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Abstract

Stochastic differential equations (SDE) are a natural tool for modelling systems
that are inherently noisy or contain uncertainties that can be modelled as stochastic
processes. Crucial to the process of using SDE to build mathematical models
is the ability to estimate parameters of those models from observed data. Over
the past few decades, significant progress has been made on this problem, but
we are still far from having a definitive solution. We describe a novel method
of approximating a diffusion process that we show to be useful in Markov chain
Monte-Carlo (MCMC) inference algorithms. We take the ‘white’ noise that drives
a diffusion process and decompose it into two terms. The first is a ‘coloured
noise’ term that can be deterministically controlled by a set of auxilliary variables.
The second term is small and enables us to form a linear Gaussian ‘small noise’
approximation. The decomposition allows us to take a diffusion process of interest
and cast it in a form that is amenable to sampling by MCMC methods. We explain
why many state-of-the-art inference methods fail on highly nonlinear inference
problems, and we demonstrate experimentally that our method performs well in
such situations. Our results show that this method is a promising new tool for use
in inference and parameter estimation problems.

1 Introduction

Diffusion processes are a flexible and useful tool in stochastic modelling. Many important real world
systems are currently modelled and best understood in terms of stochastic differential equations in
general and diffusions in particular. Diffusions have been used to model prices of financial instru-
ments [1], chemical reactions [2], firing patterns of individual neurons [3], weather patterns [4] and
fMRI data [5, 6, 7] among many other phenomena.

The analysis of diffusions dates back to Feller and Kolmogorov, who studied them as the scaling
limits of certain Markov processes (see [8]). The theory of diffusion processes was revolutionised
by Itô, who interpreted a diffusion process as the solution to a stochastic differential equation [9,
10]. This viewpoint allows one to see a diffusion process as the randomised counterpart of an
ordinary differential equation. One can argue that stochastic differential equations are the natural

1



tool for modelling continuously evolving systems of real valued quantities that are subject to noise
or stochastic influences.

The classical approach to mathematical modelling starts with a set of equations that describe the
evolution of a system of interest. These equations are goverened by a set of input parameters (for
example particle masses, reaction rates, or more general constants of proportionality) that determine
the behaviour of the system. For practical purposes, it is of considerable interest to solve the inverse
problem. Given the output of some system, what can be said about the parameters that govern it?

In the present setting, we observe data which we hypothesize are generated by a diffusion. We would
like to know what the nature of this diffusion is. For example, we may begin with a parametric model
of a physical system, with a prior distribution over the parameters. In principle, one can apply Bayes’
theorem to deduce the posterior distribution. In practice, this is computationally prohibitive: it is
necessary to solve a partial differential equation known as the Fokker-Planck equation (see [11]) in
order to find the transition density of the diffusion of interest. This solution is rarely available in
closed form, and must be computed numerically.

In this paper, we propose a novel approximation for a nonlinear diffusion process X. One heuristic
way of thinking about a diffusion is as an ordinary differential equation that is perturbed by white
noise. We demonstrate that one can replace the white noise by a ‘coloured’ approximation without
inducing much error. The nature of the coloured noise expansion method enables us to control the
behaviour of the diffusion over various length-scales. This allows us to produce samples from the
diffusion process that are consistent with observed data. We use these samples in a Markov chain
Monte-Carlo (MCMC) inference algorithm.

The main contributions of this paper are:

• Novel development of a method for sampling from the time-t marginal distribution of a
diffusion process based on a ‘coloured’ approximation of white noise.

• Demonstration that this approximation is a powerful and scalable tool for making parameter
estimation feasible for general diffusions at minimal cost.

The paper is structured as follows: in Section 2, we describe the structure of our problem. In
Section 3 we conduct a brief survey of existing approaches to the problem. In Section 4, we discuss
the coloured noise expansion and its use in controlling the behaviour of a diffusion process. Our
inference algorithm is described in Section 5. We describe some numerical experiments in Section 6,
and future work is discussed in Section 7.

2 Parametric Diffusion Processes

In this section we develop the basic notation and formalism for the diffusion processes used in this
work. First, we assume our data are generated by observing a k-dimensional diffusion processes
with dynamics

dXt = aθ(Xt)dt+ BθdWt, X0 ∼ p(x0), (1)
where the initial condition is drawn from some known distribution. Observations are assumed to
occur at times t1, . . . , tn, with ti−ti−1 := Ti. We require that aθ : IRk → IRk is sufficiently regular
to guarantee the existence of a unique strong solution to (1), and we assume Bθ ∈ IRk×d. Both terms
depend on a set of potentially unknown parameters θ ∈ IRdθ . We impose a prior distribution p(θ)
on the parameters. The driving noise W is a d-dimensional Brownian motion, and the equation is
interpreted in the Itô sense. Observations are subject to independent Gaussian perturbations centered
at the true value of X. That is,

Yti = Xti + εti , εti ∼ N (0,Σi) (2)

We use the notation X to refer to the entire sample path of the diffusion, and Xt to denote the value
of the process at time t. We will also employ the shorthand Y1:n = {Yt1 , . . . ,Ytn}.
Many systems can be modelled using the form (1). Such systems are particularly relevant in physics
and natural sciences. In situations where this is not explicitly the case, one can often hope to reduce a
diffusion to this form via the Lamperti transform. One can almost always accomplish this in the uni-
variate case, but the multivariate setting is somewhat more involved. Aı̈t-Sahalia [12] characterises
the set of multivariate diffusions to which this transform can be applied.
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3 Background Work

Most approaches to parameter estimation of diffusion processes rely on the Monte-Carlo approxi-
mation. Beskos et al. [13] [14] employ a method based on rejection sampling to estimate parameters
without introducing any discretisation error. Golightly and Wilkinson [15] extend the work of Chib
et al. [16] and Durham and Gallant [17] to construct a Gibbs sampler that can be applied to the
parameter estimation problem.

Roughly speaking, Gibbs samplers that exist in the literature alternate between drawing samples
from some representation of the diffusion process X conditional on parameters θ, and samples from
θ conditional on the current sample path of X. Note that draws from X must be consistent with the
observations Y1:n.

The usual approach to the consistency issue is to make a proposal by conditioning a linear diffusion
to hit some neighbourhood of the observation Yk, then to make a correction via a rejection sam-
pling [18] or a Metropolis-Hastings [16] step. However, as the inter-observation time grows, the
qualitative difference between linear and nonlinear diffusions gets progressively more pronounced,
and the rate of rejection grows accordingly. Figure 1 shows the disparity between a sample from a
nonlinear process and a sample from the linear proposal. One can see that the target sample path is
constrained to stay near the mode γ = 2.5, whereas the proposal can move more freely. One should
expect to make many proposals before finding one that ‘behaves’ like a typical draw from the true
process.
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Figure 1: (a) Sample path of a double well process (see equation (18)) with α = 2, γ = 2.5, B = 2
(blue line). Current Gibbs samplers use linear proposals (dashed red line) with a rejection step to
draw conditioned nonlinear paths. In this case, the behaviour of the proposal is very different to that
of the target, and the rate of rejection is high.
(b) Sample path of a double well process (solid blue line) with noisy observations (red dots). We
use this as an initial dataset on which to test our algorithm. Parameters are α = 2, γ = 1, B = 1.
Observation errors have variance Σ = .25.

For low-dimensional inference problems, algorithms that employ sequential Monte-Carlo (SMC)
methods [19] [20] typically yield good results. However, unlike the Gibbs samplers mentioned
above, SMC-based methods often do not scale well with dimension. The number of particles that
one needs to maintain a given accuracy is known to scale exponentially with the dimension of the
problem [21].

Aı̈t-Sahalia [12, 22] uses a deterministic technique based on Edgeworth expansions to approximate
the transition density. Other approaches include variational methods [23, 24] that can compute
continuous time Gaussian process approximations to more general stochastic differential systems,
as well as various non-linear Kalman filtering and smoothing based approximations [25, 26, 27] .

4 Coloured Noise Expansions and Brownian Motion

We now introduce a method of approximating a nonlinear diffusion that allows us to gain a con-
siderable amount of control over the behaviour of the process. Similar methods have been used
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for stratified sampling of diffusion processes [28] and the solution of stochastic partial differential
equations [29] . One of the major challenges of using MCMC methods for parameter estimation
in the present context is that it is typically very difficult to draw samples from a diffusion process
conditional on observed data. If one only knows the initial condition of a diffusion, then it is straight-
forward to simulate a sample path of the process. However, simulating a sample path conditional on
both initial and final conditions is a challenging problem.

Our approximation separates the diffusion process X into the sum of a linear and nonlinear compo-
nent. The linear component of the sum allows us to condition the approximation to fit observed data
more easily than in conventional methods. On the other hand, the nonlinear component captures
the ‘gross’ variation of a typical sample path. In this section, we fix a generic time interval [0, T ],
though one can apply the same derivation for any given interval Ti = ti − ti−1.

Heuristically, one can think of the random process that drives the process defined in equation (1) as
white noise. In our approximation, we project this white noise into an N -dimensional subspace of
L2[0, T ], the Hilbert space of square-integrable functions defined on the interval [0, T ]. This gives
a ‘coloured noise’ process that approaches white noise asymptotically as N → ∞. The coloured
noise process is then used to drive an approximation of (1). We can choose the space into which
to project the white noise in such a way that we will gain some control over its behaviour. This is
analagous to the way that Fourier analysis allows us to manipulate properties of signals

Recall that a standard Brownian motion on the interval [0, T ] is a one-dimentional Gaussian process
with zero mean and covariance function k(s, t) = min{s, t}. By definition of the Itô integral, we
can write

Wt =

∫ t

0

dWs =

∫ T

0

I[0,t](s)dWs. (3)

Suppose {φi}i≥1 is an orthonormal basis of L2[0, T ]. We can interpret the indicator function in (3)
as an element of L2[0, T ] and expand it in terms of the basis functions as follows:

I[0,t](s) =

∞∑
i=1

〈I[0,t](·), φi(·)〉φi(s) =

∞∑
i=1

(∫ t

0

φi(u)du

)
φi(s). (4)

Substituting (4) into (3), we see that

Wt =

∞∑
i=1

(∫ T

0

φi(s)dWs

)∫ t

0

φi(u)du. (5)

We will employ the shorthand Zi =
∫ T
0
φi(s)dWs. Since the functions {φi} are deterministic and

orthonormal, we know from standard results of Itô calculus that the random variables {Zi} are i.i.d
standard normal.

The infinite series in equation (5) can be truncated after N terms to derive an approximation, Ŵt of
Brownian motion. Taking the derivative with respect to time, the result is a ‘coloured’ approximation
of white noise, taking the form

dŴt

dt
=

N∑
i=1

Ziφi(t). (6)

The multivariate approximation is similar. We seperate a d-dimensional Brownian motion into one-
dimensional components and decompose the individual components as in (6). In principle, one can
choose a different value ofN for each component of the Brownian motion, but for ease of exposition
we do not do so here. We can substitute this approximation into equation (1), which gives

dXNL
t

dt
= aθ(X

NL
t ) + Bθ

N∑
i=1

ΦiZi, XNL
0 ∼ p(x0), (7)

where Φi is the diagonal d× d matrix with entries (φi1, . . . , φid), and Zi = (Zi1, . . . , Zid)
ᵀ.

This derivation is useful because equation (7) gives us an alternative to the Euler-Maruyama discreti-
sation for sampling approximately from the time-t marginal distribution of a diffusion process. We
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draw coefficients Zij from a standard normal distribution, and solve the appropriate vector-valued
ordinary differential equation. While the Euler discretisation is the de facto standard method for
numerical approximation of SDE, other methods do exist. Kloeden and Platen [30] discuss higher
order methods such as the stochastic Runge-Kutta scheme [31].

In the Euler-Maruyama approximation, one discretises the driving Brownian motion into increments
Wti−Wti−1

=
√
TiZi. One must typically employ a fine discretisation to get a good approximation

to the true diffusion process. Empirically, we find that one needs far fewer Gaussian inputs Zi for
an accurate representation of XT using the coloured noise approximation. This more parsimonious
representation has advantages. For example, Corlay and Pages [28] employ related ideas to conduct
stratified sampling of a diffusion process.

The coefficients Zi are also more amenable to interpretation than the Gaussian increments in the
Euler-Maruyama expansion. Suppose we have a one-dimensional process in which we use the
Fourier cosine basis

φk(t) =
√

2/T cos((2k − 1)πt/2T ). (8)

If we change Z1 while holding the other coefficients fixed, we will typically see a change in the
large-scale behaviour of the path. On the other hand, a change in ZN will typically result in a
change to the small-scale oscillations in the path. The seperation of behaviours across coefficients
gives us a means to obtain fine-grained control over the behaviour of a diffusion process within a
Metropolis-Hastings algorithm.

We can improve our approximation by attempting to correct for the fact that we truncated the sum
in equation (6). Instead of simply discarding the terms ZiΦi for i > N , we attempt to account
for their effect as follows. We assume the existence of some ‘correction’ process XC such that
X = XNL + XC. We know that the dynamics of X satisfy

dXt = aθ
(
XNL
t + XC

t

)
dt+ BθdWt. (9)

Taylor expanding the drift term around XNL, we see that to first order,

dXt ≈
(

aθ
(
XNL
t

)
+ Ja(XNL

t )XC
t

)
dt+ BθdWt

=

(
aθ
(
XNL
t

)
+ BθdŴt

)
dt+ Ja(XNL

t )XC
t dt+ Bθ

(
dWt − dŴt

)
. (10)

Here, Ja(x) is the Jacobian matrix of the function a evaluated at x. This motivates the use of a linear
time-dependent approximation to the correction process. We will refer to this linear approximation
as XL. The dynamics of XL satisfy

dXL
t = Ja(XNL

t )XL
t dt+ BθdRt, XL

0 = 0, (11)

where the driving noise is the ‘residual’ term R = W − Ŵ. Conditional on XNL, XL is a lin-
ear Gaussian process, and equation (11) can be solved in semi-closed form. First, we compute a
numerical approximation to the solution of the homogenous matrix-valued equation

d

dt
Ψ(t) = Ja(XNL

t )Ψ(t), Ψ(0) = In. (12)

One can compute Ψ−1(t) in a similar fashion via the relationship dΨ−1/dt = −Ψ−1(dΨ/dt)Ψ−1.

We then have

XL
t = Ψ(t)

∫ t

0

Ψ(u)−1BdRu

= Ψ(t)

∫ t

0

Ψ(u)−1BdWu −
N∑
i=1

Ψ(t)

(∫ t

0

Ψ(u)−1BΦi(u)du

)
Zi. (13)
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It follows that XL has mean 0 and covariance

k(s, t) = Ψ(s)

(∫ s∧t

0

Ψ(u)−1BBᵀΨᵀ(u)−1du

)
Ψᵀ(t)

−
N∑
i=1

Ψ(s)

(∫ s

0

Ψ(u)−1BΦi(u)du

)(∫ t

0

Ψ(u)−1BΦi(u)du

)ᵀ

Ψᵀ(t). (14)

The process XNL is designed to capture the most significant nonlinear features of the original diffu-
sion X, while the linear process XL corrects for the truncation of the sum (6), and can be understood
using tools from the theory of Gaussian processes. One can think of the linear term as the result of
a ‘small-noise’ expansion about the nonlinear trajectory. Small-noise techniques have been applied
to diffusions in the past [11], but the method described above has the advantage of being inherently
nonlinear. In the supplement to this paper, we show that X̂ = XNL +XL converges to X in L2[0, T ]
as N → ∞ under the assumption that a is Lipschitz continuous. If the drift function is linear, then
X̂ = X regardless of the choice of N .

5 Parameter Estimation

In this section, we describe a novel modification of the Gibbs sampler that does not suffer the draw-
backs of the linear proposal strategy. In Section 6, we demonstrate that for highly nonlinear problems
it will perform significantly better than standard methods because of the nonlinear component of our
approximation.

Suppose for now that we make a single noiseless observation at time t1 = T (for ease of notation,
we will assume that observations are uniformly spaced through time with ti+1− ti = T , though this
is not necessary). Our aim is to sample from the posterior distribution

p
(
θ,Z1:N |XNL

1 + XL
1 = Y1

)
∝ N (Y1 |XNL

1 , k1(T, T ))N (Z1:N )p(θ). (15)

We adopt the convention thatN (·| µ, Σ) represents the normal distribution with mean µ and covari-
ance Σ, whereasN (·) represents the standard normal distribution. Note that we have left dependence
of k1 on Z and θ implicit. The right-hand side of this expression allows us to evaluate the posterior
up to proportionality; hence it can be targeted with a Metropolis-Hastings sampler.

With multiple observations, the situation is similar. However, we now have a set of Gaussian inputs
Z(i) for each transition X̂i|X̂i−1. If we attempt to update θ and {Z(i)}i≤n all at once, the rate of
rejection will be unacceptably high. For this reason, we update each Z(i) in turn, holding θ and
the other Gaussian inputs fixed. We draw Z(i)∗ from the proposal distribution, and compute XNL∗

i
with initial condition Yi−1. We also compute the covariance k∗i (T, T ) of the linear correction. The
acceptance probability for this update is

α = 1 ∧
N (Yi |XNL∗

i , k∗i (T, T ))N (Z
(i)∗
1:N )p(Z

(i)∗
1:N → Z

(i)
1:N )

N (Yi |XNL
i , ki(T, T ))N (Z

(i)
1:N )p(Z

(i)
1:N → Z

(i)∗
1:N )

(16)

After updating the Gaussian inputs, we make a global update for the θ parameter. The acceptance
probability for this move is

α = 1 ∧
n∏
i=1

N (Yi |XNL∗
i , k∗i (T, T ))p(θ∗)p(θ∗ → θ)

N (Yi |XNL
i , ki(T, T ))p(θ)p(θ → θ∗)

, (17)

where XNL∗
i and k∗i (T, T ) are computed using the proposed value of θ∗.

We noted earlier that when j is large, Zj governs the small-time oscillations of the diffusion process.
One should not expect to gain much information about the value of Zj when we have large inter-
observation times. We find this to be the case in our experiments - the posterior distribution of
Zj:N approaches a spherical Gaussian distribution when j > 3. For this reason, we employ a
Gaussian random walk proposal in Z1 with stepsize σRW = .45, and proposals for Z2:N are drawn
independently from the standard normal distribution.
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In the presence of observation noise, we proceed roughly as before. Recall that we make obser-
vations Yi = Xi + εi. We draw proposals Z

(i)∗
1:N and ε∗i . The initial condition for XNL

i is now
Yi−1 − εi−1. However, one must make an important modification to the algorithm. Suppose we
propose an update of X̂i and it is accepted. If we subsequently propose an update for X̂i+1 and
it is rejected, then the initial condition for X̂i+1 will be inconsistent with the current state of the
chain (it will be Yi − εi instead of Yi − ε∗i ). For this reason, we must propose joint updates for
(X̂i, εi, X̂i+1). If the variance of the observation noise is high, it may be more efficient to target the
joint posterior distribution p

(
θ, {Zi1:N ,XL

i } |Y1:n

)
.

6 Numerical Experiments

The double-well diffusion is a widely-used benchmark for nonlinear inference problems [24, 32,
33, 34]. It has been used to model systems that exhibit switching behaviour or bistability [11, 35].
It possesses nonlinear features that are sufficient to demonstrate the shortcomings of some existing
inference methods, and how our approach overcomes these issues. The dynamics of the process are
given by

dXt = αXt

(
γ2 −X2

t

)
dt+BdWt. (18)

The process X has a bimodal stationary distribution, with modes at x = ±γ. The parameter α
governs the rate at which sample trajectories are ’pushed’ toward either mode. If B is small in
comparison to α, mode-switching occurs relatively rarely.

Figure 1(b) shows a trajectory of a double-well diffusion over 20 units of time, with observations
at times {1, 2, . . . , 20} . We used the parameters α = 2, γ = 1, B = 1. The variance of the
observation noise was set to Σ = .25.

As we mentioned earlier, particle MCMC performs well in low-dimensional inference problems.
For this reason, the results of a particle MCMC inference algorithm (with N = 1, 000) particles are
used as ’ground truth’. Our algorithm used N = 3 Gaussian inputs with a linear correction. We
used the Fourier cosine series (8) as an orthonormal basis. We compare our Gibbs sampler to that
of Golightly and Wilkinson [15], for which we use an Euler discretisation with stepsize ∆t = .05.
Each algorithm drew 70, 000 samples from the posterior distribution, moving through the parameter
space in a Gaussian random walk. We placed an exponential(4) prior on γ and an exponential(1)
prior on α and B.

For this particular choice of parameters, both Gibbs samplers give a good approximation to the true
posterior. Figure 2 shows histograms of the marginal posterior distributions of (α, γ,B) for each
algorithm.
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Figure 2: Marginal posterior distributions for (α, γ,B) conditional on observed data. The solid
black line is the output of a particle MCMC method, taken as ground truth. The broken red line is
the output of the linear proposal method, and the broken and dotted blue line is the density estimate
from the coloured noise expansion method. We see that both methods give a good approximation to
the ground truth.

Gibbs samplers that have been used in the past rely on making proposals by conditioning a lin-
ear diffusion to hit a target, and subsequently accepting or rejecting those proposals. Over short
timescales, or for problems that are not highly nonlinear, this can be an effective strategy. However,
as the timescale increases, the proposal and target become quite dissimilar (see Figure 1(a)).
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For our second experiment, we simulate a double well process with (α, γ,B) = (2, 2.5, 2). We make
noisy observations with ti − ti−1 = 3 and Σ = .1. The algorithms target the posterior distribution
over γ, with α and B fixed at their true values. From our previous discussion, one might expect the
linear proposal strategy to perform poorly in this more nonlinear setting. This is indeed the case. As
in the previous experiment, we used a linear proposal Gibbs sampler with Euler stepsize dt = 0.05.
In the ‘path update’ stage, fewer than .01% of proposals were accepted. On the other hand, the
coloured noise expansion method used N = 7 Gaussian inputs with a linear correction and was able
to approximate the posterior accurately. Figure 3 shows histograms of the results. Note the different
scaling of the rightmost plot.
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Figure 3: p(γ|Y1:10, B, α) after ten observations with a relatively large inter-observation time. We
drew data from a double well process with (α, γ,B) = (2, 2.5, 2). The coloured noise expansion
method matches the ground truth, whereas the linear proposal method is inconsistent with the data.

7 Discussion and Future Work

We have seen that the standard linear proposal/correction strategy can fail for highly nonlinear prob-
lems. Our inference method avoids the linear correction step, instead targeting the posterior over
input variables directly. With regard to computational efficiency, it is difficult to give an authori-
tative analysis because both our method and the linear proposal method are complex, with several
parameters to tune. In our experiments, the algorithms terminated in a roughly similar length of time
(though no serious attempt was made to optimise the runtime of either method).

With regard to our method, several questions remain open. The accuracy of our algorithm depends
on the choice of basis functions {φi}. At present, it is not clear how to make this choice optimally
in the general setting. In the linear case, it is possible to show that one can achieve the accuracy
of the Karhunen-Loeve decomposition, which is theoretically optimal. One can also set the error at
a single time t to zero with a judicious choice of a single basis function. We aim to present these
results in a paper that is currently under preparation.

We used a Taylor expansion to compute the covariance of the correction term. However, it may
be fruitful to use more sophisticated ideas, collectively known as statistical linearisation methods.
In this paper, we restricted our attention to processes with a state-independent diffusion coefficient
so that the covariance of the correction term could be computed. We may be able to extend this
methodology to process with state-dependent noise - certainly one could achieve this by taking a
0-th order Taylor expansion about XNL. Whether it is possible to improve upon this idea is a matter
for further investigation.
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lihood versus extended Kalman filter and Itô-Taylor expansion. Journal of Computational and Graphical
Statistics, 11(4):972–995, 2002.

[34] M. Opper, A. Ruttor, and G. Sanguinetti. Approximate inference in continuous time Gaussian-jump
processes. Advances in Neural Information Processing Systems, 23:1831–1839, 2010.

[35] N.G. van Kampen. Stochastic processes in physics and chemistry. North holland, 2007.

9


