable, the mean Dice overlap obtained for each sub-
ject and task was compared with the between-subject Dice overlap.
The between-subject Dice overlap was obtained by computing the
overlap between the thresholded map of every subject in Session 1
and the thresholded maps of all the other subjects in Session 1. The
procedure was repeated for Session 2 and all Dice measures were av-
eraged for each task. This allowed the testing of whether the overlap
measured within-subjects was significantly greater than the overlap
measured across all subjects, given that all subjects were in standard
space. A percentile bootstrap test of the Harrell–Davis (HD) median
(Harrell and Davies, 1982) was used to estimate if the difference of
within- and between-subject Dice overlapwas statistically significant.

Results are reported for the full brain, and subsequent analyses
apply to these results only. However, to also make sure results were
not biased toward low values due to lack of reliability in many regions
but the one targeted by the task in hand, we also report results within
specific ROI. These were constructed using probability maps available
in the anatomy toolbox (Eickhoff et al., 2005, 2006, 2007). For the
mapping of the primary motor cortex, the whole left areas 4a and
4p were used (Geyer et al., 1996). For Broca area, Brodmann areas
44 and 45 were used (Amunts et al., 1999). For Wernicke area, area
TE30 was used (Morosan et al., 2005). For the auditory cortex, we
used areas TE1, 1.1 and 1.2 (Morosan et al., 2001). Finally, for the
landmark task, right Inferior Parietal Cotex and Superior Parietal Lob-
ule were used (Corbetta and Shulman, 2011). Masks were generated
in the MNI space and resliced to DARTEL template dimensions.

Measuring confounding factors
For each of the above measurements, a repeated measure multiple

regression approach was used. In this approach two models are fitted
to the data. The 1st model included the task, scanner noise, subject
motion (total displacement, stimuli/motion correlation, and interac-
tion between task and stimuli/motion correlation), coregistration
error and subjects as regressors (for the design matrix see Supple-
mentary Fig. 1) and the 2nd model only included subjects. The R2 of
the full model is then tested by comparing the full to the reduced
model, effectively testing the contribution of all regressor to the
model given the presence of the repeated measure. To identify within
the full model the contribution of each independent variables to the
total explained variance, the relative importance bootstrap technique
(Ulrike Grömping, 2006) with the Lindeman–Merenda–Gold metric
(Lindeman et al., 1980) was used (performed in R using relimpo pack-
age). This technique estimates the relative importance by generating
combinations of the given (step-wise) model and weighting contri-
butions to the explained variance by the order of adding variables.
The estimates are boot-strapped 200 times to establish confidence
intervals.

Scanner noise. To estimate the noise due to scanner related fluctu-
ations, the temporal Signal to Noise Ratio (tSNR) was measured

tSNR ¼ 1
n
∑i

μ1

σ i
ð3Þ

where n is the number of voxels, μi and σi are the mean and the stan-
dard deviation of the ith voxel across time. The average was taken
across all voxels within the brain mask. Before calculating tSNR, the
time-series were truncated by discarding the first four volumes,
realigned to remove motion confounds and detrended using second
order polynomials.

Subject motion . Twometrics were used to characterisemotion: total
displacement and stimulus by motion correlation. Total displacement
(Wilke, 2012) allowedmeasuring in a single variable the overall motion
using realignment parameters from every EPI volume. Thismeasure has
the advantage of capturing cortical voxel displacement due to both
translation and rotation. Subject motion was characterised here by an
average over this parameter fromboth sessions. Stimulus/motion corre-
lation allowedmeasuring the influence ofmotion on regressors of inter-
est (and thus beta values). For every designmatrix (80 designmatrices:
4 tasks×10 subjects×2 sessions), we measured the correlation be-
tween the regressors of interest andmotion regressors using a multiple
regressionmodels. The dependent variable of thismodel were the stim-
uli regressors (after HRF convolution)multiplied by the contrast vector,
whilst the 6 motion parameters were used as independent variables,
This way, for every designmatrix,wewere able to calculate R2-percent-
age of stimuli variance explained by motion. As for total displacement,
values from the two sessions were averaged.



235K.J. Gorgolewski et al. / NeuroImage 69 (2013) 231–243
Coregistration error. Inaccuracies of coregistering EPI volumes be-
tween two sessions were characterised by the correlation ratio
(Roche et al., 1998) between mean EPI volumes from the two ses-
sions. This metric measures functional dependencies between voxel
intensities and has been previously used as a registration cost func-
tion. The correlation ratio was calculated on brain-masked volumes.

Measuring relations between reliability metrics
To investigate the relationships between reliability metrics, robust

Spearman correlations with outlier removal (Rousselet and Pernet,
2012; Wilcox, 2005) were computed between each pair of measure-
ments before and after fitting the multiple regression models ac-
counting for confounds.

For each subject, the HD estimate of the median of tdiff and each
time-series was also computed for three different ROIs: the area acti-
vated in both sessions (overlap), the area activated in one (either the
first or second) of the sessions, and the area not activated in any of
the sessions. Correlations were then computed to test whether the
voxelwise reliability measures (tdiff and time-series correlations)
were significantly different between these regions.

Results

Random effect results

Regions activated by each task followed previously reported pat-
terns of activation. For the motor tasks, strong activations of the left
precentral gyrus were observed respecting the known motor homun-
culus: (1) foot contrast revealed activations near the top end of the
contralateral precentral gyrus extending to left Supplementary
Motor Area (SMA) and also showing activation in ipsilateral
crebellum and ipsilateral precentral sulcus; (2) finger contrast pro-
duced activation in the middle/lateral contralateral precentral gyrus
and ipsilateral cerebellum; (3) lips contrast produced bilateral activa-
tion in the inferior part of the precentral gyrus, but also the cerebel-
lum. Activations were also observed in the visual cortex over
inferior occipital/fusiform gyri in response to the stimulus presenta-
tion. For the verb generation task, activations were observed in left
Broca's area (BA 44 and 45), left temporal gyrus, left inferior parietal
lobule, SMA and left thalamus. For the word repetition task, activa-
tions were observed over the superior temporal gyrus, mostly in the
left and right primary auditory cortex (areas TE 1.1, TE 1.2 and TE 3;
Morosan et al., 2001) and left Wernicke's area (Caspers et al., 2006).
Additional activations were found in the SMA, Brodmann area (BA)
6, the postcentral gyrus (BA 3b) and the cerebellum. Finally, for the
landmark task, activations were observed mainly in the right superior
and inferior parietal lobule, left fusiform gyrus, left cerebellum, left
Table 1
Reliability measurements obtained across the full brain and within ROI. Significant differen

Mean time-series correlations

Finger
Foot
Lips
(All)

Full brain 0.101±0.040

Motor cortex 0.230±0.067

Verb generation Full brain 0.070±0.084
BA 44/45 0.120±0.086

Word repetition Full brain 0.090±0.031
Auditory cortices 0.255±0.066

Landmark Full brain 0.135±0.054
Right IPL 0.173±0.063
postcentral gyrus (BA 2), right inferior temporal gyrus, precentral
gyrus (BA 6—bilaterally), SMA (bilaterally), right inferior frontal
gyrus (BA 44 and 45), and left calcarine gyrus (BA 17). The group
level activations therefore confirmed that the stimuli used in all of
the tasks were correct.
Reliability

Low mean correlation values were observed on voxel time-series
across the four tasks (range 0.07 to 0.17). Time-series correlations
were not homogenous through the whole brain and higher values
were observed within ROI (range 0.12 to 0.23) compared to the
whole brain (Table 1). This indicates that for ‘activated’ regions,
time-series were more similar than for not activated regions.

The opposite pattern of results was observed with Tdiff (the be-
tween session variance of T values). We observed lower Tdiff values
for the whole brain (range 1.36 to 6.1) than within ROI, (range 1 to
8.4), but high Tdiff values indicate lower reliability. However, as we
show later, there was no clear relation between absolute t values (‘ac-
tivated’ area) and Tdiff.

Dice overlap values show relatively high reliability (average over
all tasks for the whole brain 0.41) especially compared to the low cor-
relations observed on time-series. However, as for time-series, higher
Dice coefficients were observed within ROI (range 0 to 0.93) than the
whole brain (range 0 to 0.76). Here one has to be aware of a bias re-
lated to the previously mentioned thresholding issue. Indeed,
restricting the suprathreshold voxels just to a smaller ROI is necessar-
ily biased towards higher Dice values.

Using the Dice metric, we also tested for the full brain if a given task
was significantly reliable by comparingwithin- to between-subject Dice
overlap coefficients. Analyses revealed that the motor task had a higher
reliability within- than between-subjects. Similar results were obtained
for the verb andword generation tasks (see Table 1). In contrast, despite
group level analyses showing right intra-parietal activations, no consis-
tent activation was observed, with the within-subject (0.17) not being
significantly different than the between-subject (0.11; bootstrap differ-
ence [−0.01 0.19] p=0.74). Thus, despite showing similar time-series
correlations as the other tasks and even a lower tdiff, the landmark task
did not perform well in practice. The technique we are proposing here
(comparing within- and between-subjects Dice overlap) is analogous
to ICC for thresholded maps. Often reliability studies state a given
amount of reliability but it is not known if it is ‘good’ or not (Bennett
and Miller, 2010). Our results show that the answer depends on the
task at hand as the same amount of reliability could be good enough
in one case (because it is higher thanmeasuring the reliability between
subjects) but not the other. For an example map showing the reliability
measures of one subject see Fig. 2.
ces in within and between subjects Dice overlaps are marked in bold.

Mean tdiff Mean within-subject Dice Mean between-subject Dice

1.98±0.505 0.574±0.189 0.352±0.115
2.10±0.524 0.517±0.125 0.321±0.101
2.44±1.15 0.454±0.161 0.286±0.145
(2.17±0.80) (0.515±0.168) (0.319±0.124)
2.03±0.78 0.751±0.146 0.566±0.148
2.50±0.53 0.724±0.098 0.526±0.160
1.85±0.70 0.837±0.086 0.629±0.157
(2.13±0.73) (0.771±0.123) (0.574±0.161)
3.58±1.15 0.502±0.216 0.250±0.129
4.39±2.28 0.595±0.238 0.346±0.214
2.83±0.68 0.452±0.097 0.218±0.128
3.42±1.24 0.537±0.199 0.303±0.210
1.69±0.28 0.173±0.177 0.115±0.114
1.97±0.37 0.150±0.209 0.203±0.182
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Fig. 1. Distributions of modelled explanatory factors to reliability. Combinations of symbols and colours of points represent different subjects.
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Contribution of scanner noise, subject motion and coregistration errors
to between-session variance

Data modelling
Since multiple regression is based on correlations, it requires a

non-zero variance of the explaining factors. As shown by the correlogram
between all of the confounding factors (Fig. 1), the explaining factors have
a reasonable spread of values (for example total displacement ranges
from 0.2 to 1.4 mm). We also looked at the contributions of the number
of artefacted volumes found by the ArtDetect algorithm used in prepro-
cessing. These volumes are selected based on the signal intensity andmo-
tion signals and added as a confounding regressor (one per artefact) to
the single subject design matrix. On average there were 1.75 artefacts in
motor tasks, 0.27 in word repetition, 1 in verb generation, and 2.95 in
line bisection. Despite the fact that the tasks differed significantly in
terms of those numbers (F(5,53)=4.121 p=0.003) adding them to the
multiple regression model used to analyse reliability did not yield signif-
icant improvements in the model fit (similar adjusted R2). Similarly, the
model used here was the most parsimonious among a set a models
where motion regressors were modelled either as a single parameters,
split per task or both (see Supplementary table 2).

Model results
Fitting task, scanner noise, subject motion and coregistration error

to the time-series correlation values led to a not statistically signifi-
cant R2 of 48% (F(29,10)=1.3939, p=0.255,1 adjusted R2b0%) with
a large contribution of the task (17.53%) and subject motion 20%).
When tested on tdiff (the between-session differences of t values—a
component of the ICC measure), the model yielded a higher R2 of
76% (F(35,14)=4.7986, p=8.106e−05, adjusted R2=60%), with
1 Reported F and p values correspond to the repeated measures test: full vs. subject
model comparison.
again a large contribution of the task (40.32%) but also of motion
(24%) and scanner noise (11.02%). Finally, when fitted to the Dice
values, the model produced an R2 value of 75% (F(35,14)=6.3365,
p=4.597e−06, adjusted R2=59%) with again a major contribution
of the task (42.68%) and motion (23%).

Overall task-induced variations are a major single contributor to
reliability (18%, 31%, and 43% respectively). This could be explained
by the high variability of the landmark task compared to others. If
we sum up contributions from all motion related regressors (total
displacement, stimuli/motion correlation, and interaction between
task and stimuli/motion correlation) it also explains a large portion
of the variance (20%, 24%, and 23% respectively). Interestingly, this
was not the actual amount of motion that mattered the most (i.e.
total displacement) but the correlation between the stimulus presen-
tation (paradigms) and motion. Scanner noise and coregistration con-
founds add little to the equation, accounting only for 6%, 2% and 6%
respectively (see Table 2 and Supplementary Fig. 11).

No matter how we measured reliability, out of the most common-
ly reported in previous reliability studies confounds (scanner noise,
subject motion, and coregistration error) only subject motion has a
high contribution. To further verify these findings, we reran the reli-
ability analysis on data acquired using the same pipeline but without
motion correction (no realignment with runs, no motion parameter
regressors and artefact detection in the design matrix). Turning off
those corrections decreased the Dice overlap by 20% (t(58)=
3.0795, p=0.003166), increased tdiff by 28% (t(58)=−4.4787, p=
3.578e−05) but did not influence time-series correlation significant-
ly (8% decrease; t(38)=1.6644, p=0.1043). It is worth noticing that
for Dice and tdiff, turning off motion lead to changes equivalent to the
amount of variance that can be explained by motion regressors, that
is motion lead to a decreases in T value reliability and thus a decrease
in map overlap (for percentages of variances of each factor on
un-realigned data see Supplementary table 2).
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Relationships between reliability metrics

No significant correlations were observed between time-series
correlations, t value variance and Dice coefficients. Weak negative
correlations were observed between time-series correlations and
tdiff, however these weak effects disappeared once confounds were
accounted for (see Supplementary Fig. 11). At the same time
regressing out the confounds strengthens the relation between tdiff
and Dice making it statistically significant (ρ=3.11 vs. ρ0.05=2.43).
The direction of the relation (r=−0.44) makes conceptual sense
(smaller differences in t values lead to higher overlaps). To investi-
gate further a possible (non-monotonic) relationship between these
variables, all voxels from each task/contrast were pooled together to
create a series of scatter plots between t values and time-series corre-
lations and tdiff.

Most voxels with high t values show increased time-series correla-
tion for all tasks. The same is true for negative t values, which indicates
that even though the negative t values are not usually of interest, they
are stable between-sessions even on the time-series level (Fig. 3a). It
is also worth noting that there were many voxels with high correlation
but low t value. These indicate a reliable signal not captured by the de-
sign matrix. When restricting the analyses to overlapping vs.
non-overlapping activated areas, the highest time-series correlation
values were observed in the overlapping (those that by definition will
have high t values) rather than non-overlapping areas (Fig. 4),
confirming that high t values relates to reliable voxels (time-series).

No relationship was observed between mean t values and the vari-
ance (tdiff). The highest tdiff values (poorest reliability) were observed
for t values close to zero, but one has to bear in mind that those values
were also the most common. There were, however, differences in the
observed patters between tasks. The distribution of tdiff across mean t
values was almost uniform for verb generation. This was in contrast to
the lips task for which the highest tdiff values were observed almost ex-
clusively for the voxelswith t values close to zero. The landmark task, on
the other hand, showed a smaller spread in both t values and their
between-session variance.When restricting the analyses to overlapping
vs. non-overlapping activated areas, we noticed that mean tdiff in the
overlapping area was no different than in the parts of the brain that
were not active in either of the two session, but there was a significant
increase of tdiff for non overlapping active areas (Fig. 4). This relation can
even be observed on the individual subjects maps (see Fig. 2 and Sup-
plementary Figs. 2–10). In other words, tdiff is bigger in regions that
were active in one of the sessions, but not in both of them. These are
usually the borders of suprathreshold clusters.

Discussion

Studies involving fMRI are complex and easily influenced by many
factors. This is not only because the subject in question, the human
brain, has intricate and not fully understood hemodynamics. The
data acquisition and processing is a multilevel complicated process
(Savoy, 2005). In this study, we investigated how different factors
can contribute to between-session variance. We found that about
30–40% of the observed single subject reliability (unthresholded or
thresholded T-maps) can be explained by the task used and that
among confounding factors, motion is the main problem accounting
for about 20% of the variance.

Choosing the right metric
One important aspect of this study is the application of different

methods of measuring reliability. Specifically, we assessed three differ-
ent ways of measuring reliability, from the correlation of time-series, to
t values and thresholded t maps. In addition, compared to many previ-
ous studies (e.g. Caceres et al., 2009; Raemaekers et al., 2007), we have
not restricted our measurements to a predefined ROI or split analyses
between different ROIs. This decision was motivated by the fact that
reliability and activations are not strictly related (see e.g. Caceres et
al., 2009) and in some cases likeDice, ROI analysis introduces a selection
bias. It is therefore misleading to assess a task only by the reliability
within a predefined ROI.

Our decision to use tdiff as the measure of between session vari-
ability of unthresholded maps was mostly driven by ability to relate
it to Dice overlap measure. First, we decided to use t-values instead
of beta values because t-values are influenced by residual noise and
thus reflect better acquisition (scanner) related variance. Second,
tdiff captures the variance of t-values that translate directly into the
extents of suprathreshold regions. Finally, tdiff can be related to ICC.
As mentioned in the introduction, this choice is of course only rele-
vant if one is looking at single subject reliability, and betadiff could
be more appropriate for group reliability.

Despite the fact that Dice overlap was previously being criticised
as a reliability measure (Smith et al., 2005), we have still included it
in our analysis. Thresholding as any form of dimensionality reduction
can introduce biases and we agree that calculating overlaps of
thresholded maps is a rough estimate of reliability. However, let us
not forget that the thresholded maps are what the end result of an
fMRI analysis is. Papers describing group studies are presenting and
making claims about thresholded maps. The same applies to the sin-
gle subject domain. Neurosurgeons plan and execute procedures
based on thresholded maps. Functional localisers produce ROIs
which are nothing less than thresholded statistical maps. We ac-
knowledge problems with analysing thresholded maps (that is why
we have included two other reliability metrics) and at the same
time we try to minimise their influence. Importantly, we have used
the same method as Smith et al., 2005 for correcting for global effect
(a t value distribution shift derived from a Gamma-Gaussian model).

Indeed, global effects in context of single subject test–retest reli-
ability have also been a topic of a recent work by Raemaekers et al.,
2012. In their approach they fitted a line to session 1 vs. session 2
scatter plots. This allowed them to estimate between session variance
as the variance orthogonal to this line. This is a variant of global effect
correction used in our work. Their approach allowed the amount of
shift applied to the t values to be in linear relation to them. In other
words, in our model this line can be shifted from the centre of the
data cloud, but keeps the 45 degrees angle. However, the approach
we used (Smith et al., 2005) is more flexible as it allows applying
the correction to one session without knowing anything about the
other (i.e. the model is fitted using single session distribution, not
the joint scatter plot). Additionally, when applied to the full brain, a
linear fit to the joint distribution of values from two sessions would
be driven by values close to zero and thus not capturing the shape
of the tails which are the activated voxels (see Fernández et al., 2003).

Finally, we found that good time-series reliability is a necessary but
not sufficient condition for good t map reliability. For example, one
could observe a good correlation between time-series of two sessions,
but a large difference in t values, a case that may correspond to a poor
model fit (i.e. some regionsmay activate similarly in both sessions, in re-
lation to the task, but not with the stimulus or block onsets described in
the design matrix – such regions can be captured by e.g. ICA analyses).
More intriguingly, we have observed a similar effect in the relationship
between t values and thresholded maps. Small between-session differ-
ences in t values are necessary for a good suprathreshold overlap, but
not sufficient, because a high threshold can lead to low Dice overlap.
For instance, the task that performed the worst (landmark) in terms of
Dice, was the one showing the lowest tdiff values. This brings us to a par-
amount question, namely what makes a good task/analysis? The task
should be reliable, but this is not the full answer, because it can be reli-
able in not measuring any meaningful activation. In other words we
don't only want low between-session t value variance, but also high t
values consistently across sessions. Dice overlap captures this property
due to thresholding, since only high t values that survive thresholding
contribute to the overlap. We showed here that using Dice, one can
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Table 2
Relative contribution in percentage (with 95% confidence intervals) of task, scanner noise, subject motion and coregistration error to time-series correlation, between session var-
iance and Dice overlap.

Time-series correlation Between-session variance Dice

Task 17.54%
[7.31 49.19]

31%
[20.4 48.25]

42.68%
[22.39 63.76]

Scanner noise 1.57%
[0.57 22.66]

11.84%
[1.67 25.95]

4.48%
[0.5 16.23]

Subject motion (total displacement) 7.18%
[0.63 23.44]

0.48%
[0.03 4.46]

4.95%
[1.14 15.56]

(stimuli/motion correlation) 4.5%
[1.14 26.35]

17.96%
[4.35 40.08]

3.84%
[1.23 14.21]

(task*stimuli/motion correlation) 8.4%
[1.84 36.4]

5.35%
[1.60 17.17]

14.52%
[4.2% 25.81%]

Coregistration error 1.28%
[0.18 10.95]

0.66%
[0.16 3.42]

0.96%
[0.24 6.67]
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compare within- vs. between-subject overlap, and a reliable task can be
defined as having a significantly higher degree of overlap within- than
between-subjects.

Explanatory factors
The type of task was the main explanatory factor on our reliability

metrics, which can explain the large variance observed across different
studies (Bennett and Miller, 2010). Here, one can argue that the large
effect observed depends essentially on the landmark detection task
which failed to produce any suprathreshold clusters more often than
the other tasks. This indeed can explain the effect over Dice overlap
measurements, but not on tdiff. The observed between-session t value
differences were actually lower for the landmark task than for the
other tasks. It is therefore a case where one can observe differences be-
tween small t values not yielding any statistically significant activation.
As already mentioned in the introduction, this result also highlights the
need to differentiate reliability of the BOLD signal (single subjects) from
reliability of contrast maps (group studies) since a small BOLD signal
but with a low between-subject variance gives significant group results.

The fact that the type of task can have such a big influence on reli-
ability should perhaps not be surprising. First of all, the tasks in our
study were not only different in terms of the behavioural paradigms
(or in other words what the subject was meant to do during the
scan), but also in terms of acquisition parameters. Word repetition
used sparse sampling which in theory should improve SNR (Hall et al.,
1999), although at the cost of the number of volumes acquired. Scan-
ning time and therefore the number of volumes acquired ranged from
seven up to almost ten minutes. All the tasks were executed in blocks,
but the landmark task used event related regressors to restrict the re-
sponse to correct answers only. All these factors can influence reliability
on a purely data acquisition level. Further studies with systematic vari-
ation of these parameters, for example sparse/non-sparse, block/event
related and number of volumes acquired, would be necessary to estab-
lish their exact contribution to reliability.

Apart from the data acquisition aspect of different tasks there is
one more important reason explaining the observed influence of the
task type on reliability. Different tasks involve different neuronal
populations and can incorporate different cognitive strategies. For a
given task the same observed behavioural response, such as generat-
ing a verb, can be achieved by different neuronal subsystems, hence
eliciting different BOLD reaction. We hypothesise that this “cognitive
freedom” is different for different tasks. For example, a simple finger
tapping task is most likely to be executed in a similar fashion each
time. In contrast, a more sophisticated task involving language gener-
ation or spatial attention could involve different neuronal subsystems
Fig. 2. Brain statistical maps from a representative subject (subject 2). There is a spatial corr
correspondence between Tdiff and mean t. Additionally most heat points of the Tdiff maps ove
The anatomical ROIs are marked in green. For remaining subjects see Supplementary Materia
er is referred to the web version of this article.)
each time. This might be part of the explanation why in our study the
landmark task did not perform well in terms of single subject
reliability.

Scanner noise, and coregistration errors have previously been
suggested to contribute to reliability (Bennett and Miller, 2010;
Caceres et al., 2009; Fernández et al., 2003). Even though we have
found such relationships, their magnitude was surprisingly small.
Both of the confounding factors we investigated have been accounted
and corrected for in the data processing pipeline. Scanner noise, for
example, can be influenced by signal dropouts due to failing coils.
Smoothing can mitigate this to a certain extent by improving tSNR
(see Supplementary Fig. 12), although this is achieved by the loss of
spatial accuracy. Volumes with sudden signal dropout are also either
removed or accounted for in the design matrix during the artefact de-
tection step. As for the coregistration step, it is perhaps not surprising
that modern algorithms managed to realign brain volumes of the
same person scanned using the same sequence on the same scanner.
Our results therefore suggest that thanks to advances in data process-
ing methods, issues such as scanner noise and coregistration errors
are not the most important contributing factors to between-session
variance. This is, however, true only within normal working condi-
tions. For example a serious scanner malfunction would inevitably re-
sult in poor reliability.

Subject motion on the other hand had non-negligible influence on
reliability. It was the largest confounding factor (the 2nd largest ex-
planatory variable) and for time-series correlation, even explained
more than the task. Comparison of realigned vs. non realigned data
confirmed those results by showing equivalent changes in tdiff and
Dice. Only correlations on time-series were not significantly affected
by turning off motion correction (−8%) despite a large portion of
the variance explained by motion regressors on realigned data. In
the present context this is difficult to explain. One possibility is that
using Pearson correlation is not efficient enough to fully capture
changes in reliability given the various limitations related to data
range restriction, curvature, or heteroscedasticity (Wilcox, 2005). Ad-
ditionally after correcting for repeated measures, the fitted model did
not explain time-series correlations with statistical significance. Be-
cause of this time-series correlations results presented here should
be treated with lower confidence. Time-series signal is richer than
tdiff or Dice and therefore failure to explain the variance of correlation
through a handful of regressors is not surprising.

Importantly for planning fMRI experiment, we have found that
motion correlated with the stimuli explains the lack of reliability
much better than absolute motion. On time-series correlation (i.e. be-
fore model fitting) both total displacement and motion correlated
espondence between time-series correlation (TS corr) and mean t maps, but there is no
rlap with non-overlapping active areas (orange and red colours in the overlap column).
l Figs. 1–9. (For interpretation of the references to colour in this figure legend, the read-
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with the stimuli mattered whilst for tdiff and Dice, only motion corre-
lated with the stimuli mattered. This can be explained by the fact that
t-values depends strongly on the signal correlated with the task (beta
value) while the whole time-series correlation is also affected by the
overall motion. This finding has implication towards behavioural task
design and poses a question of theoretical upper limit on single sub-
ject reliability of motion related tasks. It is however important to
also acknowledge the limitations of our modelling approach. We did
not control explicitly the levels of confounding factors. In this study
we have relation between reliability and measured (but not induced
experimentally) confounds. What we are reporting is how much
those factors explain the variability in reliability measures. This ap-
proach has some obvious limitations—for example if all of the
subjects were expressing substantial motion but of an identical level
there would be no variance within the confounding factor and it
would yield no explanatory value. However, as we shown in Fig. 1
we have a reasonable spread of combinations of values of confounds
across subjects and tasks, which allows concluding reasonably on
the contribution of each factor.

In conclusion,wehave shown that task andmotion are themajor con-
tributor to single subject reliability whilst scanner noise, coregistration
errors have little influence. Additionally we have found that the relation-
ship between time-series correlation, t values difference andDice overlap
is not simply linear. We are also recommend using a within- vs.
between-subject Dice overlap difference as a way for evaluating single
subject fMRI paradigms.
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Appendix A. Relation between tdiff and ICC

The tdiff metric which we have used to measure the variance of
unthresholded T-maps relates to the between-subjects variance of
the ICC metric. The mean tdiff across subjects is inversely proportional
to ICC, assuming constant between-subjects variance across sessions.
The derivations for this relation depend on the assumptions made
while calculating ICC (for k=2 sessions case):

1. ICC(1) assumes no session (learning) effects and is defined for one
voxel as following

ICC 1ð Þ ¼ σ2
r

σ2
r þ σ2

w

where σr
2 is between subjects variance and σw

2 is defined in the fol-
lowing manner

σ2
w ¼

∑n
j¼1 t1j−t2j

� �2

n
¼ ∑n

j¼1tdiff jð Þ
n

where n is the number of subjects, t1j and t2j are t values for subject j
for first and second sessions respectively, tdiff(j) is tdiff for subject j as
defined in the paper. Therefore:

ICC 1ð Þ∝ 1
σ2

w
Uσ2

w∝tdiff→ICC 1ð Þ∝ 1
tdiff

2. ICC(3,1) assumes session effects (learning) and is defined as

ICC 3;1ð Þ ¼ σ2
r

σ2
r þ σ2

e

where σe
2 is defined in the following manner

σ2
e ¼

∑n
j¼1 t1j−t1

� �
− t2j−t2
� �� �2

n−1

Where t1 and t2 are across subjects mean t values for first and sec-
ond sessions respectively. Since:

t1j−t1
� �

− t2j−t2
� �� �2 ¼ t1j−t2j

� �
− t1−t2
� �� �2

¼ t1j−t2j
� �2−2 t1j−t2j

� �
t1−t2
� �þ t1−t2

� �2
¼ t1j−t2j

� �2 þ t1−t2
� �

t1−t2−2 t1j−t2j
� �� �

Therefore:

σ2
e ¼

∑n
j¼1 t1j−t2j

� �2 þ t1−t2
� �

t1−t2−2 t1j−t2j
� �� �� �

n−1

¼
∑n

j¼1 tdiff jð Þ þ t1−t2
� �

t1−t2−2 t1j−t2j
� �� �h i

n−1
The relation between σe
2 and tdiff(j) depends on the contributions of

the sessions effects (mainly through the t1−t2
� �

part of the equa-
tion). However for small or no session effects the relation still holds:

ICC 3;1ð Þ∝ 1
σ2

w
Uσ2

w∝tdiff→ICC 1ð Þ∝ 1
tdiff

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.10.085.
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