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ABSTRACT

We present the results from the first public blind PSF reconstruction challenge,

the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Star Challenge. Re-

construction of a spatially varying PSF, sparsely sampled by stars, at non-star po-

sitions is a critical part in the image analysis for weak lensing where inaccuracies in

the modelled ellipticity e and size R2 can impact the ability to measure the shapes

of galaxies. This is of importance because weak lensing is a particularly sensitive

probe of dark energy, and can be used to map the mass distribution of large scale

structure. Participants in the challenge were presented with 27,500 stars over 1300

images subdivided into 26 sets, where in each set a category change was made in

the type or spatial variation of the PSF. Thirty submissions were made by 9 teams.

The best methods reconstructed the PSF with an accuracy of σ(e) ≈ 2.5x10−4 and

σ(R2)/R2 ≈ 7.4x10−4. For a fixed pixel scale narrower PSFs were found to be more

difficult to model than larger PSFs, and the PSF reconstruction was severely de-

graded with the inclusion of an atmospheric turbulence model (although this result

is likely to be a strong function of the amplitude of the turbulence power spectrum).

Subject headings: Cosmology: observations, Methods: data analysis, Atmospheric

effects, Techniques: image processing
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1. Introduction

In this paper we present the results from the GRavitational lEnsing Accuracy Testing 2010

(GREAT10) Star Challenge. GREAT10 was an image analysis challenge for cosmology that

focused on the task of measuring the shapes of distant galaxies. Light from distant galaxies

is deflected during its journey to us via gravitational lensing, and the images appear distorted

into characteristic patterns (Hu 1999; Bartelmann & Schneider 2001). The amount of distortion

depends on the intervening distribution of matter (including dark matter) and the geometry of

spacetime (which is currently governed by dark energy). Such measurements thus probe directly

the invisible dark sector and the fundamental nature of gravity — see reviews by Albrecht et al.

(2001); Réfrégier (2003); Hoekstra & Jain (2008); Massey, Kitching & Richard (2010); Weinberg

et al. (2012).

All real imaging data are necessarily seen after convolution with (i.e. blurring by) a tele-

scope’s Point Spread Function (PSF). The PSF arises from the finite aperture of the telescope,

charge diffusion within digital detectors, any imperfect elements along the optical path, and

turbulence in the Earth’s atmosphere (unless the telescope is in space). This increases the size

of faint galaxies, and can spuriously change their ellipticity by an order of magnitude more than

gravitational lensing (Bernstein & Jarvis 2002; Hoekstra 2004; Paulin-Henriksson et al. 2008,

2009; Massey et al. 2012). To recover the shape of the galaxy after only cosmological effects,

it is necessary to (1) model the PSF and (2) somehow correct for its effect on the images of

galaxies. The second half of this task has been widely addressed by teams analysing individ-

ual surveys and, as a vital community effort, through the public Shear TEsting Programme

(STEP) (Heymans et al. 2006; Massey et al. 2007), the GRavitational lEnsing Accuracy Testing

(GREAT) galaxy challenges (Bridle et al. 2010; Kitching et al. 2012b) and the Mapping Dark

Matter challenge (Kitching et al. 2012c). The first task (modelling the PSF) has so far only been

investigated internally within teams (e.g. Bacon et al. 2003; Hoekstra, Yee & Gladders 2004; van

Waerbeke et al. 2005; Rhodes et al. 2007; Schrabback et al. 2010; Hoekstra 2004; van Waerbeke

et al. 2005; Rowe 2010; Jarvis & Jain 2005). Here we present the results of the first blind, public

trial of methods to model and interpolate the PSF of a typical astronomical telescope.

The PSF in an astronomical image can be measured from stars that happen to fall inside

the field of view. Stars are so small that they are intrinsically point-like, and adopt the size and

shape of the telescope’s PSF. However, the PSF typically varies across the field of view, and

stars only sparsely cover the extragalactic sky (Jarvis & Jain 2005; Jain, Jarvis & Bernstein

2006; Heymans et al. 2012; Chang et al. 2012). It is therefore necessary to model the shapes of

stars, then interpolate their shapes to the locations of galaxies (where there is necessarily not

a bright star, because otherwise the galaxy could not be seen). In practice the PSF also varies

as a function of the wavelength of observed light, due to diffraction, reflection and transmission

effects in the telescope optics, filters and CCDs and so must also be interpolated from the

colours of the stars to the colours of the galaxy (Cypriano et al. 2010; Voigt et al. 2011; Plazas

& Bernstein 2012). Colour dependence is an important second order effect but in this paper we

do not address this, focussing only on the primary changes in PSFs.

We simulated the spatial variation in the PSF of generic but realistic ground-, balloon-, and

space-based telescopes (Kitching et al. 2012a, and see www.greatchallenges.info). We realised a

large suite of sparse stellar fields in these different observing regimes, and publicly released most

of the star images. Entrants were asked to then reconstruct the images of the missing stars on

a pixel grid, at pre-defined locations. The performance of each entry was measured in real time

using a single number, ‘quality factor’, which was designed to provide a crude ranking such that
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it could not be reverse-engineered to reveal the full solutions. In this paper, we analyse in detail

the quantitative performance of 12 distinct algorithms submitted to model and interpolate the

simulated PSFs. In particular we quantify how well the ellipticity and size of a spatially varying

PSF can be reconstructed in a blind challenge.

This paper is organised as follows. In Section 2, we describe the simulations and competition

in detail. In Section 3, we present results. We discuss and conclude in Section 4.

2. Method

In this Section we describe the simulations and the competition. For a full exposition of

the background of the Star Challenge see Kitching et al. (2012a).

2.1. Simulation Structure

In the simulations we aimed to generate simplified representations of possible observing

scenarios and telescopes, such that through analysis we could make general statements about

how methods perform in a coarse-grained sense in each of these categories.

The simulations contained two possible types of PSF function: a Moffat function (Moffat,

1969) and an Airy disk, parameterized by a FWHM size. To simulate diffraction spikes caused by

obscuration of the telescope pupil the intensity distributions of these functions were optionally

combined with single-slit diffraction intensity patterns, approximating the effects of rectangular

obscurations in the pupil plane as would be caused by struts supporting a secondary mirror. The

dimensions of these single slit obscurations were chosen to produce simulated PSFs of reasonable

realism on visual inspection; for the Airy disk this corresponded to a strut obscuration of width

4% the pupil diameter. The configurations chosen for these diffraction spike patterns were a

‘plus-sign’ four-fold symmetric mask +, or an ‘asterisk-sign’ six-fold symmetric pattern ∗1. The

combined pattern was then given a linear coordinate shear to create elliptical PSF patterns, and

the PSF spatial variation for any image then contained three components, similar to the PSF

described in Kitching et al. (2012b: Appendix C, where we refer the reader to Figures that

show the PSF variation):

• Static Component. These were spatially constant across the image and consisted of i) a

Gaussian smoothing kernel that added to the PSF size, this had a variance of 0.1 present

in all images, ii) a static additive ellipticity component of 0.05 in e1,PSF and e2,PSF, to

simulate tracking error (e1 and e2 are defined in Section 2.3). Details are explained in

Kitching et al. (2012b).

• Deterministic Component. This was to simulate the impact of the telescope on the

spatially varying PSF size and ellipticity. We used the Jarvis et al. (2008) model with

fiducial parameters given in Kitching et al. (2012b) (a0 = 0.014, a1 = 0.0005, d0 = −0.006,

d1 = 0.001, c0 = −0.010), which is dominated by primary astigmatism (a0), primary de-

focus (d0) and coma (c0).

1We use the term ‘mask’ to label such configurations, but we remind that reader that for the ∗ pattern a

telescope would only have 3 struts arranged in a trefoil shape - it is the slit diffraction that results in six spikes

in the images.
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• Random Component. To simulate the random turbulent effect of the atmosphere we

additionally included a random Gaussian field in some images in the ellipticity only, with

a Kolmogorov-like power spectrum of Cℓ = ℓ−11/6. In fact subsquent to the formulation

of this challenge, and launch in 2010, Heymans et al. (2012) found that Cℓ ∝ ℓ−11/3, the

exact power was not know accurately beforehand hence we refer to the Cℓ ∝ ℓ−11/6 as

Kolomogorov-like; this is approximately similar to short exposures from a ground-based

observatory for a Moffat PSF, or balloon-based if an Airy PSF is used. We note that the

amplitude of the power is also very high, corresponding to exposures of ≃ 1 second (see

Heymans et al., 2012): we leave an investigation into the impact of varying amplitudes of

Kolmogorov power to future work.

The integration of the PSF intensity distribution onto square pixels was achieved by multipli-

cation with a Sinc function in Fourier space (equivalent to convolution with a square boxcar

function in real space), followed by sampling at the locations of pixel centres.

2.2. Data Structure

The simulation was designed within the constraint that both the download size of the

simulation and the upload size of the submissions should be manageable (we limited the download

size to 50 Gb). Participants were provided with FITS (Wells et al. 1981) images containing

‘known-stars’ that were delta functions convolved with a spatially varying PSF. Each star within

each image was embedded in a postage stamp of 48x48 pixels, and to reduce the size of the

images there was no noise in between postage stamps. Participants were then asked to submit

a 2D image of the reconstructed PSF at positions in between the known-stars; these positions

were provided as a catalogue of ‘asked-star’ positions. Participants were asked to submit FITS

cubes of the reconstructed PSFs (the x and y dimensions representing the 2D image and the z

dimension varying the asked-star positions).

For each image 1000 asked-stars were required. The images were subdivided into 26 sets

of 50 images where in each set the the properties of the spatial variation, telescope and static

components of the PSF were kept statistically constant, but each had a different realisation of

any random component, and each also had the asked- and known-star positions varying. The

properties of each set are summarised in Table 1. One aspect to note is that when varying the

size of the PSF in the total flux was kept constant for each profile; with an integrated signal to

noise of 100.
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2.3. Competition Structure

The competition started in December 2010 and ran for 9 months until September 2011;

this was concurrent with the GREAT10 Galaxy challenge (Kitching et al. 2012a,b). As stated

previously the total simulation size was ∼ 50 Gb and the total size of the uploaded submissions

was ∼ 1 Gb (we allowed participants to tar, zip or FITS-compress2 submissions to reduce size).

Data and example code were provided online for participants3.

The two parameters of the PSF that most directly impact the ability to interpret obser-

vations of galaxies are the ellipticity and the size of the PSF; any residual difference between

the ellipticity or size of true PSF, and the respective quantities of the modelled PSF at any

particular position, will result in errors and biases in parameters assigned to any galaxy at that

position. Weak gravitational lensing is particularly sensitive to these types of error (Massey et

al. 2012; Paulin-Henriksson et al. 2008, 2009). The ellipticity and size are defined here using the

second order brightness moments of the image as

qij =

∑
p wpIp(θi − θ̄i)(θj − θ̄j)

∑
p wpIp

, i, j ∈ {1, 2}, (1)

where the sums are over pixels, Ip is the flux in the pth pixel and θ is a pixel position (θ1 = xp and

θ2 = yp). In order to regularise the results with regard to the impact of noise but not to constrain

the interpretation to compact objects in the postage stamp, we include a weight function wp

chosen to be a broad Gaussian with a width of 24 pixels (we leave an investigation of how results

vary as a function of weight for future work). These are almost unweighted quadrupole moments

in this respect, and as a result, smooth analytical functions may be favoured compared to models

that try to reproduce details in the wings of the PSF. The weighted ellipticity (or technically

the ‘polarisability’) for a PSF in complex notation is defined as

e =
q11 − q22 + 2iq12

q11 + q22 + 2(q11q22 − q212)
1/2

(2)

where we have used a definition of ellipticity |e| = (1− r)(1+ r)−1, where r is the ratio of minor

to major axes of the ellipse. For the weighted size we have a similar expression

R2 = q11 + q22. (3)

We can calculate the variance between the ellipticity of the model and true PSF σ2(e) ≡ 〈(e −

etPSF)
2〉 and similarly for the size σ2(R) ≡ 〈(R−Rt

PSF)
2〉. Submissions were scored in real-time

on a leaderboard that displayed the metric P ≡ 1
1

2
〈σ2(R)+σ2(e)〉

where the average was taken over

images in a set but not over objects asked-star positions, such that a mean variance of 10−3 in

both ellipticity and size would have P ∼ 1.0.

The P metric, whilst indicatively ranking the methods, does not offer any insight into the

performance of a method on ellipticity and size reconstruction. In this paper we will present

quantities that relate to the principal properties of the PSF more directly. These are the standard

deviation of mean of the residuals of the ellipticity σ(e) and size-squared σ(R2)/R2 over all asked-

stars i.e. we compute the error on the mean of the residuals (the sample variance computed

2http://heasarc.nasa.gov/fitsio/fpack/

3http://great.roe.ac.uk/data
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Table 1: The properties of each set of images. Details are described in Section 2.1. Each category

allows a different test: PSF Size allows us to test under-sampling; Atmosphere tests ground-

based exposure time dependence; NStars tests spatial sampling; Mask tests telescope structure

dependence; PSF-Type tests the impact of high spatial frequencies in the PSF profile vs smooth

profiles; Telescope variation allows us to test the impact of three typical distortions found in

data. The set order was semi-random so as to prevent participants exploiting any pattern in the

set numbering. We label the fiducial sets for the Moffat and Airy profiles.

Set Atmosphere PSF-Type Mask NStars PSF Size/pixels Telescope Variation

1 (fid. Airy) No Airy None 1000 3 None

2 No Airy + 1000 3 None

3 No Airy ∗ 1000 3 None

4 No Airy None 2000 3 None

5 No Airy None 500 3 None

6 No Airy None 1000 1.5 None

7 No Airy None 1000 6 None

8 (fid. Moffat) No Moffat None 1000 3 None

9 Yes Airy None 1000 3 None

10 Yes Moffat + 1000 3 None

11 Yes Moffat ∗ 1000 3 None

12 Yes Moffat None 2000 3 None

13 Yes Moffat None 500 3 None

14 Yes Moffat None 1000 1.5 None

15 Yes Moffat None 1000 6 None

16 No Airy None 1000 3 astigmatism a0
17 Yes Moffat None 1000 3 astigmatism a0
18 No Airy None 1000 3 de-focus d0
19 Yes Moffat None 1000 3 de-focus d0
20 No Airy None 1000 3 coma c0
21 Yes Moffat None 1000 3 coma c0
22 No Moffat + 1000 3 None

23 No Moffat ∗ 1000 3 None

24 No Moffat None 2000 3 None

25 No Moffat None 500 3 None

26 No Moffat None 1000 1.5 None
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using centred second order moments). We assume that any mean bias could be removed through

cross-validation, in this sense it is a generous analysis to those methods with a mean residual.

We average these quantities over the 50 images in each set, but in fact for all methods we find

that the fractional error between images in a set is <∼ 10%.

3. Results

In total 30 submissions were made from 9 teams. As a baseline benchmark, a method in

which all stars were simply stacked in an image was created, where no spatial variation in the

reconstructed stars was present. Several methods generated low scores due to misunderstanding

of simulation details, resulting in scores below the benchmark, and in this paper we summarise

only those not affected by these issues. In the following we choose the best performing sub-

mission, for size, for each of the 12 distinct method entries. All of the submitted methods are

described in Appendix A. We show the results on the fiducial Airy set (set 1 in Table 1) and the

fiducial Moffat set (set 8 in Table 1) in Tables 2 and 3 respectively. In Figures 1 and 2 we present

general behaviours of methods over the sets as categories were change, but for a quantitative

presentation of each method we refer the reader to Figures 3 to 7 where we show pictographic

tables of results.



– 8 –

Table 2: The results for ellipticity and size-squared on set 1 (the fiducial Airy set) for each

method tested in this paper.

Method Name 1/σ(e) σ(e)/10−4 1/[σ(R2)/R2] [σ(R2)/R2]/10−3

B-Splines 3953 2.53 1348 0.742

IDW 3448 2.90 1212 0.825

RBF 3155 3.17 1259 0.794

RBF-thin 2985 3.35 1258 0.795

Kriging 1049 9.53 490 2.042

Gaussianlets 1473 6.79 392 2.548

IDW Stk 1058 9.45 277 3.604

PSFEx 1279 7.82 378 2.647

Shapelets 1256 7.96 379 2.642

PCA+Kriging 1339 7.47 314 3.180

MoffatGP 2545 3.93 429 2.331

Stacking 1441 6.94 309 3.237

Table 3: The results for ellipticity and size-squared on set 8 (the fiducial Moffat set) for each

method tested in this paper.

Method Name 1/σ(e) σ(e)/10−4 1/[σ(R2)/R2] [σ(R2)/R2]/10−3

B-Splines 3690 2.71 1406 0.711

IDW 3215 3.11 1309 0.764

RBF 2967 3.37 1167 0.857

RBF-thin 2809 3.56 1163 0.860

Kriging 1477 6.77 645 1.551

Gaussianlets 2041 4.90 476 2.099

IDW Stk 1250 8 362 2.759

PSFEx 610 16.40 296 3.374

Shapelets 1931 5.18 696 1.436

PCA+Kriging 1161 8.61 351 2.853

MoffatGP 2857 3.50 139 7.209

Stacking 1259 7.94 309 3.236
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Overall we find that the B-Splines, IDW and RBF methods reconstruct the ellipticity and

size most accurately (see Gentile et al., 2012), with σ(e) ≈ 2.5x10−4 and σ(R2)/R2 ≈ 7.4x10−4

over all sets4. We note however that this is a snapshot of performance and that further investi-

gations into tunable aspects of code could result in improvements in all methods.

We summarise the behaviour of the submissions below. In each test all other parameters

are kept fixed except those discussed (with fiducial values of 1000 known star positions, no mask,

and telescope parameters given in Section 2). We refer to Figures 1 and 2 that show the change

in the inverse variance of the reconstructed PSFs over the fiducial sets (set 1 for Airy, and set 8

for Moffat profiles, see Table 2) when each of the categories is varied. In Figures 3 to 7 we show

pictographic tables of results.

• PSF Type. For the best performing methods we find a trend that both ellipticity and

size are estimated more accurately for the Airy PSF than for the the Moffat PSF.

• Addition of Kolmogorov Power. For each set combination where both Moffat and

Moffat-plus-Kolmogorov power are available (e.g. the 4-arm + masks) we find evidence

for methods performing less well with the addition of Kolmogorov power (see also Figures

3, 4, 5). In Figure 6 we also show the impact of adding a Kolmogorov power spectrum to

a set that uses an Airy PSF profile. We find that the addition of this random component

degrades the residual ellipticity reconstruction by a factor of >∼ 2− 5, but has less impact

on size reconstruction, as expected since the power is in ellipticity only. These results

will necessarily depend on the amplitude of the assumed power spectrum, this will vary

for each ground-based telescope, and knowledge/information about this is improving (e.g.

Heymans et al. 2012). In addition atmospheric turbulence also changes the PSF size, but

we do not simulate this here. It is possible that, depending on the site and weather, the

impact of turbulence may be weaker or stronger than that simulated for this study.

• Masks. We show results for the mask variation in Figure 3. We find that for all methods

the presence of diffraction spikes does not degrade the ability to measure the ellipticity of

the PSF. For the Airy function the diffraction spikes act to increase the effective size of

the PSF, this enables methods to measure the fractional error σ(R2)/R2 more accurately;

but note that for a fixed σ(R2) a large size will decrease the fractional error by definition.

For the Moffat PSF the diffraction spikes impact the size estimation significantly. We

note however this was a simple addition of a mask with no commensurate change in the

variation of ellipticity or size across a field of view, also the diffraction spikes contained

low flux (only observable with the eye if one stacked all stars) higher signal-to-noise stars

would change this, we leave an investigation of these effects for future work.

• Number of Stars. We find that all methods are only weakly dependent, or insensitive to

the number of stars used to reconstruct the PSF in these simulations, except for those sets

in which we include a Kolmogorov power spectrum where we find that a larger number

of stars results in a better reconstruction for the best methods (see Figure 4). This

indicates that PSFs with spatial power on smaller scales require more stars for a particular

reconstruction accuracy than PSFs without power on small spatial scales.

• Size of PSF For the Airy profile we find that the larger the PSF the more accurately

its size can be measured, for the Moffat we find a weak dependence with size. This

4B-Splines also achieved the highest leaderboard P value.



– 10 –

4−arm 6−arm 500 2000 1.5 6.0 +KM Airy/Moffat
−4

−3

−2

−1

1

2

3

4

∆ 
S

et
s=

S
et

i−
S

et
j

2−1 3−1 5−1 4−1 6−1 7−1 9−1
22−8 23−8 25−8 24−8 26−8 10−22

11−23
12−24
13−25
14−26

8−1
22−2
23−3

S
gn

(∆
[1

/σ
(e

)]
) 

lo
g 10

(|
∆[

1/
σ(

e)
]|)

B−Splines

Moffat
Airy

Increased
Accuracy

Decreased
Accuracy

Fig. 1.— The change in the inverse variance in the residual ellipticity for each method for each

category varied. The sets used in differencing the categories are shown in the upper panels (Seti-

Setj), and we refer the reader to Table 1. Each point represents a method, the stars represent

method B-Spline, points within a bin are randomised within an x-bin for clarity. The log of

the change is shown, with the sign preserved (i.e. sgn[x] log10[|x|] where x = (1/σ(e)fiducial) −

(1/σ(e))) so that negative values represent a decrease in accuracy and positive values an increase

in accuracy. The first seven vertical panels show changes for the Moffat (red) and Airy profile

(blue), the rightmost panel shows the change in accuracy when the profile is changed from Airy

to Moffat but all other aspects of the PSF at kept the same. The parameters varied are the mask

(4-arm or 6-arm; changed from no mask), number of stars (500 or 2000; changed from 1000),

PSF size (1.5 or 6.0 pixels; changed from 3.0 pixels) and the addition of Kolmogorov power in

ellipticity.
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Fig. 2.— The change in the inverse variance in the residual size-squared for each method

for each category varied. The sets used in differencing the categories are shown in the upper

panels (Seti-Setj), and we refer the reader to Table 1. Each point represents a method, the

stars represent method B-Spline, points within a bin are randomised in within an x-bin for

clarity. The log of the change is shown, with the sign preserved (i.e. sgn[x] log10[|x|] where

x = (1/[σ(R2)/R2]fiducial) − (1/[σ(R2)/R2])) so that negative values represent a decrease in

accuracy and positive values an increase in accuracy. The first seven vertical panels show

changes for the Moffat (red) and Airy profile (blue), the rightmost panel shows the change in

accuracy when the profile is changed from Airy to Moffat but all other aspects of the PSF at

kept the same. The parameters varied are the mask (4-arm or 6-arm; changed from no mask),

number of stars (500 or 2000; changed from 1000), PSF size (1.5 or 6.0 pixels; changed from 3.0

pixels) and the addition of Kolmogorov power in ellipticity.
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is understandable because a larger PSF is better sampled and hence the size is easier

to measure. However we stress that an increase of the size of the PSF relative to the

apparent size of galaxies will cause the galaxies to be less well-resolved, losing information

and placing greater demands on shape measurement (Paulin-Henriksson et al. 2008). Also

with the simulations presented the impact of sampling on weak lensing shape measurement

was not tested, only the performances of the PSF interpolation methods. We show results

for the PSF size variation in Figure 5. When trading requirements of PSF model residuals

against requirements for resolution (i.e. the absolute size of the ellipticity and PSF) such

behaviour should be noted.

• Telescope Parameters. We show results for the PSF size variation in Figure 7. In

varying the telescope parameters in the Jarvis et al. (2008) model we change the fiducial

parameters respectively (a0 = 0.014, d0 = −0.006, c0 = −0.010), to a0 = −0.011, d0 =

0.009 and c0 = −0.011 i.e. an opposite astigmatism, a positive de-focus and a 10%

increased coma. We find that methods in this experiment were not affected by the change in

defocus, but performed better with the change in these astigmatism and coma parameters.

We discuss each method individually in Appendix A.
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Fig. 3.— The inverse variance in the residual ellipticity and size-squared for each method

(horizontal panels) for the three mask cases (no mask, 4-arm + and 6-arm ∗) for the Moffat-

plus-Kolmogorov case (green), Moffat with no Kolmogorov (red), and the Airy (blue) profile.

The circles represent the inverse variance of the residual ellipticity and size-squared where the

area scales in proportion to these parameters and the numbers are given next to each circle;

a key is given in the top panel. Where no number/circle is provided there was no set for this

combination of PSF type and mask type. Fractional errors on the inverse variances are ≈ 10%

for all methods.
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Fig. 4.— The inverse variance in the residual ellipticity and size-squared for each method

(horizontal panels) for the three known-star number cases (500, 1000, 2000 stars) for the Moffat-

plus-Kolmogorov case (green), Moffat with no Kolmogorov (red), and the Airy (blue) profile.

The circles represent the inverse variance of the residual ellipticity and size-squared where the

area scales in proportion to these parameters and the numbers are given next to each circle;

a key is given in the top panel. Where no number/circle is provided there was no set for this

combination of PSF type and number of stars. Fractional errors on the inverse variances are

≈ 10% for all methods.
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Fig. 5.— The inverse variance in the residual ellipticity and size-squared for each method

(horizontal panels) for the three PSF size cases (1.5, 3.0 and 6.0 pixels) for the Moffat-plus-

Kolmogorov case (green), Moffat with no Kolmogorov (red), and the Airy (blue) profile. The

circles represent the inverse variance of the residual ellipticity and size-squared where the area

scales in proportion to these parameters and the numbers are given next to each circle; a key is

given in the top panel. Where no number/circle is provided there was no set for this combination

of PSF type and PSF size. Fractional errors on the inverse variances are ≈ 10% for all methods.
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Fig. 6.— The inverse variance in the residual ellipticity and size-squared for each method
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Fig. 7.— The inverse variance in the residual ellipticity and size-squared for each method

(horizontal panels) for the cases where the telescope parameters are varied for the Airy (blue)

profile and the Moffat-plus-Kolmogorov profile (green). The circles represent the inverse variance

of the residual ellipticity and size-squared where the area scales in proportion to these parameters

and the numbers are given next to each circle; a key is given in the top panel. Where no

number/circle is provided there was no set for this combination of PSF type and telescope

parameter. Fractional errors on the inverse variances are ≈ 10% for all methods.
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4. Conclusions

This paper presents the first blind simulation challenge aimed to test optical PSF recon-

struction methods. Simulations were generated in which participants were presented with a

spatially varying PSF, sparsely sampled by stars, and asked to reconstruct the PSF at non-star

positions. The competition, the GREAT10 Star Challenge, attracted 30 submissions from 9

teams; several of these teams were from non-astronomy backgrounds. The simulation presented

participants with 27,500 stars over 1300 images subdivided into 26 sets, where in each set a

category change was made in the type or spatial variation of the PSF. The simulations were

intentionally simplistic, so as to present the problem in an approachable way; in particular the

spatial variation of the PSF and the form of the PSF use simple analytic functions. In addition

only spatial variation, not temporal variation, was tested; hence these results should not be used

to make specific statements about any particular experiment but should provide a benchmark

with which methods can be tested and improved5

In this paper we analyse the submissions by testing how well each one can measure the

ellipticity and size of the PSF. We quantify this as the inverse variance in the modelled PSF

in each image for ellipticity and sized-squared – defined using weighted quadrupole moments.

This study was motivated by a desire to find methods that will be of use for weak gravitational

lensing, where the PSF must be reconstructed to high accuracy (Paulin-Henriksson et al. 2008,

2009) at galaxy positions, but these results should also be of more general interest for any science

case that analyses galaxy images with optical data.

The submissions, and this paper, present a snapshot of any methods’ ability to model the

PSF. Due to the nature of the competitive blind submissions post-challenge tuning of methods,

that may yield significant improvements for any given method over the results presented here (see

Gentile et al., 2012 for example), were not investigated. Each method submitted is summarised

in Appendix A. We can however make some general statements about regimes in which methods

tend to perform well or poorly when run in a blind way.

The functional form of the PSF was either a Moffat function or a Airy function, the spatial

variation of the PSF was modelled using the analytic function given in Jarvis et al. (2008), in

addition we optionally included diffraction spikes (+ or ∗ forms), changed the PSF size (from

3.0 pixels to 1.5 or 6.0 pixels), changed the number of stars (from 1000 to 500 or 2000), and

added an atmospheric turbulence pattern in ellipticity (with a Kolmogorov power spectrum).

To summarise the conclusions we find that

• The best methods can reconstruct the PSF with an accuracy of σ(e) ≈ 2.5x10−4 and

σ(R2)/R2 ≈ 7.4x10−4 over all sets.

• Methods that performed poorly did so in part because the functional form of the PSF was

not modelled correctly (in particular the Airy function).

• Smaller PSFs were more difficult to model than larger PSFs for the Airy function. But we

add a caution that this does not mean larger PSFs are better for weak lensing, because

information on a target object is lost; instead this means that well sampled PSFs are better

for weak lensing.

5Data is available for download here http://great.roe.ac.uk/data/solutions/.
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• Diffraction spikes caused the size of Moffat PSFs to be modelled less accurately, but Airy

PSFs more accurately, due to the increase in the effective size.

• The addition of atmospheric Kolmogorov power (equivalent to short exposure PSFs, see

Heymans et al., 2012) made ellipticity and size reconstruction less accurate by a factor of

>
∼ 2− 5 for all methods. We add the caveat that the temporal nature of varying PSFs was

not investigated, therefore methods such as cross-correlation between sequential images,

that could potentially improve modelling, were not investigated.

For subsequent blind PSF modelling challenges the realism of the temporal and wavelength

dependent nature of PSF variation could be included, and the simulations could be tailored to

specific experiments.

Modelling the PSF is of critical importance in efforts to understand the nature of dark

energy and dark matter using weak gravitational lensing; where any inaccuracy in the modelled

PSF can cause biases, and increased errors of cosmological parameters of interest. To address

this crucial open problem this initial presentation of a blind PSF reconstruction challenge will

hopefully provide a benchmark upon which methods can continue to be refined and tested.



– 18 –

Acknowledgements: TDK is supported by a Royal Society University Research Fellowship, and was

supported by an Royal Astronomical Society 2010 Fellowship for some of this work. BR and CH acknowl-

edge support from the the European Research Council in the form of a Starting Grant with numbers

24067 (BR) and 240185 (CH). RM is supported by a Royal Society University Research Fellowship. DG

was supported by SFB-Transregio 33 The Dark Universe by the Deutsche Forschungsgemeinschaft (DFG)

and the DFG cluster of excellence ‘Origin and Structure of the Universe’ and thanks Gary Bernstein and

Stella Seitz for helpful discussions. MGe, GC, GM are supported by the Swiss National Science Founda-

tion (SNSF). GL thanks Wei Cui for useful discussions. GL and BX were supported in part by the U.S.

Department of Energy through Grant DE-FG02-91ER4068 and GL is also supported by the one-hundred

talents program of the Chinese Academy of Sciences (CAS). MK thanks Liping Fu. This work was funded

by a EU FP7 PASCAL 2 Challenge Grant. Workshops for the GREAT10 challenge were funded by the

eScience STFC Theme and the by NASA JPL, and hosted at the eScience Institute Edinburgh and by

IPAC Caltech Pasadena. We thank Francesca Ziolkowska, Harry Teplitz and Helene Seibly for local orga-

nization of the workshops. We thank the GREAT10 Advisory team, co-authors of GREAT10 handbook

(Kitching et al. 2012a), for discussions before and after the challenge.

Contributions: All authors contributed to the writing and analysis presented. TDK was PI of

GREAT10, defined and created the simulations, and lead the analysis. TDK, BR, MG, CH, RM were

active members of the GREAT10 team during (12/2010 to 09/2011) and after the challenge. BR created

the FITS image simulation code. MGe, FC, GM, DG, MK, KG, AS, AM, GL, BX submitted entries

to the GREAT10 star challenge. DW maintained the GREAT10 leaderboard and processed submissions

with TDK during the challenge.

REFERENCES

Albrecht A. et al., 2001

Bacon D. et al., 2003, MNRAS 344, 673

Bartelmann M. & Schneider P., 2001, Phys. Rep. 340, 291

Bernstein G.& Jarvis M., 2002, AJ, 123, 583

Bertin, E. 2011, Astronomical Data Analysis Software and Systems XX, 442, 435

Bridle S. et al., 2010, MNRAS 405, 2044

Buhmann, M. D. 2003, Radial basis functions: theory and implementations, Vol. 12 (Cambridge

University Press), 274

Chang C. et al., 2012, MNRAS submitted (arXiv:1206.1378)

Cropper M., Hoekstra H., Kitching T. et al., 2012, MNRAS submitted

Cypriano E., Amara A., Voigt L., Bridle S., Abdalla F., Réfrégier A., Seiffert M. & Rhodes J.,
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Appendix A: Description of Methods

Here we include a brief description and references for each of the methods submitted to the

challenge.

Several methods use the name “Kriging”, which is in fact the same method as Gaussian

process regression, the method submitted for the methods MoffatGP; Kriging is a different term

which has been in use in the geostatistics field but all are types of Gaussian processes.

PSFEx (Gruen)

PSFEx uses version 3.9.1 of the PSFEx software (Bertin 2011). The method models the

PSF using a functional basis, the coefficients of which are allowed to vary with a polynomial

dependence on the position in the field. Details of the configuration can be found in the PSFEx

manual6. For the GREAT10 submission, the functional basis is chosen to be a sub-pixel grid,

from which PSF images on the input pixel scale are produced using Lanczos interpolation of

order 4. In order to improve configuration parameters, the P metric is calculated on stars

reserved from the fit. For this a Gaussian weight function with much smaller scale than in the

final analysis (3pix FWHM) is used in order to suppress the noise in the images. The spatial

variation was chosen to be of order 8 (4) on the sets with (without) atmospheric Kolmogorov

power and the size of the sub-pixel grid to be 1/4.7 of the PSF FWHM on all sets except the

very undersampled sets 6, 14 and 26, where a scale of 0.25pix is used instead. Note that these

choices were made without knowledge of the true properties of the sets.

PCA+Kriging (Li, Xin)

The basic idea is to find the principal components of ensemble of stars in an image. To find

the right principal components (PCs), were needed to align all of the stars at a same center. Here

a fast algorithm (Li et al. 2012) was used to locate the centroid for each star and then ordinary

Kriging fitting algorithm was used to reproduce the star, whose center was exactly located at the

center of stamp grid. Each star was represented by 5 PCs, with five corresponding coefficients.

According to the noise in the star stamp, an additional Gaussian noise component was included

in each pixel and re-evaluated the corresponding coefficients in ten realisations; this helped us

to estimate the uncertainties for each coefficient of PCs and each star. Ordinary Kriging fitting

process was the used to predict the value of each coefficient at the asked positions and the new

stars were composed of these fives PCs with the predicted coefficients.

Gaussianlets (Li, Xin)

Gaussianlets is a simplified version of shapelets without any angular components, i.e., there

are no shapelets with m 6= 0. The ellipticity of each star was calculated at the first step,

then the size of each star Ri was estimated quickly using the algorithm described in Li et al.

(2012). One set of unique gaussianlets with a maximum order nmax = 4 were created with

R = 〈Ri〉. These gaussianlets are circularly symmetric and were then reshaped into elliptical

6http://www.astromatic.net/software/psfex
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profiles according to the ellipticities that were measured in the first step to fit an individual star.

The coefficients of gaussianlets were calculated by minimizing a chi-square function. Finally each

star was described by 7 parameters, e1, e2 and the five coefficients of gaussianlets. Ordinary

Kriging interpolation was then used to predict these seven parameters at the asked positions.

To reproduce the expected virtual star, the gaussianlets were reshaped according to e1 and e2
and were added up together according to their coefficients.

B-Splines (Gentile, Courbin, Meylan)

The B-Splines method, like the IDW, RBF and Kriging schemes also described in this article,

uses the same underlying PSF estimation scheme that consists of the following stages. First,

an elliptical Moffat profile is fitted to each star at known position. Fitting is performed using a

custom-developed minimizer based on an “adaptive cyclic coordinate descent algorithm”. This

minimizer is also used in the gfit galaxy shape measurement method described in Kitching et al.

(2012a). Second, an analysis is performed of the spatial distribution of each Moffat parameter

across the image. Third, a spatial interpolation scheme is adopted (here B-Splines) to predict

the values of each Moffat parameter p at asked positions. Finally, pixelized star images are

reconstructed at asked positions, based on the interpolated Moffat profile.

B-Splines perform a spatial interpolation of individual Moffat PSF parameters using the bi-

variate basis-spline algorithm described in Dierckx (1980, 1995) and implemented in the Python

SciPy interpolate module. The main parameters affecting the interpolation are the degree of

the spline, the number of knots, and a smoothing factor. A 3rd order spline was used but the

algorithm was allowed to automatically optimize the number of knots and the smoothing factor.

A more thorough description of B-Splines, as well as the IDW, RBF and Kriging interpolation

methods can be found in Gentile et al. (2012).

Inverse Distance Weighting (IDW) (Gentile, Courbin, Meylan)

The IDW interpolation algorithm (Shepard 2007) is used to interpolate the Moffat param-

eters of the fitted PSF (see B-splines). Weights are allocated to the stars or parameters to

interpolate. The closer the observations from a target location, the greater the weight ascribed

to them. The estimated value of the parameter at the target point is a weighted sum of the

values of all neighboring observations considered. The weighting power γ determines how fast

the weights tend to zero as distances increase. The Star Challenge results were obtained with

γ = 2 with a neighborhood size between 5 and 15 pixels depending on the density of stars.

Radial Basis Function (RBF and RBF-thin) (Gentile, Courbin, Meylan)

The RBF and RBF-thin methods make use of Radial Basis Functions to predict the values of

the PSF parameters at non-star positions. As in B-splines the PSF is approximated by a Moffat

profile. A Radial Basis Function (Buhmann 2003; Press et al. 2007), is a radially-symmetric,

real-valued function, whose value at a target location only depends on the distance to some other

point. The prediction at a target location is based on the weighted sum of the RBFs evaluated

in a neighborhood centered at that location.
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The RBF and RBF-thin methods respectively use the linear and thin-plate functions. Their

implementation is based on the interpolation function available in the Python SciPy interpolate

module with a neighborhood size between 25 and 30 pixels. For the submission to the challenge

smoothing was disabled, i.e., exact interpolation was used where the PSF reconstructed at known

positions should be exactly the input data.

Kriging (Gentile, Courbin, Meylan)

Ordinary Kriging (e.g. Waller 2004; Webster & Oliver 2007) is used to interpolate PSF

parameters (Moffat profiles as in B-splines) across the PSF field. For the Star Challenge, a unique

implementation was created in Python for greater flexibility and control of the algorithm. In

this version, no attempt was made to correct for any spatial anisotropy or drift found in the

data. The experimental variograms were fitted using the Levenberg-Marquardt (Levenberg 1980;

Marquardt 1963) fitting function from the SciPy optimize module. The program dynamically

selects the theoretical variogram models and parameters that produce the best fit. The area used

for interpolation is a circular area with a radius between 700 and 1000 pixels from the center

of the 4800 × 4800 PSF field. Lag distances were selected in the range 100 ≤ h ≤ 300 pixels

depending on the image and the PSF model parameter to estimate. The number of observations

N to include in the interpolation neighborhood was typically 5 ≤ N ≤ 20 depending on the

image star density. As a rule of thumb, a tolerance was adopted for the distances ∆h ≈ h/2

and angles ∆θ = 22.5◦.

IDWStk (Gentile, Courbin, Meylan)

The IDWStk method experimented with an algorithm whereby the star postage stamp to

reconstruct at asked position is estimated by stacking the pixels of nearby, surrounding stamps

located at known positions. Each pixel carries a weight that depends on its distance to the

location where reconstruction has to take place. These weighting factors are calculated using

Inverse Distance Weighting (IDW). For the Star challenge, the number of surrounding nearby

stars in the stacking was typically 10.

MoffatGP (Georgatzis, Mariglis, Storkey)

First, each 48x48 star image was reduced to a 30x30 image. Predictions for the coefficients

were made at the asked positions (with their corresponding offsets) and then the star images at

test positions were reconstructed using the Moffat function (generating a 48x48 image for each

star patch). Five coefficients per star patch were produced and then used as training outputs for

the regression method. Regression was performed using the Gaussian Process (GP) framework

on an augmented input space. Along with the stars’ centre locations, for each star patch a

distinct variable the offset of the star centre from the bottom left corner of the centre pixel was

isolated, and provided as an additional input to the GP. The neural network covariance function

Rasmussen et al. (2006) was chosen to encode correlations between data points. Predictions for

the coefficients were made at the asked positions (with their corresponding offsets) and then

the star images at test positions were reconstructed using the Moffat model (generating a 48x48

image for each star patch). The method is described in more detail in Georgatzis (2011).


