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Executive Summary 
This report summarises the workshop on Scientific Data Mining, Integration and Visualization 
(SDMIV) held at the e-Science Institute, Edinburgh (eSI[1] ) on 24-25 October 2002, and presents a 
set of recommendations arising from the discussion that took place there. The aims of the workshop 
were three-fold:  (A) To inform researchers in the SDMIV communities of the infrastructural 
advances being made by computing initiatives, such as the Grid;  (B) To feed back requirements from 
the SDMIV areas to those developing the computational infrastructure; and (C) To foster interaction 
among all these communities, since the coordinated efforts of all of them will be required to realise 
the potential for scientific knowledge extraction offered by e-science initiatives worldwide.  


The workshop had about fifty participants, ranging from software engineers developing Grid 
infrastructure software, to computer scientists with expertise in data mining and visualization, to 
application specialists from a wide range of disciplines, including astronomy, atmospheric science, 
bioinformatics, chemistry, digital libraries, engineering, environmental science, experimental physics, 
marine sciences, oceanography, and statistics. It was felt that further meetings should be held, to bring 
together the SDMIV community, or subsets thereof: the participants felt that the overlapping interests 
of the communities represented at the workshop made this group more than the sum of its parts, and 
that future interaction between these communities would be very beneficial. 


The workshop produced the following Recommendations, which are detailed in Section 2.7. 


R1. The use of XML for scientific data is recommended, as it aids interoperability and 
flexibility. (Section 2.1) 


R2. Research should be undertaken into ways to reference remote data objects that are more 
flexible and robust than URLs and FTP addresses. (Section 2.2) 


R3. A new framework of interoperability is emerging from the Grid community, and 
scientists should build their software to benefit from these standards. (Section 2.3) 


R4. Libraries of interoperable scientific data mining and visualization services should be 
built to this Grid standard. (Section 2.3) 


R5. A mechanism should be sought whereby the peer-reviewed publication of datasets can 
be made part of the standard scientific process. (Section 2.4) 


R6. A registry of fiducial datasets should be created and maintained, to be used in the 
testing of data mining and visualization tools. (Section 2.4) 


R7. Better methods should be sought for collaborative working in e-science. (Section 2.5) 


R8. A set of tutorials should be created and maintained, for introducing application 
scientists to new key concepts in e-science. (Section 2.6) 


R9. A report should be produced on the data mining requirements of e -science application 
areas. 


R10. A report should be produced on the visualization requirements of e -science application 
areas. 


R11. A registry of existing data mining resources should be created and maintained. 


R12. A registry of existing visualization resources should be created and maintained. 
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1. Introduction 
1.1. Motivation for the Workshop 


The importance of data and knowledge extraction in science is growing rapidly. Fields as diverse as 
bioinformatics, geophysics, astronomy, medicine, engineering, meteorology and particle physics are 
facing an exponentially increasing volume of available data, as improvements in computational 
infrastructure make the results from an ever larger number of data and computing resources accessible 
from the scientist's desktop. A prime challenge for e-science is to enable the effective extraction, 
integration, exploration, analysis and presentation of knowledge from the data avalanche, so that the 
scientist can exploit its potential. This requires the coordinated efforts of a number of different 
communities; from the software engineers building the computational infrastructure that brings 
together the data from a myriad of sources worldwide, to the computer scientists developing 
algorithms to aid their integration and exploration, to the application specialists, who will extract 
scientific knowledge from the data and have to define the metadata standards within each discipline 
that will make that possible. 


1.2. The current status of Grid and e-science initiatives 


This is a good time to bring those communities together for a workshop on Scientific Data Mining, 
Integration and Visualization (SDMIV), because of the current status of the UK e-science programme 
and of Grid computing developments internationally.  


Within the past year, the focus in the Grid computing world has shifted from the distributed file 
manipulation systems that provided the Grid’s initial science drivers, to the concept of Grid Services, 
part of the Open Grid Services Architecture (OGSA[2] ). OGSA takes the Web Services[3]  model, 
which is becoming widespread within commercial computing, and supplements it with the 
“statefulness” needed for the creation of persistent, compound, customized services which can be 
deployed in a distributed computational environment. The advent of the Grid Services paradigm – and 
the adoption of its basic principles by many of the major players in commercial computing – marks a 
significant milestone in the development of the Grid concept, by setting a widely agreed framework 
for future development.  


In the domestic context, work by the various pilot and demonstrator projects funded through the UK 
e-science programme has started to identify many of the practical problems relating to the production 
of software systems to facilitate e-science, as well as developing a more detailed understanding of the 
requirements of scientists in a wide range of application areas. More generally, the concept of 
e-science is taking hold, as is its emphasis on collaborative working. This is a catalyst to new 
interactions between communities which have had little contact hitherto, as the commonalities 
between and differing expertise of various disciplines are becoming recognised.   


1.3. SDMIV basics 


1.3.1. Scientific Data 


Much of the scientific data discussed at the workshop fell into three categories, and, while these do 
not represent an exhaustive list of scientific data types, much of the technology discussed in the 
meeting was directed to them. The three categories are: 


• The datacube, or array, class - meaning an annotated block of data in one, two, or more 
dimensions. This includes time-series and spectra (one dimensional); images, frequency-time 
spectra, etc (two-dimensional); voxel datasets and hyperspectral images (three-dimensional), and 
so on. The highly-optimised chips of modern computers handle these data structures well. 


• Records, or events, collected as a table . Also known as multi-parameter data. These datasets may 
come directly from an instrument (for example in a particle accelerator) or may be derived by 
picking features from a datacube (when stars are identified from an astronomical image). 
Relational databases hold these data effectively. 
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• Sequences of symbols, for example a biological gene is represented by a sequence of symbols 
from the set {ACGT}. Special sequences are given new names, giving rise to new types of 
symbols. Tools that operate on such sequences include pattern matching and alignment. 


While there has been much emphasis on the sheer bulk of scientific data on the horizon (terabytes, 
petabytes, ...), there is an orthogonal problem looming: that of data diversity. As archive-based 
research grows in importance, so each research project creates and publishes the resulting dataset, 
often using idiosyncratic representations. A future challenge is convincing the community – or 
communities, as this may only be possible at the level of individual disciplines – of the benefits of 
standard representations, and of the importance of recording the provenance of data. Often much 
valuable knowledge exists in the union of several datasets through data federation, and for this to be 
done in a meaningful manner requires adequate metadata , describing the individual datasets and the 
method used to federate them. 


1.3.2. Data Mining 


Many definitions of data mining exist. Hand, Mannila and Smyth[4] defined it as “the analysis of 
(often large) observational data sets to find unsuspected relationships and to summarize the data in 
novel ways that are both understandable and useful to the data owner”, while Han[5] called it “[the] 
extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) information 
or patterns from data in large databases”. Naisbett wrote “We are drowning in data, but starving for 
knowledge!”, which certainly describes the situation so far as scientific data mining is concerned, 
although the problems caused by data volume should not be emphasized to the exclusion of those 
arising from the heterogeneous and distributed nature of scientific data.  


Hand et al. also distinguished between two of the types of summary relationships that can be derived 
from data, namely models and patterns: a model is a global summary of a data set (e.g. linear 
regression makes predictions for all input values), while a pattern refers only to the restricted regions 
of space spanned by the variables, as in outlier detection. Both models and patterns are valuable in 
science, but there may be differences between the “standard view” of data mining, as illustrated in the 
quotations above, and as arises in the mining of commercial data sources, and scientific data mining, 
and one goal of this workshop was to address that issue. One notable difference is the level of prior 
knowledge typically available in scientific problems: the astronomer seeking significant correlations 
between properties of galaxies observed in the optical and the radio passbands may be looking for 
hitherto unknown relationships, but has a fairly detailed concept of what a galaxy is; while a 
supermarket manager analyzing checkout data has little by way of an underlying model for the 
purchasing behaviour of shoppers. Does this difference limit the usefulness of standard data mining 
tools for science, and, conversely, how best should the domain knowledge of scientists be 
incorporated into data mining techniques?  


1.3.3. Visualization 


Visualization seeks to harness the remarkable capabilities of the human visual system to aid cognition, 
through the use of computer-generated representations. Visualization techniques find applications in a 
wide range of areas, from the elucidation of structure in complex datasets to the creation of virtual 
environments to aid training in dangerous or challenging procedures. In science, visualization can 
play an important role in exploratory data analysis, where visual representations can help the scientist 
to build up an understanding of the content of their datasets, while in the specific arena of e-science, 
much effort is being devoted to the development of collaborative visualization techniques, which aid 
the interaction between scientists at different locations. Some types of representation used in 
visualization are computationally expensive to generate, so that one challenge for the visualization 
community is to respond to the rapidly expanding data volumes seen in many application areas. 
Another obvious barrier to the ready use of visualization tools in science is the wide variety of data 
formats used in different scientific disciplines, which often necessitates the translation of data before 
it can be visualized.    
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1.4. The Workshop 
The workshop organisers sought to bring together participants from the SDMIV communities, to take 
stock collectively of current practice and problems, to identify common interests between different 
disciplines and to check both that plans for infrastructure development match the requirements of the 
SDMIV researchers and, in turn, that these researchers are aware of the framework for the future work 
of application scientists that is being set by advances in Grid computing.  


Forty-seven people attended the workshop, including representatives from all the communities 
originally sought: for the purposes of organising the first breakout session (see below), participants 
were grouped into five categories (infrastructure, data mining, visualization, astronomy and 
bioinformatics), but, in fact, there were representatives from a number of additional fie lds, including 
digital libraries, engineering, oceanography, marine sciences, statistics, chemistry, experimental 
physics, and environmental sciences. Most attendees came from academia or governmental research 
organisations, but there were also several from the industrial and commercial computing sectors. The 
preliminary programme presented with the workshop announcement provided a lot of time for 
discussion sessions, in addition to scheduled talks, and attendees were invited to put forward the 
topics they would most like to see discussed at the meeting, in addition to describing their own area of 
expertise and current work. The organisers then finalised the workshop programme in the light of the 
preferences stated by the participants in their applications. 


1.5. Report structure  


The structure of the remainder of this report is as follows. Section 2 presents a discussion of the main 
issues arising in the workshop (with some elaboration by the authors) and the recommendations 
resulting from it.  Section 3 summarises all the prepared presentations made at the workshop, together 
with the reports made as a result of the first breakout session. A set of references is given in Section 4, 
and this is followed by the Appendices, which reproduce the workshop timetable and list the 
workshop participants.  


2.  Issues and Recommendations 
In this section we discuss some of the issues arising in the workshop, particularly those from the 
breakout sessions, where the workshop participants were asked to identify important issues to be 
studied further over the next 12-18 months. The section concludes with a summary of the 
recommendations drawn from the discussion of these topics. 


2.1. Standards for Data Formats 
Data format conversion is the soft underbelly of processing scientific data, consuming immense 
amounts of time for those who work in a heterogeneous software environment. Sometimes it is easier 
to rewrite an entire component than it is to convert existing data to and from its input and output 
formats. There was considerable concern about this in the discussion groups of the meeting, and it 
was clear that standardization would greatly reduce barriers to software reuse. Combining data to 
extract new knowledge from the join will be more important in the future, and improved 
standardization will also enable this kind of federation. 


Using standard formats for data clearly makes everything much easier – the output of one module can 
be the input for another. However, several factors conspire against this. Suppose a user finds an 
implementation of a published data mining algorithm, and wishes to use it on her own data: the data 
are already stored in one format, and the new code wants a new format. The format may be too simple 
or too complicated for the immediate use; if it is too simple, it cannot represent the sophistication of 
what the user wants, or will want in the future. By contrast, the new format may be quite complex, 
with different ways to represent many different possible ways of using the algorithm, perhaps because 
the maker of the data mining code is rewarded for extra sophistication more than for simplicity and 
robustness. 
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Standardisation of file formats is encouraged by two major factors: a wide range of high-quality 
software, and the adoption of the format by the powerful organizations. The latter should be 
considered seriously by funding bodies, especially those supporting research that crosses the 
traditional boundaries between disciplines, while the former objective, we feel, is easier to accomplish 
if file formats are based on XML[6] . 


2.1.1. XML Formats 


XML (Extensible Markup Language) is now the method of choice for expressing any kind of 
structured data, having spread throughout the business and academic communities over the last few 
years. While it is easy to create a simple XML document with a text editor, great complexity and 
sophistication is possible. XML is used for astronomical tables, for bank transactions, for vector 
graphics, for remote procedure calls, and many other applications. It is because of the wide variety of 
tools that are available for XML that it is easier to create a software library than when a format is 
created from scratch. 


An XML document may be validated against a schema: the document can be thought of as an 
instance, and the schema as a class definition. The file format is designed by specifying the schema – 
using an off-the-shelf tool – and documentation created to explain the semantic meaning to a human. 
The same kind of tools can be used to create instances – files that fit the format – but the tool is 
intelligent, not allowing invalid data entry, and suggesting that which is valid. (For example, if the 
schema states that the name of a month is required next, the tool can list the twelve possibilities and 
not allow anything else). 


Programs can read XML through any of a large number of parsers, some already built into 
programming languages (Java, Python, …), and a variety of parsers available in other languages (C, 
C++, Perl, …). The parser can provide a view of the document as either a stream of events (SAX[7] ), 
or as a tree-like object (DOM[8] ); the former is best for large documents that will not fit into 
memory, the latter for smaller documents, to enable efficient navigation, manipulation, and querying. 


XML documents can be easily translated to other formats using an XSLT[9] translator; as with XML, 
there is a wide variety of these available. Translations are programmed with the XSL[10] language, 
which produces output when templates are matched in the input XML document. The latest 
generation of web browsers is able to make these translations automatically, so that XML documents 
can be viewed easily by a human, as well as being understandable by machines. 


2.1.2. Binary Data 


A perceived problem with XML – and one that crops up frequently in scientific circles – is that it is 
inefficient for large data volumes because of the overhead in storing and processing the language 
elements in addition to the encoded data. Of course, one can counter by saying that processors and 
disks are becoming cheaper, and counter that by noting that data size requirements are rising as fast or 
faster.  


A highly efficient solution to this problem is to let the XML represent metadata – typically complex, 
but small data objects – and have the metadata contain a link to a large, binary file. In this way, the 
sophisticated XML tools can operate on the metadata, discovering exactly what is needed for 
processing the big data, then specialized, handmade, efficient code is given the file pointer that allows 
it to operate on the big data with maximal efficiency. One example of the implementation of this 
approach is the VOTable[11]  format for representing tabular data in astronomy developed by the 
International Virtual Observatory Alliance[12] . An alternative is to provide an interpolation between 
these methods by allowing the binary file to be seen in the same way as if it were in pure XML: the 
user code gets SAX events containing the data, whether or not the document is pure XML or XML 
with a reference to a binary file. This second approach is being implemented in BinX[13] , a project 
under development by the Edinburgh Parallel Computing Centre[14] and the National e-Science 
Centre[15] , originally as part of the OGSA-DAI[16] project. Both of these (and there are probably 
others being developed by other e-science communities) are XML formats that allow references to 
remote binary data, and have a rapidly growing collection of support software as well as influential 
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political support. BinX emphasizes the ability to cover existing binary formats in an XML skin, while 
VOTable emphasizes complete and standard metadata in the representation of a table of data records. 
Which of these (or their equivalents in other disciplines) is more suitable in a particular situation 
depends on the details of the problem, although the BinX approach, by seeking to provide a method 
for describing any binary data format, does perhaps sit more naturally with the desire to avoid having 
to reformat data from one discipline before applying to it a data mining or visualization algorithm 
developed in another discipline. 


2.2. Referencing Remote Data 
Traditionally, data are brought to a local machine, processed there, and a data file is referenced by its 
file name on that machine. In the last few years, a new naming system has arisen, the URL, so that 
data on a distant machine can be referenced, and people now trust the availability enough to exchange 
URL links to a data object rather than the object itself. In the future, we will carry this further, so that, 
for example, data-mining services will be able to take a URL as input, or a database view can be 
defined by the location of the database and the query that made it. 


However, we must be careful to build flexibility and robustness into these references. If a URL is not 
available, the system should look elsewhere for the data object – for example when a machine is 
connected to the net, it should use the remote version of the data object, but when disconnected, the 
data may be local. Large datasets may be replicated in several places, and the most convenient 
location should therefore be used. These technologies are widely used in industry (e.g.[17] ), and the 
OpenURL initiative [18] is a strong standard emerging from the Digital Library community. Another 
issue of concern here is the provenance of data referenced by a URL: if the data referred to by a URL 
are modified one night, then different results may be obtained by running the same algorithm using 
the URL reference on the previous and following days. It is clear that either care must be taken in the 
design of the URLs (e.g. that they should encode timestamps or version numbers) or the data accessed 
via the URL should contain adequate metadata, if the basic scientific requirement of reproducibility is 
to appear to be satisfied.  


2.3. Grid Services 


2.3.1. Common Open Grid Services for Science 


A significant contribution of the workshop was the identification of the requirement for a new, 
flexible paradigm for making knowledge extraction tools available to the scientists who need them, 
which we shall call Common Open Grid Services for Science (COGSS), based on OGSA (Open Grid 
Services Architectures): we refer the reader to [2]  for a detailed description of what derivation from 
OGSA implies for COGSS.  


To explain this new way, let us first recall the current situation with scientific software components: a 
subroutine or class library is developed and tested, then either sold or open-sourced, and clients 
download, port, compile, and run the component on their own machine. By contrast, the COGSS 
model provides more flexibility, so that components can be developed and matured on a single 
machine close to the authors, even though a worldwide collection of clients can be using and beta-
testing the code. The component can remain on a server controlled by the authors, selling or giving 
CPU cycles for the clients, the software always at the latest version because of this control. 
Alternatively, it may be that users wish to use their own computing resources, perhaps to keep 
computing and data close together, in which case the software of the COGSS component can be 
shipped to the client. There is a natural progression from statically linked executables, to shared object 
libraries, to the applets and jar files of Java, to SOAP[19] web services, to high-performance, 
dynamically bound OGSA services. 


In a third COGSS model, the data input of the component is not shipped directly to the service, but 
rather a reference to it is sent; this may point to a third location, from which data are imported when 
the reference is actuated. What is sent to the service is a metadata/control message describing the data 
and what is to be done to them by whom, plus the reference to the data themselves. A similar story 
applies to data output: the result of a COGSS service may cause data to be stored –  perhaps 
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temporarily –  and a reference returned to the client, along with diagnostics, summary, or other 
information. Such an output reference –  as with the input reference –  may have an associated expiry 
date, so that temporary files can be safely deleted when no longer needed. It may also be that the data 
reference is not actuated by a component, but only the metadata and control used by the service, for 
example a service that estimates the time it would take to run another service may only need to know 
the size of the dataset, not the contents. 


Examples of COGSS services that might be derived from algorithms discussed in the workshop might 
be the kd-tree analysis of large multi-dimensional point sets (R. Nichol, see Section 3.2.1), the Hough 
transform analysis of astronomical images (A. Storkey, see Section 3.2.5), or some gene sequence 
matching routines (D. Gilbert, see Section 3.2.3 ). A strong recommendation from the workshop was 
that there should be a library of standard data mining and visualization tools, which could be used in 
the construction of more specialised software modules in a wide range of application areas. In the 
COGSS model, this would be implemented as a library of well documented Grid services. At a wider 
level, we recommend conversion of the NAG Data Mining Components [20] and similar commercial 
toolkits into OGSA Grid Services. 


2.3.2. Workflow in the Grid Services model 


As discussed in the previous subsection, the component parts of a Grid computing application need 
not be executing within a single machine, but may be geographically distributed, each running in the 
most suitable place. We can choose to execute close to the data, close to the software developer or on 
some specialised or economically-chosen computational resource. We think of a human interacting 
not with a single machine, but with a diverse collection of machines; this leads to requirements for 
workflow systems for creating compound services and a grid service accounting system which 
enables users to employ commercial services or have their own services run on commercial hardware. 


Once a collection of service definitions has been collected by a user, there should be a way to connect 
them into a coherent network, so that different implementations can be tried and services debugged in 
the context of the others: like a conductor for a symphony of grid services. The conductor would be 
close to the human user, perhaps a GUI-based system that is also showing visualization. But it should 
be emphasized that the services that represent the orchestra would be running on distant machines. 
One paradigm for such a workflow system would be building a graph of services. Each service takes 
input from others, and the output of each may go to others. Connections between services would be 
double-stranded, with both control and data channels. The control channel carries metadata, control, 
and diagnostics, probably in an XML/SOAP dialect, and may be bi-directional; the latter may carry 
big data in parallel, asynchronous streams, and is designed for maximum throughput. Control of 
service execution need not be closely connected to data flow, as in conventional dataflow and visual 
computing software; we might have a control channel sending a reference to a data object that is 
passed from service to service, eventually being actuated far from its creation. Elements of this 
concept are available in systems working today, such as the Chimera Virtual Data System [21] 
developed by the GriPhyN[22]  project. 


2.3.3. Accounting in the Grid Services model 


As discussed by Rob Baxter in his Brief History of the Grid  (see Section 3.3.1), the need for a 
workable accounting system remains the “elephant in the room” in Gr id circles – everybody knows it 
is there, and that it is big, but they still avoid talking about it. If something like the COGSS system 
develops, and includes the use of commercial services or the running of any services on hardware 
provided by commercial concerns, then an accounting system is definitely needed. Arguably, such a 
system might be required even for use within academic science – for example, for regulating the use 
of national supercomputing or data storage resources – although in this case, it would be possible to 
use some system of credits, rather than real money. Similarly, new, and more flexible, licensing 
strategies will have to be developed by software providers: rather than issuing unlimited-use annual 
licences to university departments, they may have to charge users each time one of their services is 
used, perhaps as part of some compound workflow, which includes the dynamic discovery of services, 
so the user may not even know that a commercial service is being used. Such issues may seem well 
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removed from the usual concerns of the average academic researcher, but their solution will shape the 
computational environment within which e-science takes place, so they cannot be ignored completely. 


2.4. Publishing and Registries 


2.4.1. Derived Data and Annotation 


The traditional model of scientific data is that a small number of large organizations publish well-
crafted, carefully documented datasets, and those in some inner circle know how to access and derive 
knowledge from them. This is analogous to the era of anonymous FTP in the eighties and early 
nineties; the era which preceded the web, where thousands of individuals and organizations publish 
their ‘home pages’. We believe that the publishing of derived datasets will flourish in the coming era 
of e-science and cheap disk, allowing the full harvest of knowledge to be extracted from these 
terabytes. Scientific knowledge is extended by using the well-documented results of others, and 
processing trusted data to make new trusted data is an extension of this. 


Biologists speak of ‘annotation’; for example matching genomic structure with function, identifying 
mistakes in a sequence, or cross-matching the genome of one species against that of another. 
Astronomers build ‘derived datasets’, for example identifying outlier or mistaken sources in a 
catalogue of stars, or cross-matching one survey catalogue against another. Once such a dataset has 
been made, we would like it to be published so that others can use it: to save work in reproducing the 
result, to mine further knowledge in as yet unknown ways, to federate with further datasets, or many 
other possibilities. 


In the workshop, we identified a serious stumbling block to this publication of derived datasets, 
namely that there is no motivation for a researcher to publish with the sort of care and attention to 
detail that is necessary. Funding agencies that force the publication of data and metadata often end up 
with “something that looks like the real thing but isn’t”, in the words of one workshop participant. 


What is needed is to merge the idea of publishing a dataset with the idea of publishing a scientific 
paper. In the latter case, investigators are very careful, knowing that a good referee report is necessary 
for publication in a reputable journal, which in turn is necessary for readers, citations, and a successful 
career. If the publication of a high-quality dataset were accorded the same status as a set of 
observations or a paper with scientific conclusions, then authors would be motivated to do an 
excellent job. 


One way to create this new paradigm would be for the UK e-Science programme (or some other 
authority) to publish datasets through an electronic journal, complete with peer-review and editorial 
board, as well as a list of reliable URLs showing multiple places where the relevant data services are 
implemented. A secondary aim would be the creation of a ‘dataset citation index’: when dataset B is 
created from dataset A, the index would allow B to be found from A. 


2.4.2.  Registries 


The scientific community is becoming much more dispersed: with the Internet and cheap travel it is 
easy to collaborate with colleagues all over the world. The Grid paradigm encourages this, by 
dispersing computing and data resources as well as the humans. Because of these effects, it is more 
and more of a challenge to find resources: to find out if another group is doing a similar project, to 
find if an algorithm has been implemented, to find where a service class has been implemented, to 
find what computing resources are available, etc. An emergent theme of the workshop was that of 
registries of resources.  


Many application scientists do not seem aware of the rich collections of software that are available for 
data mining and visualization. We therefore recommend the establishment of registrie s of data mining 
and visualization tools, preferably along the sophisticated lines outlined below. The collection of peer-
reviewed datasets recommended above could also benefit from a comprehensive registry. 


We all use the big search engines such as Google  and Yahoo. The former uses keyword searches and 
is highly effective on resources where the information is in natural language, but is not very effective 
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where the information is in a database, or if we are searching on, say, numerical attributes. Yahoo is a 
different model, where humans methodically catalogue items in a hierarchy.  Another valuable 
resource in this regard is when an expert individual has built a web page of resources, for example 
Joe’s Page of Data Mining Software. While these kinds of pages often have expertise and specificity, 
they also tend to be poorly maintained and inflexible in the face of change. 


A new type of registry is emerging, based on standards such as Z39.50 (see section 3.4.3, also[23]  
and [24] ), or in a different context, on UDDI (Universal Description, Discovery, and Integration of 
Web Services). The emphasis is on queries rather than a simple list, and queries are not just keywords, 
but additionally subject and author searches, as well as numerical attributes. These new types of 
registries should be designed with the idea of the maintainer as a moderator rather than content 
provider. The registry is thus a mediator between publisher and client, with the moderator watching. 
The key to these types of registry is a well-defined metadata schema: for example each book in a 
library must have a single title and one or more authors, or each Grid service must have a Service 
Definition Document in a specific language. 


We recommend encouraging research and implementation of these kinds of resource registry. One 
such registry is already running at Daresbury[26] , listing UK e-Science projects. Others can be made 
for lists of subject-specific datasets or Grid services, or other types of resources, including registries 
of registries. 


2.5. Collaboration and Visualization Technologies 
As collaborations disperse, connected only through annual face-to-face meetings and daily emails, we 
must retain the ability to share results and thereby work together. When it is a formal result, such as a 
collaborative paper, we have word-processing software with change-tracking, but for informal 
exploratory work, there are few established mechanisms beyond telephone conferences. However the 
workshop participants expressed a desire to be able to collaborate in a richer way. Video conferencing 
allows a speaker to see how many people are listening, and makes the group more coherent.  


Personal video-conferencing can be achieved on a workstation using the free VRVS[27] software 
from CERN/Caltech, or a proprietary alternative such as Microsoft NetMeeting. These systems 
typically allow sharing of applications within the conferencing system, and so desktops can be shared 
amongst the collaborating group.  For example, VRVS works in conjunction with VNC desktop 
sharing[29] .  Collaborative white board discussions can also be held. At a larger scale, the Access 
Grid[30]  is emerging as a standard way to convert a conference room for distributed large meetings; 
although currently Access Grid needs a skilled driver for best results, and is therefore not used 
without a lot of planning. We recommend trying to bridge these technologies, by making an Access 
Grid usable as simply a higher-resolution version of desktop conferencing. A further recommendation 
is to investigate how best to integrate visualization and other scientific software into an AccessGrid 
session, so that scientists can have active collaborative working sessions where new studies are 
undertaken, rather than simply sessions where past individual studies are reported.  


2.5.1. Collaborative Visualization 


At a higher level of multimedia , we recommend further research in ways to collaboratively visualize 
complex datasets, so that several dispersed collaborators can see results and discuss significance. Such 
systems often assume excellent bandwidth, and research is needed in how to be robust against 
bandwidth reduction. Visualization systems have traditionally been local: dataset, computation, and 
human all in the same room. But the Grid paradigm changes this; when the computation is distant 
from the user, we must decide –  perhaps dynamically –  what processing is done at the remote server, 
and what is done locally. A visualization of a 3D volume dataset may be done at the server and an 
image passed to the user; at the next level, the image may have script or links to enhance its 
flexibility; a collection of triangles representing an isosurface may be sent for rendering on the user’s 
local machine; or the whole 3D voxel block may be sent. As more bandwidth becomes available, 
more flexibility becomes available.  When a number of scientists are collaborating, the distribution 
problem is accentuated. 







 11 


2.5.2. Quantitative Measurement, Provenance  


Many visualization tools are excellent for giving a qualitative view of a dataset, allowing a researcher 
to see something interesting and thereby form a hypothesis. Generally, the researcher must then build 
a program to test and measure that hypothesis in a quantitative manner before any strong conclusion 
can be made. We suggest that visualization tools would be more useful to scientists if there were a 
greater emphasis on quantitative measurement tools rather than more sophisticated lighting and 
texture mapping. Such tools should include point measurements, as well as histograms, line graphs, 
scatter plots, and other simple plotting devices, with axes properly and automatically labelled. 


Visualization tools should also be able to retain the provenance information of a dataset: who made it, 
where was it published, how the data was processed – the information that allows a coloured picture 
to be viable as scientific evidence. 


2.5.3. Scalable Visualization 


A great deal of effort has been expended to make visualisation hardware fast, with large numbers 
quoted for polygons per second and so on. This allows sophisticated software to provide magnificent 
and subtle images of scientific data sets. Unfortunately many of these systems require complex 
processing environments, a special room for viewing, and headsets or stereo glasses. Because of this, 
the system is often underutilized. There was a feeling at the workshop that such systems would be 
more useful if they were part of a continuum from the portable, perhaps slow desktop environment 
upwards, so that learning at the desktop still works on the high-end equipment. 


2.6. Tutorials and Documentation 


Developments in computational infrastructure, such as the Grid, are driven by the IT community, and 
application scientists only get involved once it is clear that they can gain some significant advantage 
by doing so. To aid the uptake of new techniques in e-science it would be very useful for there to be 
available tutorials and sample code describing and illustrating the use of the these techniques at a 
level amenable to application scientists, rather than IT specialists. Specific topics cited in this 
workshop include: 


• X.509 Digital Certificates[31] : what are they and what can I do with them, how do I get one, how 
do I recognize one, how and why is this identity document different from a login/password or a 
passport? 


• What is a SOAP web service, and where are examples that will benefit my work? Who can help 
me convert my utility software to this form? 


• What is OGSA and how is it more than SOAP web services? How does all this IT infrastructure 
get my work done more effectively? 


• Where can I find software to let me start on these ideas? –  software that is simple enough to be 
transparent, yet illustrates the basic ideas. How can I publish and subscribe to a “Hello World” 
OGSA service? 


2.7. Summary of recommendations  
• R1: The use of XML for scientific data is recommended, as it aids interoperability and 


flexibility . 
Standardising data formats for scientific data is an old challenge, but the participants agreed that 
XML technologies provide an excellent start for creating a new format or rebuilding an existing 
format. Data represented with XML combines rich structure, rich choice of tools, and wide 
acceptance. 


• R2: Research should be undertaken into ways to reference remote data objects that are 
more flexible and robust than URLs and FTP addresses. 
A full reference can be a collection of possibilities and replicated instances, rather than a single 
fallible URL or FTP that causes drop-dead failure if unavailable.  
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• R3: A new framework of interoperability is emerging from the Grid community, and 
scientists should build their software to benefit from these standards . 
The business world is moving to SOAP-based web services, in the expectation of profit from a 
richer, more integrated Internet. In academic science, the promise of equivalent technologies 
should be leveraged and exploited. 


• R4: Libraries of interoperable scientific data mining and visualization services should be 
built to this Grid standard. 
Many data mining and visualization algorithms are likely to be of use in a number of e-science 
application areas, so that it would be efficient to develop a public library of such routines. In the 
Grid Services paradigm (see 2.3), this library would be implemented as a set of services, and, 
conceptually, would sit between the basic infrastructure delivered by OGSA and the application 
layer, where individual scientists or projects would develop services to meet their specific needs. 


• R5: A mechanism should be sought whereby the peer-reviewed publication of datasets can 
be made part of the standard scientific process. 
This is already the case in some communities, but not all. For example, some journals require the 
submission of datasets along with papers, so that others can reproduce the results published in the 
papers, while others collaborate with data centres in making available datasets (e.g. tables) 
published in papers. This might profitably be extended to include further disciplines, as well as 
generalised, so that a valuable stream of citations can be obtained by the scientist who publishes a 
dataset derived from some set of original sources through the application of an analysis procedure.  


• R6: A registry of fiducial datasets should be created and maintained, to be used in the 
testing of  data mining and visualization tools. 
These datasets should be representative of the sorts of data types, formats and volumes that 
application scientists wish to analyse using data mining or visualization tools, and it should be 
easy for scientists to add further datasets to the registry. 


• R7: Better methods should be sought for collaborative working in e-science  
A key feature of e-science is its collaborative nature and the interdisciplinary interactions that it 
fosters could lead to very beneficial collaborations, but for them to bear fruit there need to be 
better ways for scientists in distributed teams to work together. One particular aspect of this is the 
development of collaborative visualization tools. 


• R8: A set of tutorials should be created and maintained, for introducing application 
scientists to new key concepts in e-science. 
These should be written at a level assuming no specialist IT knowledge, and should be designed 
with the aim of increasing the uptake of new techniques (web services, digital certification, etc) 
across all scientific disciplines.   


• R9: A report should be produced on the data mining requirements of e -science application 
areas. 
This report, detailing the data mining requirements of as wide a range of e-science application 
areas as possible, would be used in setting the scope of the standard libraries of R4, by helping to 
identify just what are the tools that would have wide applicability. 


• R10: A report should be produced on the visualization requirements of e -science application 
areas. 
Similarly, this report, detailing visualization requirements, would be used in setting the scope of 
the standard libraries. 


• R11: A registry of existing data mining resources should be created and maintained. 
Initially a WWW page, but eventually a machine-interpretable registry, this will aid application 
scientists seeking data mining algorithms for their work. 


• R12: A registry of existing visualization resources should be created and maintained. 
Similarly, this will aid scientists wishing to use visualization in their work. 
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3. Summary of Workshop Presentations 
In what follows we present only a brief summary of each of the presentations made at the workshop. 
Copies of the slides from these are available from the SDMIV workshop WWW site, at the following 
URL:  http://umbriel.dcs.gla.ac.uk/NeSC/action/esi/contribution.cfm?Title=114. 


3.1.  Overview Talks 


The workshop opened with a set of Overview Talks presenting an introduction to the issues to be 
addressed during the meeting. 


3.1.1. Scientific Motivation Overview – Roy Williams 


Knowledge extraction from scientific data can often be viewed as the act of concentration that takes 
an experimental/observational Datacube and derives from it an Event Set, which is often represented 
as a table of attributes characterising the event and which contains the scientific knowledge distilled 
from the original data. Further knowledge may be extracted by the integration of event sets – e.g. 
cross-matching observations of astronomical sources made in different passbands and stored in 
databases distributed around the world – and many practical problems arise in doing this, some of 
which the Grid may solve, if/when databases are properly included in the Grid (e.g. by the OGSA-
DAI project [16] ). Scientists in many disciplines will require a grid of services to make use of the 
data available to them and the provision of many of them poses computational challenges, given the 
size of some of the datasets: how can one visualize, classify, and find outliers in distributions of 1010 
points?; how can one perform joins on such large tables, especially when they are contained in 
distributed database? Standards are needed, to allow referencing of data and resources in the Grid, and 
to turn it into a problem-solving environment, with both plumbing (bulk data transport) and electrical 
(control and metadata) subsystems. Web services and workflow provide the means of doing that, but, 
ultimately, semantic information will be required for the location of classes and implementations of 
services. 


3.1.2. Data Mining Overview – Chris Williams 


The essence of data mining is the finding of structure in data. A large number of different tasks fall 
under the heading of data mining –  such as exploratory data analysis, both descriptive and predictive 
modelling, as well as the discovery of association rules and outliers – and many practical problems 
arise from their application to complex types of data. Predictive modelling centres on the learning 
from existing input/output pairs, so that the output(s) can be predicted given further input sets, and 
this can comprise use of a number of techniques, such as neural networks, decision trees, nearest 
neighbour methods and Support Vector Machines. All such supervised learning is inherently inductive 
in nature, and its key issue is generalisation – how to make predictions for new inputs based on 
previous knowledge.  Descriptive modelling seeks to find significant patterns in data with no external 
guidance, and this is simply done using techniques such as clustering and reducing the dimensionality 
of the dataset by fitting it to a lower dimensional manifold. All data mining is greatly aided by a 
suitable computational environment, in which operations can be pipelined, data visualized and results 
evaluated. Several of these exist in the data mining community, and it is important to assess how 
applicable these are to scientific data mining problems, where a great deal of prior domain knowledge 
may be available and can be factored into the data mining procedure. Probabilistic modelling may 
provide the correct framework for modelling complex networks of non-deterministic relationships, 
and probabilistic expert systems have been created in many areas (e.g. medicine). 


3.1.3. Visualization Overview – Ken Brodlie  


Visualization – “Use of computer-supported, interactive, visual representations of data to amplify 
cognition” (Card, Mackinlay, Shneiderman[31] ) – has its origins, as a discipline, in an influential 
1987 NSF report, ‘Visualization in Scientific Computing’ by McCormack, de Fanti and Brown[33] , 
and is now widely used in computational science and engineering. It is useful to consider it as a pair 
of topics: scientific visualization (the visualization of physical data) – e.g. plotting the properties of 
the Earth’s ozone layer on a 3D representation of the globe; and information visualization (the 
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visualization of abstract data – e.g. presenting a network of links on an automobile web site). 
Scientific visualization is largely concerned with visualizing datacubes, where there is a clean 
separation between dependent and independent variables.  The independent variables give the 
dimension of the space being visualized, often 1D, 2D or 3D but occasionally greater.  Much 
scientific visualization follows a standard procedure –  read in the data, construct a model of the 
underlying entity, construct a visualization in terms of geometry, render the visualization as an image 
– and there exist a number of modular software systems for implementing that procedure. This 
dataflow model has proven very successful, but the impetus now is to extend it, for example, to allow 
collaborative visualization and computational steering within the dataflow. The aim of information 
visualization is to display and reveal relationships within multivariate datasets, which are usually 
represented as tables; its focus is the dataset itself, not the physical entity underlying it, reflecting the 
fact that the relationships between the variables are usually not well understood. Techniques 
commonly used in information visualization include parallel coordinates, scatter plot matrices, and 
pixel-based and glyph techniques. In many practical situations, screen space becomes the limiting 
factor in the visualization of large, complex datasets. In such cases, it is necessary to reduce the scale 
of the problem, either by restricting attention to subsets of variables, or employing some sort of 
descriptive modelling technique (e.g. clustering), which makes use of the structure of the data 
themselves to reduce the dimensiona lity of the problem.  


3.1.4. An example of data mining and visualization in practice – Jeremy Walton 


The NAG [30] Data Mining Components and IRIS Explorer[35] visualization tool comprise one of 
the available  commercial frameworks for mining and visualizing scientific data. As an example of 
using such a system in practice, consider the following analysis of some image data from the 
Landsat[36]  Multi-Spectral Scanner. The dataset comprises images of different regions, with 36 
independent variables per region – a 3x3 array of pixels, and four spectral bands per pixel. Each pixel 
is to be assigned to one of six classes of land use, and extrapolation is to be made on the basis of these 
results, so that land use classification can be performed using the multi-band pixel values. As a first 
step, principal component analysis is used to reduce 36 dimensions to two that explain 85% of the 
variance in the data. Three land use classes are chosen – cotton crop, damp grey soil and soil with 
vegetation stubble – and a decision tree is used to model the assignment of the pixels to these land use 
classes. On the basis of this model, boundaries can be defined in the data space for the three land use 
classes, and the classification of the further data points is made. The distribution of the original and 
predicted class values can then be visualized, to help in the assessment of this classification 
procedure. 


3.2. Application Talks 
After the Overview Talks came a series of Application Talks, in which researchers from different 
parts of the SDMIV community described their own work and identified some of the challenges that 
they had faced in undertaking it. 


3.2.1. Computational astrostatistics – Bob Nichol 


The Pittsburgh Computational Astrostatistics  (PiCA[37] ) Group brings together statisticians, 
computer scientists and astronomers from Carnegie Mellon University and the University of 
Pittsburgh, to develop new statistical tools for the analysis of large astronomical datasets, notably the 
Sloan Digital Sky Survey (SDSS[38] ). This collaboration works well because it is of benefit to all 
concerned: the astronomers want to exploit the large, rich SDSS dataset to the full scientifically, and 
that requires expertise in algorithms for knowledge extraction, while that same size and richness 
challenges and stimulates the computer scientists and statisticians who work on such algorithms. The 
key to the success of the PiCA group’s algorithms is the use of multi-resolution k-d trees for data 
storage. As well as partitioning the data effectively, these trees also store basic statistical information 
about the objects stored in each node. This representation of the data is usually sufficiently condensed 
that many operations – such as the calculation of the N-pt spatial correlation functions, which 
characterise the clustering of the galaxies in the SDSS – can be performed in memory, with the tree 
structure avoiding many needless computations made by traditional techniques. Another application 
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of the k-d trees is in a fast mixture model code, which has been used to select rare objects from large, 
multivariate catalogues of SDSS object attributes. 


3.2.2. Distributed Aircraft Maintenance Environment (DAME) – Tom Jackson 


The work of the DAME[39] project is based on the AURA[40]  data mining system. AURA is a set of 
tools to build fast pattern recognition systems, using neural network based associative storage. It is 
aimed at unstructured data, and is designed to be scalable and readily applicable to large data 
volumes. The AURA storage system uses Correlation Matrix Memory (CMM), and exploits threshold 
logic methods and the distributed encoding of information. Data typically have to undergo pre-
processing to make them amenable to AURA analysis. Efficient implementation in software and 
hardware is made possible by use of a set of binary “weights”, and this system is ideal for use on bit 
vector machines, although the AURA C++ library has been run on a variety of systems, from 
individual PCs or workstations, through Beowulf clusters, to an Origin 2000 supercomputer, as well 
as bespoke hardware. The DAME project is designed to demonstrate the diagnostic capability of the 
Grid, using Rolls Royce aeroengines as its application. The key requirement is that the system must 
analyse and report any “novel” engine behaviour and identify its cause very quickly, despite dealing 
with many TB of data, and a very distributed network, involving aircraft, airline offices, data centres 
and maintenance depots in different countries. As part of the DAME project, a Globus[41] -enabled 
version of AURA (called AURA-G) has been developed, and this will be available in late 2002 for 
use in other projects. AURA-G is designed for scalable pattern matching, using multiple CMMs at 
different sites, and is OGSA-compliant. The DAME project highlights some of the issues facing data 
miners in the Grid environment, such as provenance and standards to maintain data transparency 
independent of location and to manage the database/data mining link in a distributed environment. 


3.2.3. Bioinformatics – David Gilbert 


Bioinformatics is the application of molecular biology, computer science, artificial intelligence, 
statistics and mathematics to model, organise, understand and discover interesting knowledge 
associated with large-scale molecular biology databases. This combination of expertise is required not 
only because of the rapid increase in the volume of molecular biology data, but also because of how it 
used; the life sciences are characterized by coordinated study at many different levels of granularity – 
from a single nucleotide sequence, through protein structure to a cell, to an organ, all the way up to 
the physiology of a whole organism. Classification is a major part of biology, so classification 
techniques feature strongly in bioinformatics, often using similarities of structure (found through 
pattern-matching – e.g. in gene sequences) to infer similarity of function. A variety of such techniques 
are used, both deterministic and probabilistic. It is becoming common to combine multiple, 
complementary techniques in analyses, with the goal of increasing the power for discovering useful 
knowledge, but the lack of coherence in these sets of methods can make their results difficult to 
combine in a meaningful way. As in most other applications of data mining techniques, a great deal of 
the effort in bioinformatics is devoted to the preparation of data, before the particular machine 
learning algorithm, or whatever, can be applied to it. This includes the identification of training and 
test sets, as well as more basic operations like dealing with missing data and transforming to the data 
format required by the algorithm. More fundamental problems arise from the “dirty” nature of 
biological databases, which tend to contain experimental errors, erroneous annotations and 
interpretations, and data biased by selection and taken using non-standard experimental procedures.  


3.2.4. Potential SDMIV applications in CLRC/RAL collaborations – Julian Gallop 


CLRC[42]  holds, or provides access to, significant data resources across a wide range of fields, 
notably space, earth observation, particle physics, microstructures, and synchrotron radiation, and is a 
partner in a number of e-science projects concerned with different aspects of the SDMIV problem. 
Within many of these, such as the Data Portal[43]  and the NERC Data Grid[44] , the development of 
metadata models has proven to be very important for the discovery of data sources, while another – 
climateprediction.net[45]  – is an example of a “cycle-scavenging” application, as it uses spare CPUs 
on home PCs to run climate prediction models, and therefore encounters made Grid security issues.  







 16 


3.2.5. Scientific data mining: applications to astronomical data  – Amos Storkey 


Problems in astronomy increasingly require use of machine learning, data mining and informatics 
techniques, giving rising to a new field of astroinformatics. Examples of astroinformatics topics are: 
detection of “junk” objects in sky survey datasets, record linkage between astronomical databases, 
object classification and clustering, and data compression to aid analysis and storage. One example is 
the detection of spurious objects in the SuperCOSMOS Sky Survey (SSS[46] ): this is based upon a 
collection of several thousand photographic plates taken by the UK Schmidt Telescope[47] , in 
Australia, which have been digitized by the SuperCOSMOS plate-scanning machine[48]  in 
Edinburgh. This process yields a pixel image for each plate, over which an analysis algorithm is run, 
to detect and characterize astronomical sources in the image. The object catalogues so produced 
contain a variety of classes of “junk” caused by scratches in the photographic emulsion, fibres that 
remain on the plate despite clean-room conditions, as well as “real” emission from undesirable 
sources, such as aeroplanes and artificial satellites, and artefacts like diffraction patterns around bright 
stars, caused by the optics of the UK Schmidt. An analysis of the problem indicated that these 
spurious objects could only be identified on the basis of their displaying statistically unlikely linear or 
circular configurations, and a number of machine learning techniques – such as the Hough and 
circular Hough transform, and a new approach, based on Hidden-Markov renewal processes – have 
been employed, with varying success, to detect and label them in the SSS database. This project 
exemplifies that, while machine learning and data mining techniques are, and will continue to be, very 
useful in astronomy, they do not always work automatically, and success may require significant 
interaction between the domain specialist and the informatics researcher. 


3.3. Computational Infrastructure Talks 


The final pair of formal presentations covered the computational infrastructure which provides the 
framework within which scientific data mining, integration and visualization takes place. Rob Baxter 
presented a chronological account of the development of Grid computing from its earliest precursors 
to the current day, while Malcolm Atkinson described the Grid and e-science concepts in more detail, 
and discussed where the SDMIV communities should fit into that picture. 


3.3.1. A complete history of the Grid (abridged) – Rob Baxter 


The Grid vision centres on the realisation that the world contains vast numbers of (generally under 
utilised) computational resources connected by high-performance networks (albeit using a variety of 
access modes and protocols), coupled with the desire to use them effectively, whether for science, 
commerce or anything else. Grid software today comprises toolkits, schedulers, data management 
systems, portals and web services, all of which are starting to work together harmoniously. The 
development of the Grid may be traced back to the world’s first packet-switched network, at the NPL, 
in 1967, and, although, the course of that development has not run straight over the past thirty-five 
years, it is possible, with hindsight, to identify some of the cruc ial milestones along the way. The first 
twenty years of that history saw a general development in the power of computers and network 
systems, but nothing really “Griddy” appeared until the Condor[49]  project started, in 1988; that 
Condor remains a key part of the Grid concept now attests to its great importance in this history. 
Condor is a job management system designed to make effective use of spare CPU cycles on under-
used PCs. It matches job requirements with computer capabilities, and is robust enough to handle jobs 
that do not complete: with the later addition of elements of the Globus Toolkit[50]  (to produce 
Condor-G), it became possible to seek out available and suitable machines for a given job, rather than 
simply replying on knowledge of the machines present on a LAN. The next key date in the history of 
the Grid was 1993, when the Legion[51]  project was launched. Legion took an object model 
approach, in which the Grid is viewed as a single virtual machine: this is attractive conceptually, but it 
proved difficult to implement efficiently. The following year, 1994, saw the arrival of Nimrod[52] , a 
system designed to automate the management of task farms, which was notable for having a concept 
of a charge per CPU cycle, so the master process can schedule jobs on the basis of cost as well as 
time. In 1997 a unified environment for German HPC users was delivered by UNICORE[53] , which 
is a combination of a toolkit and a portal: it provides middleware, so that users can create and run 
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their own jobs, not just precompiled applications, but it hides all of the details of doing so behind a 
single GUI. Later in the same year the Storage Resource Broker (SRB[54] ) was launched, offering a 
means of  accessing heterogeneous storage resources, including replicated datasets. The Globus 
project, producers of the Grid’s leading toolkit, started life in 1998, and it remains the basis for the 
majority of Grid systems now, as well as one of the driving forces behind the OGSA. In 2001, the 
specification for the Web Services Description Language (WSDL[55] ) was submitted, starting the 
remarkably rapid rise of web services in commercial computing, leading to the convergence with 
Globus development in the launch of OGSA in 2002.  


3.3.2. Future infrastructure for SDMIV – Malcolm Atkinson  


E-Science is fundamentally about collaboration. The sharing – of ideas, of resources, of data, etc  – 
that it envisages requires trust, but can also change the way that science is done, if sufficiently 
developed and resourced. The Grid should make e-science much easier, by providing a common, 
supported high level of software and organisational infrastructure, and the initiatives centred on the 
Global Grid Forum[56]  and OGSA development are “the only game in town” so far as delivering that 
infrastructure is concerned. For the SDMIV community, a key part of OGSA is the OGSA-DAI (Data 
Access and Integration) project, which is led by the UK and which is developing the services 
(specifications and reference implementations) required to integrate data resources (both relational 
databases and XML repositories) into OGSA. The key components of OGSA-DAI are: a Grid Data 
Service (GDS), which provides access to data and database operations; a Grid Data Service Factory 
(GDSF), which makes GDSs and GSSFs; a Grid Data Service Registry (GDSR), which effects the 
discovery of GDSs and GDSFs; a Grid Data Translation Service, which translates or translates data; 
and a Grid Data Transport Deport (GDTD), which provides data transport with persistence. OGSA-
DAI will implement a role -based authorization scheme. The first OGSA-DAI product release is 
scheduled for December 2002, to coincide with the release of Globus Toolkit 3. The SDMIV 
community should think how it fits into the OGSA picture. The standard picture sees scientific 
applications built upon the OGSA infrastructure, but maybe it is better to envisage a layer between 
these two – an SDMIV (Grid) Application Component Library, which interfaces most directly with 
the DAI portion of OGSA, and which delivers standard SDMIV services which can form the basis of 
scientific applications developed by domain experts for their particular discipline.  


3.4. Breakout Session 1 
In their application material, many of the workshop participants indicated (unsurprisingly) that what 
they would particularly like to see discussed at the workshop was the overlap between their own area 
of expertise and one of the other SDMIV disciplines. So it was decided that the first Breakout Session 
should address the challenges arising in the areas of overlap between pairs of SDMIV communities, 
and to identify what requirements they placed on computational infrastructure. For this purpose, each 
workshop attendee was assigned to one of five categories (infrastructure, data mining, visualization, 
astronomy and bioinformatics) marking the largest groups of people present, and this list was used to 
select discussion groups on the following topics: data mining and astronomy; data mining and 
bioinformatics; data mining and visualization; visualization and astronomy; visualization and 
bioinformatics. The members of the infrastructure category were distributed evenly throughout the 
groups, and, inevitably, those who did not fit naturally into one of the five categories were assigned to 
a group not directly relevant to their own work, but they were exhorted to bring up any particular 
requirements of that work during the session. Each group selected a “scribe” to record its discussions, 
and a chair to summarise them in a session on the second day.  


3.4.1. Data mining and astronomy 


What causes problems currently is the time taken to convert between data formats, recode algorithms 
to match local environments and/or user expertise, and master local computational environments 
(ensure the presence of the correct versions of compilers, libraries, etc). Data volume is not always an 
issue – other problems can make the mining of smallish datasets complicated. There are also issues 
concerned with the management of change – both of the algorithms themselves and the computational 
environment – and with the control that the user has over them. Data mining tools are available, but it 
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is often difficult to discover what tools are available and suitable for a given analysis, as well as which 
of them are available in the desirable language and/or which can be modified to accept the desired 
data format. In practice, mutually-beneficial collaboration between the creator and user of the 
algorithm is more likely to lead to success than just having the user take an algorithm off the web and 
apply it with no guidance. Also there is a missing middle ground, for effecting that collaboration and 
translating standard algorithms for use within a particular domain. There is a problem that such 
activity might not be rewarded in either community: it won’t look novel to the informatics researcher, 
if it is just an application of an existing technique, while the domain scientist is less likely to get credit 
for modifying a data mining tools than for use in his/her field than for spending the same amount of 
time doing research within that field. 


3.4.2. Data mining and bioinformatics 


Data mining in bioinformatics is hampered by many facets of biological databases, including their 
size, their number, their diversity and the lack of a standard ontology to aid the querying of them, as 
well as the heterogeneous data of the quality and provenance information they contain. Another 
problem is the range of levels and domains of expertise present amongst potential users, so it can be 
difficult for the database curators to provide access mechanisms appropriate to all. The integration of 
biological databases is also lacking, so it can be very difficult to query more than one database at 
once. Finally, the possible financial value of, and the ethical considerations connected with, some 
biological data means that the data mining of biological databases is not always as easy to perform as 
is the case in some other areas. One development within the bioinformatics knowledge extraction field 
that may be of wider utility is the Distributed Annotation Service (e.g. [39] ), which allows for a 
distributed set of annotations to a database, without the modification of the original database itself. 


3.4.3. Data mining and visualization 


The overlap between data mining and visualization is very large – indeed, it can be difficult to say 
what is data mining and what is visualization. One possible distinction is that data mining is machine-
oriented, while visualization is human-oriented, however this distinction becomes blurred in 
exploratory data analysis, which may well be interactive and use visualization, but which may be 
reliant on statistical techniques from data mining. Given this blurred boundary, it is surprising that, in 
general, the standards do not exist that enable the ready combination of data mining and visua lization 
tools into pipelines. One concern for the near future is the place of Z39.50 in the era of OGSA-DAI. It 
is not obvious what OGSA-DAI provides that Z39.50 does not, so far as the querying and retrieval of 
data from remote, heterogeneous databases is concerned, and it is to be hoped that the practical 
experience built up within the Z39.50 community (e.g. in the digital library world) is not being 
forgotten during the design and implementation of OGSA-DAI. The Open Archives Forum [58]  has 
an alternative approach, centred on the harvesting of metadata, and, again, interaction between that 
group and the OGSA-DAI developers might be beneficial. The major challenge for the future in the 
data mining/visualization overlap region is the development of standards that will enable users to 
select and deploy appropriate tools. Standards are required for the description of the inputs and 
outputs from tools, as well as what they do to get from one to the other, and, ultimately, these 
descriptions should be machine-readable, so that they can be used in the Grid resource discovery 
process. There is scope for further interaction between data miners and visualization researchers to 
use data mining techniques to speed up visualization algorithms: this is already happening to some 
extent (e.g. using clustering techniques to circumvent the need to visualize very large numbers of data 
points), but more could be done. 


3.4.4. Visualization and astronomy 


Astronomy data are largely static, which simplifies their visualization, but they tend to be manipulated 
in large volumes, which introduces practical problems. In particular, it is not clear where to strike the 
balance between the client and server when visualizing large amounts of remote data: it is clear that 
low latency is a very important requirements of a successful visualization tool. Astronomers want to 
know more about what visualization tools are available for use, particularly those which are 
modifiable to meet particular requirements and those which can be integrated with statistical analysis 
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tools for data exploration. One concern is whether visualization tools retain enough of the metadata 
describing the original data to allow quantitative manipulation of visualized data – i.e. it is not enough 
to present an image which aids understanding of a dataset, the user wants to be able to make 
measurements directly on that rendered image. 


3.4.5. Visualization and bioinformatics 


Visualization is used in many areas within bioinformatics, with varying success: for some topics (e.g. 
the mapping of a single chromosome) good tools already exist, while for others (e.g. visualization to 
aid the comparison of genes from different species) they do not, often both because of the screen 
space problems common to many visualization problems and because sufficient thought has not gone 
into how best to visualize the data to aid comprehension. In many area of bioinformatics (e.g. the 
viewing of phylogenetic trees) it is important to be able to view information at several levels of detail 
and shift between them readily, which can be challenging for software. Some bioinfomatics 
visualizations are also computationally challenging: for example, in polymer docking studies for drug 
design, one wants to be able to manipulate fairly complex molecules, but this involves the 
recalculation of intermolecular forces every time a movement is made. A general complaint is that 
visualization tools are not sufficiently interactive to allow effective exploration of data: often one has 
to wait for a server to generate a new GIF image in response to a CGI request with new parameter 
values, rather than being able to change the rendered image more interactively. The visualization of 
biological data is also hampered by the wide range of data types and exponentially increasing volume 
of data available, and by the lack of interoperability of existing tools. To overcome this problem 
clearly requires the development of policies on data sharing and standards (best enforced by funding 
agencies?), and it is hoped that XML might form the technical basis of solutions to problems of data 
format and the description and interoperability of tools. 
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Appendix A: Workshop Programme 
Day One: Thursday, October 24th 


10.00 Welcome & introduction to NeSC/eSI (Malcolm Atkinson) 
10.15 Introduction to workshop and its aims (Bob Mann) 
10.30 Scientific Motivation overview (Roy Williams) 
11.00 Coffee 
11.30 Data Mining overview (Chris Williams) 
12.00 Data Visualization overview (Ken Brodlie) 
12.30 Charge to groups in Breakout Session 1* 
13.00 Lunch 
13.30 Breakout Session 1 
15.00 Tea 
15.30 SDMIV Application Talk 1 (Bob Nichol) 
16.15 SDMIV Application Talk 2 (Tom Jackson) 
17.00 SDMIV Application Talk 3 (David Gilbert) 
17.45 Formal close of Day One 
19.30 Dinner  


Day Two: Friday, October 25th 


09.00 SDMIV Application Talk 4 (Julian Gallop) 
09.20 SDMIV Application Talk 5 (Amos Storkey) 
09.45 Current computational infrastructure (Rob Baxter) 
10.30 Coffee 
11.00 Future computational infrastructure (Malcolm Atkinson) 
11.45 Report back from Breakout Session 1 and discussion 
13.00 Lunch 
13.45 Choice of topics for Breakout Session 2.** 
14.00 Breakout Session 2 
15.00 Tea 
15.30 Report back from Breakout Session 2 and panel discussion of future actions. 
17.00 Close of workshop 


Notes on Breakout Sessions: 
*  Breakout Session 1: Identify challenges in overlap areas between principal communities 
represented at workshop, and list requirements that they place on computational infrastructure. 
Breakout groups: data mining and astronomy; data mining and bioinformatics; data mining and 
visualization; visualization and astronomy; visualization and bioinformatics. 
** Breakout Session 2: Randomly-selected groups, each to identify up to six important issues to be 
studied further over the next 12-18 months, particularly where these impact on infrastructure 
development, and/or suggest components for the SDMIV Grid Application Component Library 
envisaged by Malcolm Atkinson’s Future Computational Infrastructure talk. 
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