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Approach Via Density Estimation
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Abstract—We consider the particle smoothing problem for
state-space models where the transition density is not available
in closed form, in particular for continuous-time, nonlinear
models expressed via stochastic differential equations (SDEs).
Conventional forward-backward and two-filter smoothers for the
particle filter require a closed-form transition density, with the
linear-Gaussian Euler-Maruyama discretisation usually applied
to the SDEs to achieve this. We develop a pair of variants using
kernel density approximations to relieve the dependence, and in
doing so enable use of faster and more accurate discretisation
schemes such as Runge-Kutta. In addition, the new methods
admit arbitrary proposal distributions, providing an avenue to
deal with degeneracy issues. Experimental results on a Functional
Magnetic Resonance Imaging (fMRI) deconvolution task demon-
strate comparable accuracy and significantly improved runtime
over conventional techniques.

Index Terms—Particle filter, sequential Monte Carlo, smooth-
ing, state-space models, density estimation, continuous time.

I. INTRODUCTION

IN fields as diverse as finance, ecology, the physical sciences
and biology, dynamical phenomena are naturally modelled

using continuous-time stochastic processes. Such equations
are a mainstay of stock market prediction, neural modelling,
environmental monitoring and other applications. More re-
cently, they have arisen in the hemodynamics underpinning
Functional Magnetic Resonance Imaging (fMRI), the case
study for this work. While continuous time may be a natural
avenue of expression for such models, their use in Bayesian
inference is underdeveloped, where a first step is often to
discretise in time.

Continuous-time models most often take the form of ordi-
nary (ODE) or stochastic (SDE) differential equations. The
simulation of trajectories forward in time has been well
studied, with various numerical integration schemes avail-
able [1], [2]. It therefore seems sensible to consider simulation-
based approaches to inference with these models, such as
the Kalman [3], unscented Kalman [4], [5] and particle [6]
filters and associated smoothers. The particle filter is our
focus here, being founded on the fewest assumptions and most
generally applicable. We particularly consider the smoothing
problem, where the challenges of continuous time appear most
significant.

A. State-space model formulation

For an ascending sequence of T time points t1, . . . , tT ,
we are provided with measurements y(t1), . . . ,y(tT ) ∈ RM
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indicative of the latent state x(t) ∈ RN of a dynamical system
across time t. The state of the system transitions according to
a stochastic Markov function f(x, t), with observations of the
state predicted via a stochastic function g(x).

For notational convenience we let x0 denote the initial state
of the system at time t = 0, and define xn := x(tn) and
yn := y(tn). In referring to sequences, zi:j with i < j refers
to the set {zi, . . . , zj} for some symbol z.

For all n = 1, . . . , T , to solve the filtering problem we
wish to estimate the filter densities p(xn |y1:n), and to solve
the smoothing problem the smooth densities p(xn |y1:T ). The
density p(xn+1 |xn) features prominently in our discussions,
and we refer to it as the transition density.

B. Stochastic differential equations

We are interested in the class of models where the transition
density is not available in closed form, in particular where f(·)
is known only up to its time derivatives via the SDE:

dx = a(x, t)dt︸ ︷︷ ︸
drift

+B(x, t)dW︸ ︷︷ ︸
diffusion

, (1)

where dW is an increment of the multivariate Wiener process,
a model of simple Brownian motion [7]. The equation consists
of a deterministic drift component and stochastic diffusion
component. Eliminating the diffusion component gives a de-
terministic ODE.

In some cases Itô integration or Fokker-Planck equations [7]
can provide a closed form solution to the transition density. In
the general case, however, we must rely on numerical integra-
tion of the differential equations, constituting a discretisation
of time. The simplest method for doing so is the first-order
Euler-Maruyama scheme [2]:

Algorithm 1 (Euler-Maruyama scheme): Let tn and xn ≈
x(tn) be given. Then, for time step ∆t and Wiener increment
∆W ∼ N (0, I

√
∆t):

tn+1 = tn + ∆t
xn+1 = xn + a(xn, tn)∆t+B(xn, tn)∆W.

This is a linear discretisation with additive Gaussian noise,
providing a closed-form transition density over a single step.
The step size must be sufficiently small, however, for linearity
to be a credible approximation of local dynamics. Higher-
order nonlinear schemes, such as Runge-Kutta, admit larger
step sizes while maintaining accuracy, and so tend to compute
faster. Development of higher-order methods for SDEs is
difficult, as each step squeezes the Wiener increment through a
nonlinear function, such that Gaussianity is not maintained. It
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is not sufficient to simply apply a single step of a deterministic
higher-order method for ODEs, such as Runge-Kutta, and
then add a noise sample [8]. While specialist SDE integration
schemes exist, a particularly practical choice is to observe
that any scheme for ODEs can be adapted to SDEs with
approximately half the order [9] by converting the Itô equation
(1) into its equivalent Stratonovich form [2, p157]:

dx =

[
a(x, t)− 1

2

∑
i

∂B(x, t)
∂xi

Bi∗(x, t)T

]
dt+B(x, t)◦dW,

where Bi∗(x, t) is the ith row of B(x, t). The extra drift
term arises as a result of calculating the derivative at the
midpoint of the increment under Stratonovich, rather than at
the beginning as under Itô. Under Stratonovich, the standard
chain rule of calculus applies, unlike under Itô, so that existing
solvers for ODEs may be applied. All of this leads to the
following extension of the Runge-Kutta algorithm for ODEs
to Itô SDEs [9]:

Algorithm 2 (Stochastic Runge-Kutta scheme): Let tn and
xn ≈ x(tn) be given. Then, for time step ∆t and Wiener
increment ∆W ∼ N (0, I

√
∆t), let h(x, t,∆t,∆W):

h(·) = a(x, t)− 1
2

∑
i

∂B(x, t)
∂xi

Bi∗(x, t)T +B(x, t)
∆W
∆t

where Bi∗(x, t) is the ith row of B(x, t). Then, for an S stage
numerical scheme:

tn+1 = tn + ∆t

xn+1 = xn + ∆t
s∑

i=1

biki,

where:

k1 = h(xn, tn,∆t,∆W)

ki=2,...,S = h(xn + ∆t
i−1∑
j=1

ai,jkj , tn + ci∆t,∆t,∆W),

The number of stages, S, and coefficients ai,j , bi and ci,
are selected to satisfy the conditions for some desired or-
der of accuracy [1]. Popular configurations are the six-stage
(S = 6), fifth-order Dormand-Prince [10] and fourth-order
Fehlberg [11] schemes.

C. Particle smoothing

The particle filter [6], [12] recursively approximates the
filter density at time tn with a weighted set of P samples
{(s(i)

n , π
(i)
n )}, where i = 1, . . . , P , so that p(xn |y1:n) ≈∑P

i=1 π
(i)
n δ(xn − s(i)

n )/
∑P

i=1 π
(i)
n . Smooth densities can be

obtained from this via application of either the two-filter or
forward-backward smoother.

Consider the following factorisation of the smooth density:

p(xn |y1:T ) ∝ p(yn:T |xn)p(xn |y1:n−1) (2)

∝ p(xn |yn:T )
p(xn)

p(xn |y1:n−1). (3)

In this way the smooth density may be obtained via the
combination of both forward and backward (in time) filters.

The priors p(xn) will not typically be known in closed
form except for linear-Gaussian models. In such cases each
may be replaced by an arbitrary approximation γn(xn) [13].
Suitable approximations include the equilibrium distribution
for a stationary process, or an analytical form fit to the
output of model simulations [13]. When these are incorporated
into the backward filter only approximate filter densities are
obtained, but their reappearance in Algorithm 4 corrects for
this [14] to deliver exact smooth densities, up to effects on
sampling efficacy [13]:

Algorithm 3 (Backward particle filter): Given the
weighted sample set {(s̃(i)

n+1, π̃
(i)
n+1)}, representing the

backward filter density p(xn+1 |yn+1:T ), approximate priors
γn(xn) and γn+1(xn), and a proposal distribution q(xn),
sample s̃(i)

n ∼ q(xn) and weight with:

π̃(i)
n =

p(yn | s̃(i)
n )γn(s̃(i)

n )

q(s̃(i)
n )

P∑
j=1

p(s̃(j)
n+1 | s̃

(i)
n )π̃(j)

n+1

γn+1(s̃(j)
n+1)

.

The weighted sample set {(s̃(i)
n , π̃

(i)
n )} then approximates the

backward filter density p(xn |yn:T ).
All that remains is to fuse the results to obtain the smooth

density.
Algorithm 4 (Two-filter smoother): Perform a filter forward

in time, and a filter backward in time, to obtain weighted
sample sets {(s(i)

n , π
(i)
n )} and {(s̃(i)

n , π̃
(i)
n )}, respectively, for

each time tn. Then, for time tn, let:

ψ̃(i)
n =

π̃
(i)
n

γn(xn = s̃(i)
n )

P∑
j=1

p(xn = s̃(i)
n |xn−1 = s(j)

n−1)π(j)
n−1.

The weighted sample set {(s̃(i)
n , ψ̃

(i)
n )} then approximates the

smooth density p(xn |y1:T ).
Runtime complexity of the method is O(TP 2) given the

all-pairs transition density calculations in both Algorithms 3
and 4. In some cases this may be reduced to O(T lgP lgP )
using N -body methods [15], which we discuss further in Sec.
I-D. Memory requirements are O(TNP ) for storage of filter
results required by the smoother.

An alternative to the two-filter smoother is the forward-
backward smoother:

Algorithm 5 (Forward-backward smoother): Perform a fil-
ter forward in time, at the conclusion of which p(xT |y1:T )
is known and approximated by {(s(i)

T , π
(i)
T )}. Initialise with

ψ
(i)
T = π

(i)
T and proceed recursively as follows:

α(i,j)
n = p(xn+1 = s(i)

n+1 |xn = s(j)
n )

γ(i)
n =

P∑
j=1

π(j)
n α(i,j)

n

δ(j)n =
P∑

i=1

ψ
(i)
n+1

α
(i,j)
n

γ
(i)
n

ψ(j)
n = π(j)

n δ(j)n .

The weighted sample set {(s(i)
n , ψ

(i)
n )} then approximates the

smooth density p(xn |y1:T ).
See [15]–[17] for further details. Runtime complexity is

O(TP 2) given the all-pairs transition density calculations (the
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α
(i,j)
n terms) at each step. Like the two-filter smoother, this

may be reduced to O(T lgP lgP ) in the best case for some
circumstances [15]. Memory requirements are O(TNP ) for
storage of filter results required by the smoother. If α(i,j)

n terms
are precalculated ahead of both γ(i)

n and δ(i)n , a constant factor
gain to runtime is obtained at the burden of O(P 2) storage,
although αn may be sparse [18].

D. Contribution

The crux of the problem that we address is this: in order
to accurately and efficiently simulate from an SDE model, we
wish to employ a high-order numerical integration scheme; in
doing so, however, the transition density becomes unavailable
in closed form. While we can use higher-order numerical
integrators to draw some sn+1 ∼ p(xn+1 |xn = sn), we
cannot evaluate p(xn+1 = sn+1 |xn = sn). Existing parti-
cle smoothing methods assume that the transition density is
available in closed form; the aim of this work is to develop
methods which do not.

To elaborate, note the assumed closed form of the transition
density p(xn+1 |xn) in all of the methods presented. This
is available when using Euler-Maruyama over a single step,
although doing so inextricably ties the step size of the filter
or smoother to one sufficiently small to uphold the linear
discretisation, which can be expensive. Use of a proposal that
includes the transition density can cancel it and so facilitate
use of higher-order discretisations. This is the case for the
bootstrap [12] and regularised [19], [20] particle filters, and
auxiliary particle filter [21] when the lookahead is a draw from
the transition. It is not the case for more elaborate schemes
such as the unscented particle filter [22]. We are not aware of
the same idea having been used on the smoothing problem.

Both the two-filter and forward-backward smoothers obtain
the smooth density by reweighting samples obtained during
a filtering pass – a backward filter in the former case, and
a forward filter in the latter. This may be problematic if
these samples fail to support the smooth density adequately,
and the smoother may then degenerate – heaping weight
on a single point to represent the smooth density. This is
a secondary issue that our methods may help to address,
by admitting arbitrary proposal distributions to simulate new
particles during the smoothing pass. Some recent work has
considered the same [13], [14].

A number of existing works are worth contrasting. In [23],
m − 1 latent points are introduced between each pair of
observations, and then batch Gibbs sampling performed. This
corresponds precisely to an Euler-Maruyama discretisation,
with m tuned to control error appropriately. Such a low-
order discretisation may be unstable for stiff models, and
we demonstrate in this work that it may be computationally
prohibitive also. Our own methods admit higher-order dis-
cretisations. The random-weight particle filter [24] replaces
the transition density with a rejection sampling that converges
to it. This relies on the exact algorithm [25] for sampling
Brownian bridges, which requires a particular form of SDE
with gradient drift and additive diffusion. Our own methods
apply to the broader class of equations embodied by (1),

admitting arbitrary drift and correlated diffusion terms; this
will be required for our experimental model in Section III.
Finally, variational methods may also be applicable [26], [27].
These require the fit of a tractable density to the intractable
posterior over trajectories, which typically means fitting a
simplified linear-Gaussian model. Our own methods attempt
to fit the original state space model.

The two kernel methods presented in this work are of
computational complexity O(T lgP lgP ) in the best case
and O(TP 2) in the worst. These derive from performing
evaluations on a kernel density [28] over P support points
for P query points, by constructing a partition tree (such
as a kd tree) over both sets of points and performing a
dual-tree computation – techniques inherited from N -body
simulation [29]. The best case corresponds to only one support
point contributing significantly to the density approximation
at each query point, while the worst case occurs when all
support points provide significant contributions for all query
points. Similar ideas have been explored in [15] to address
the O(TP 2) bottleneck of the conventional forward-backward
and two-filter smoothers. In that work, the transition density
must be of a closed-form similarity kernel K(d(xn,xn−1)),
where K(·) denotes the closed-form kernel over the distance
d(·). This may be difficult to apply for anything but additive
noise structures. By not requiring the transition density, the
ideas presented here are not limited in this way, albeit via
the introduction of additional approximations over those in
[15]. A less complex O(TP ) smoother is given in [14].
This again requires a closed-form transition density, something
not assumed here in order support a broader class of models,
specifically those defined with SDEs.

II. METHODS

We propose two novel methods for particle smoothing
with SDE models, using density approximations to facilitate
the cancellation of the transition density. Further details are
available in [30].

A. Kernel forward-backward smoother

The kernel forward-backward smoother follows a similar
derivation to that of the forward-backward smoother, with
the introduction of density approximation to permit arbitrary
proposal distributions for importance sampling. Factorise the
smooth density as follows:

p(xn |y1:T )
∝ p(yn+1:T |xn)p(xn |y1:n)

∝ p(xn |y1:n)
∫
p(xn+1 |xn)p(yn+1:T |xn+1)dxn+1

∝ p(xn |y1:n)
∫
p(xn+1 |xn)

p(xn+1 |y1:T )
p(xn+1 |y1:n)

dxn+1.

To eliminate the integral and simplify the derivation, consider
the joint:

p(xn:n+1 |y1:T ) =
p(xn |y1:n)p(xn+1 |xn)p(xn+1 |y1:T )

p(xn+1 |y1:n)
.

(4)
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Now consider importance sampling from this with a proposal
distribution q′(xn:n+1) of the form:

q′(xn:n+1) = p(xn+1 |xn)q(xn),

so as to cancel the intractable transition density in (4). Drawing
(s(i)

n , r(i)
n+1) ∼ q′(xn:n+1), the weight calculation is reduced

to:

ψ(i)
n =

p(xn = s(i)
n |y1:n)p(xn+1 = r(i)

n+1 |y1:T )

p(xn+1 = r(i)
n+1 |y1:n)q(xn = s(i)

n )
,

and the weighted sample set {(s(i)
n , ψ

(i)
n )} represents the

smooth density at time tn.
The filter densities p(xn |y1:n) and p(xn+1 |y1:n) may be

obtained through a preceding filter, and the smooth density
p(xn |y1:T ) is known recursively. Depending on the selection
of q(xn), some of these will need to be approximated. Several
techniques could be used for this, such as Gaussian mixtures or
variational fits. We choose to use kernel density estimates [28],
which we denote using pK(·). The algorithm is summarised
as:

Algorithm 6 (Kernel forward-backward smoother):
Perform a filter forward in time, at the conclusion
of which p(xT |y1:T ) is known and approximated
by {(s(i)

T , ψ
(i)
T = π

(i)
T )}. Then, for time tn, draw

s(i)
n from some importance distribution q(xn), draw

r(i)
n+1 ∼ p(xn+1 |xn = s(i)

n ) via numerical integration, and
let:

ψ(i)
n =

pK(xn = s(i)
n |y1:n)pK(xn+1 = r(i)

n+1 |y1:T )

pK(xn+1 = r(i)
n+1 |y1:n)q(xn = s(i)

n )
,

The weighted sample set {(s(i)
n , ψ

(i)
n )} then approximates the

smooth density p(xn |y1:T ).
The interest now is to select an appropriate proposal distri-

bution q(xn). One option is to set q(xn) = p(xn |y1:n). Recall
that p(xn |y1:n) is approximated by the weighted sample set
{(s(i)

n , π
(i)
n )}. By preserving these samples and propagating

each through the SDEs of the system to obtain {r(i)
n+1}, the

smoothed weight reduces to:

ψ(i)
n =

pK(xn+1 = r(i)
n+1 |y1:T )

pK(xn+1 = r(i)
n+1 |y1:n)

π(i)
n . (5)

Clearly, this will suffer from the same degeneracy issue of
the forward-backward smoother if the filter density fails to
adequately support the smooth density. Nevertheless, it is
suitable in many situations and worth considering for its
potential efficiency, given that one kernel density evaluation
is eliminated. Other selections of proposal are likely to be
model-specific, e.g. we use a tailored choice in Section III.

The algorithm requires two kernel density evaluations at
each time step, and these dominate the runtime complexity. If
these are performed using a dual-tree algorithm [29], runtime
complexity is O(T lgP lgP ) in the best case, and O(TP 2)
in the worst. Various optimisations are available, particularly
if resampling can be limited during the forward pass [30].

B. Kernel two-filter smoother

Like its counterpart above, the kernel two-filter smoother
may be compared to the two-filter smoother, having a similar
derivation, and exploiting kernel densities for applicability to
continuous-time models. In contrast to the standard two-filter
smoother, however, the approach does not involve an explicit
calculation of the backward filter density p(xn |yn:T ), nor the
prior p(xn) or its substitute γn(xn).

Factorise the smooth density as follows:

p(xn |y1:T ) ∝ p(yn:T |xn)p(xn |y1:n−1),

expanding the likelihood term:

p(yn:T |xn)
= p(yn |xn)p(yn+1:T |xn)

= p(yn |xn)
∫
p(yn+1:T |xn+1)p(xn+1 |xn)dxn+1.

Now observe:

p(xn |yn:T )
∝ p(xn)p(yn:T |xn)

∝ p(xn)p(yn |xn)
∫
p(yn+1:T |xn+1)p(xn+1 |xn)dxn+1,

and consider the joint:

p(xn:n+1 |yn:T ) (6)
∝ p(xn)p(yn |xn)p(yn+1:T |xn+1)p(xn+1 |xn). (7)

Now consider importance sampling from this using a proposal
distribution q′(xn:n+1) of the form:

q′(xn:n+1) = p(xn+1 |xn)q(xn),

so as to cancel the intractable transition density in (7). Drawing
(s(i)

n , r(i)
n+1) ∼ q′(xn:n+1), the weight calculation for the

backward filter is:

π̃(i)
n =

p(xn)p(yn |xn = s(i)
n )pK(yn+1:T |xn+1 = r(i)

n+1)

q(xn = s(i)
n )

,

so that the weighted sample set {(s(i)
n , π̃

(i)
n )} would represent

the backward filter density, if not for the expected unavailabil-
ity of the prior p(xn). Consider the weight calculation for the
backward likelihood:

β(i)
n =

π̃
(i)
n

p(xn)

=
p(yn |xn = s(i)

n )pK(yn+1:T |xn+1 = r(i)
n+1)

q(xn = s(i)
n )

,

noting that the prior p(xn) has now been cancelled. The
weighted sample set {(s(i)

n , β
(i)
n )} now represents the back-

ward likelihood p(yn:T |xn). This alone is a sufficient basis
for the recursion of the method; the backward filter density is
not required.

Note that pK(yn+1:T |xn+1) gives a kernel likelihood es-
timate. In terms of implementation, this is, for all intents and
purposes, identical to a kernel density estimate, although need
not integrate to one over xn, and indeed may be infinite.
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Recalling (3), the smooth density weights may be calculated
by:

ψ(i)
n = β(i)

n pK(xn = s(i)
n |y1:n−1),

and the weighted sample set {(s(i)
n , ψ

(i)
n )} represents the

smooth density at time tn. The algorithm is summarised
below:

Algorithm 7 (Kernel two-filter smoother): Perform a filter
forward in time, at the conclusion of which p(xT |y1:T ) is
known and approximated by {(s(i)

T , ψ
(i)
T = π

(i)
T )}. Let:

β
(i)
T =

p(yT |xT = s(i)
T )

pK(xT = s(i)
T |y1:T )

ψ
(i)
T ,

so that p(yT |xT ) is approximated by a kernel likelihood over
{(s(i)

T , β
(i)
T )}.

Then, for time tn, draw s(i)
n from some importance distri-

bution q(xn), draw r(i)
n+1 ∼ p(xn+1 |xn = s(i)

n ), and let:

β(i)
n =

p(yn |xn = s(i)
n )pK(yn+1:T |xn+1 = r(i)

n+1)

q(xn = s(i)
n )

.

The weighted sample set {(s(i)
n , β

(i)
n )} then approximates the

backward likelihood p(yn:T |xn). Now, let:

ψ(i)
n = β(i)

n pK(xn = s(i)
n |y1:n−1).

The weighted sample set {(s(i)
n , ψ

(i)
n )} then approximates the

smooth density p(xn |y1:T ).
Similar options for the proposal may be used as for the ker-

nel forward-backward smoother, although in this case note that
the filter density provides no additional cancellation. No other
obvious cancelling proposals are available, partly because
unlike the forward-backward smoother, the smooth density is
calculated as an aside – it is the likelihood calculation that is
essential for the recursion. Even the uncorrected filter density
p(xn |y1:n−1), providing cancellation for smoothed weights,
needs to be evaluated to recover likelihood weights for the
next step of the recursion.

The algorithm requires two kernel density (likelihood) eval-
uations. This is fewer than for the kernel forward-backward
smoother, although fewer optimisations are available also [30].
If these are performed using the dual-tree algorithm [29],
runtime complexity is O(T lgP lgP ) in the best case, and
O(TP 2) in the worst.

III. EXPERIMENTS

We apply the methods to a test case in the domain of
Functional Magnetic Resonance Imaging (fMRI) [31], [32],
a medical imaging modality exploiting the Blood Oxygen
Level Dependent (BOLD) contrast [33] to form images of
functional activity in the brain. Whole brain volumes of order
105 voxels are acquired at a rate of one every few seconds
while a subject performs some task – simple finger tapping or
visual stimulation being common examples.

The basic intuition behind fMRI is that neural activity has
metabolic demands, such that an increase in neural activity in
part of the brain causes an increase in the Cerebral Metabolic
Rate of Oxygen (CMRO2) in the surrounding capillary bed.

The vascular system responds with a delayed surge of fresh
arterial blood, increasing Cerebral Blood Flow (CBF) through
the affected area, and consequently Cerebral Blood Volume
(CBV). The response overcompensates for demand, such that
the concentration of oxy- compared to deoxy-hemoglobin in
the area increases. The BOLD signal, being a contrast between
the two, varies accordingly.

Relative to the rapid fluctuations typical of neural activity,
the hemodynamic response is slow and delayed, taking on the
order of seconds. To study neural correlations or interactions
across the brain, it is necessary to strip away the observed
hemodynamic response to reveal the underlying neural ac-
tivity [34]. We concentrate on this task, deconvolving the
hemodynamic response in individual voxels in a time series
of brain volumes acquired by fMRI.

A. Model

We build a stochastic differential model of the input, neural,
hemodynamic and BOLD activity in a single region of interest
in the brain during an fMRI experiment. The BOLD signal is
observed, while all other variables are latent state variables.
Fig. 1 depicts sample trajectories from this model to help
illustrate its typical behaviour.

Input, u, consists of the stimulus associated with the exper-
imental task, commonly a simple box-car function denoting
the intervals of rest and experimental stimulus.

Neural activity, z, responds to u according to a stochastic
extension of a one-dimensional dynamic causal model [35]:

dz = [(a+ bu)z + cu] dt+ σzdW,

where a, b, c and σz are parameters, noting that the latter
scales the diffusion term on z.

The hemodynamic response to this neural activity is based
around the balloon model [36], [37], which models a venous
compartment in the brain as a balloon using Windkessel
dynamics [38]. It begins with an inflow of arterial blood, f ,
which responds to z via an abstract “vasodilatory” damped
oscillation signal, s [39]:

df = sdt+ fσfdW

ds =
(
εz − s

τs
− f − 1

τf

)
dt,

where ε, τs, τf and σf are parameters.
The inflow of blood affects the CBV, normalised to vol-

ume at rest, v, and deoxyhemoglobin (dHb) concentration,
normalised to that at rest, q. Oxygen is extracted from the
inflow, and partially deoxygenated blood expelled, and so v
and q vary according to [36]:

dq =
1
τ0

(
f

1− (1− E0)
1
f

E0
− v 1

α−1q

)
dt+ qσqdW

dv =
1
τ0

(f − v 1
α )dt+ vσvdW,

with parameters τ0, E0, α, σq and σv .
Finally, we introduce w as a baseline BOLD signal during

rest periods, allowed to slowly move via a random walk with
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Fig. 1. Three sample trajectories simulated from the fMRI model described in Sec. III-A with random parameter configurations drawn from the prior. Input,
u, consists of a 0-1 box-car function switching every 24.6s, as in the experimental data sets. Note in particular the several seconds delay of the BOLD signal
(y) over the state variable of most interest, neural activity (z), motivating the deconvolution task.

diffusion parameter σw to absorb large-scale trends in the data:

dw = σwdW.

For the observation model, the relative BOLD signal change
at any time is given by [36]:

∆ŷ = V0

[
k1(1− q) + k2

(
1− q

v

)
+ k3(1− v)

]
,

converted to an absolute measurement ŷ for comparison with
actual measurements y1:T via the baseline signal w and an
independent noise source ξ ∼ N (0, 1):

ŷ = w(1 + ∆ŷ) + σyξ,

with parameters V0, k1, k2 and k3.
Hemodynamic parameters are fixed to experimentally de-

rived values from the fMRI literature [35], [36]. Diffusion
parameters are fixed with magnitudes that account for epis-
temic uncertainty in the otherwise deterministic model itself.
See Table I.

A fixed value of -1 is used for a to ensure identifiability.
Remaining parameters, b and c, are estimated online, with an
orthogonal Gaussian prior given in Table I. Priors favour a
slower decay to equilibrium, important for identifiability under
infrequent observations.

An orthogonal Gaussian prior is given over the initial values
of all state variables, as in Table I. Recall that f , q and v
are normalised to their rest level, so that a prior mean of
1 is appropriate. Standard deviations are nominal. While s
and z may be negative, their magnitude is expected to be
comparable to f , q and v; their priors reflect this. A sample
from the prior is obtained by drawing from the Gaussian and
then simulating the system for 12 s with a fixed input of zero
to reach equilibrium.

While the introduction of stochasticity, in the form of
the Wiener process, is novel for this model, we have taken
care to maintain its intuition, carefully using it to emphasise
the uncertainty in the coupling between neural activity and
induced blood flow, while also accounting for the expected
noise in a biological system such as this.

B. Data

Real experimental data is used in the form of the SessFX
data set, collected during a simple finger tapping exercise.
Using a Siemens Vision at 2 T with a TR of 4.1 s, a healthy

23-year-old right-handed male was scanned on 33 separate
sessions over a period of two months. In each session, 80
whole volumes were taken, with the first two discarded to
account for T1 saturation effects. The experimental paradigm
consists of alternating 6TR blocks of rest and tapping of
the right index finger at 1.5Hz, where tapping frequency is
provided by a constant audio cue, present during both rest
and tapping phases. Input, u, therefore consists of a box-car
function that starts with a value of zero for 6TR, followed by
one for 6TR, and repeating.

All scans across all sessions were then realigned using
SPM5 [40] and a two-level random effects analysis performed,
from which four voxels were selected as exhibiting interesting
activity. For each voxel, the mean across all sessions is taken
to act as the data set.

A comparable artificial data set, denoted Sim, is constructed
by fixing all parameters (b and c drawn from prior) and
simulating the model for the same length of time as the SessFX
set, taking an observation every 4.1 s. The model is simulated
using an RK9(8) Dormand-Prince integrator [10], different to,
and of higher-order than, those used during inference. The
importance of this artificial set is that it provides a ground-
truth trace of underlying neural activity with which to compare
the deconvolution obtained by various methods.

C. Results

We first apply the bootstrap, auxiliary and regularised
particle filters to deconvolution of the Sim set, using both
Euler-Maruyama and order 4(5) Fehlberg Runge-Kutta [11]
numerical integrators, abbreviated EM1 and RK4(5). EM1
uses a fixed time step of .05 to ensure tractability of the
transition density – this value selected by prior simulation with
an adaptive time step. RK4(5) adapts its time step to absolute
and relative error bounds of 10−3 and 10−2 respectively,
starting with a suggested size of .067, chosen as the mean step
size when simulating under a range of conditions (see [30]).

For the regularised particle filter, we use a Gaussian kernel
with bandwidth of khopt, where:

hopt(N,P ) =
[

4
(N + 2)P

] 1
N+4

(8)

is the optimal bandwidth for kernel density approximation of
an N -dimensional Gaussian using P Gaussian kernels [28],
and k is some constant fraction, for which we try several
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Parameter (θ) Value

ε .8

E0 .4

τ0 1.02

τ−1
f

.41

τ−1
s .65

Parameter (θ) Value

α .32

V0 .018

k1 .28

k2 2

k3 .4

Parameter (θ) Value

σz .1

σf , σq , σv .01

σw .05

σy 1.25

a −1

Variable (x) µx σx

b 0 .1

c 0 .5

w * 5

z, s 0 .1

f , q, v 1 .1

TABLE I
FIXED VALUES OF HEMODYNAMIC (BASED ON [35], [36]), NEURAL AND DIFFUSION PARAMETERS. GAUSSIAN PRIOR OVER NEURAL PARAMETERS TO BE

ESTIMATED AND INITIAL VALUES OF STATE VARIABLES. THE MEAN FOR w IS GIVEN BY THE MEAN OF ALL OBSERVATIONS IN REST BLOCKS.

values. While more rigorous means of bandwidth selection
exist, such as cross-validation, these are expensive to perform
at every step of a filter or smoother, so we prefer this simpler
approach. For the bootstrap and auxiliary particle filters, sam-
ples of parameters will deplete as a side effect of resampling
as the filter proceeds, as they have no dynamic of their own.
Conversely, the kernel density resampling of the regularised
particle filter introduces stochastic innovations to parameter
samples at each step [19], [20], [41], such that alternative
values are explored. This is equivalent to introducing an
artificial dynamic to these otherwise static parameters.

We apply the kernel forward-backward and kernel two-filter
smoothers over the results of the regularised particle filter,
using the same bandwidth as the filter. While any of the filters
may be used for this purpose, the regularised particle filter
provides a consistent interpretation of the time marginals as
kernel densities, and so has some intuitive appeal.

We use two proposals for these kernel smoothers. The first is
the filter density, uncorrected in the case of the kernel two-filter
smoother. The second is constructed by drawing P samples
from the last two blocks (recall each block is 6TR = 24.6s) of
the filter results, replacing their w components with a sample
drawn from the filtered marginal of w at the current time,
and building a kernel density over the result. We refer to the
former as the Filter proposal, and the latter as the Custom
proposal. The motivation behind the latter is that neural
and hemodynamic activity converges to an input-switched
stationary regime. We expect the filter to poorly fit this regime
while it converges at low t, but nearing T , certainly in the last
two blocks, we expect the estimate to be reasonably good,
making it a suitable proposal for smoothing at all times. The
BOLD baseline w, on the other hand, wanders randomly, and
the marginal filter results are our best guess at it.

For comparison we apply the conventional forward-
backward smoother over the results of the EM1 filter runs, with
one caveat: as s is deterministic, for each particle at time tn+1,
only one particle at time tn has positive probability of reaching
it. For this reason we add nominal additive Gaussian noise
with variance 10−4 to s at each step for the smoothing pass
only. Our implementation is O(TP 2), using sparse matrices
for improved performance [18]. While methods exist using
dual-tree evaluations as for our kernel smoothers [15], the
correlated noise in this model confounds their application.

Results across many runs of each filter and smoother, as
applied to the Sim data set, are summarised in Table II. As a
measure of accuracy in deconvolving the neural signal we use
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Fig. 3. Runtime scaling across P . Solid lines represent means and shaded
area one standard deviation either side, across 40 runs. Both kernel smoothers
use bandwidth of 0.1hopt and filter as proposal.

weighted Root Mean Squared Error (RMSE) against known
ground truth, providing a combined error for both state and
parameters, as well as separate errors for each. A weighted
RMSE may be distorted when the variance in weights is large,
if a sample of significant weight happens to fall close to the
ground truth. To qualify this, the table also includes Effective
Sample Size (ESS) [42] across the normalised weights at
all time points. Resampling introduces dependencies between
samples, while ESS assumes independent samples – as a
simple measure of weight variance to qualify RMSE figures
this does not seem critical, however.

Results for the four regions of the SessFX set are given
for the regularised particle filter, kernel forward-backward
smoother and kernel two-filter smoother in Fig. 2, using the
custom proposal at a bandwidth of 0.1hopt in all cases.

Fig. 3 gives some indication of how runtime scales across
P . All experiments are carried out on a quad-core Intel Xeon
CPU at 3 GHz with 4 Gb memory; the job distributed over all
four cores using the dysii Dynamic Systems Library (www.
indii.org/software/dysii).

IV. DISCUSSION

For the fMRI deconvolution test case, the kernel smoothers,
using higher-order integrators, appear to be at least as accurate
as, and substantially faster than the conventional forward-
backward smoother, using the low-order Euler-Maruyama inte-
grator (Table II). The visual comparison in Fig. 2 demonstrates
the practical utility of the methods on real data, where they
clearly correct the filtered neural signals for the SessFX data
set in early blocks. On the Sim data set, all filters achieve
comparable RMSE and ESS, but those utilising the higher-



IEEE TRANSACTIONS ON SIGNAL PROCESSING 8

Method Integrator Resampler Proposal Band. RMSE x,θ RMSE x RMSE θ ESS Runtime
PF EM1 Boot 0.923 (0.05) 0.863 (0.05) 0.325 (0.03) 14471 (1085) 18.42 (0.5)
PF EM1 Aux 0.943 (0.06) 0.883 (0.05) 0.330 (0.03) 15478 (1995) 19.20 (0.5)
PF RK4(5) Boot 0.920 (0.05) 0.855 (0.05) 0.339 (0.03) 14338 (1210) 4.03 (0.4)
PF RK4(5) Aux 0.909 (0.06) 0.847 (0.05) 0.329 (0.03) 15626 (1441) 4.26 (0.5)
PF RK4(5) Reg 0.1 0.903 (0.05) 0.840 (0.05) 0.331 (0.03) 14037 (1502) 3.98 (0.4)
PF RK4(5) Reg 0.2 0.913 (0.06) 0.850 (0.05) 0.333 (0.04) 13889 (1516) 3.95 (0.4)
PF RK4(5) Reg 0.3 0.925 (0.05) 0.863 (0.05) 0.332 (0.03) 13875 (1424) 4.11 (0.3)
FB EM1 Boot 0.598 (0.05) 0.521 (0.05) 0.290 (0.05) 2943 (800) 253.88 (12.4)
FB EM1 Aux 0.605 (0.06) 0.524 (0.05) 0.299 (0.05) 2985 (790) 253.72 (15.5)
KFB RK4(5) Reg Custom 0.1 0.559 (0.08) 0.524 (0.08) 0.181 (0.07) 727 (218) 6.26 (0.4)
KFB RK4(5) Reg Custom 0.2 0.622 (0.09) 0.587 (0.09) 0.196 (0.06) 2220 (907) 6.03 (0.5)
KFB RK4(5) Reg Custom 0.3 0.690 (0.08) 0.659 (0.07) 0.201 (0.06) 4048 (1238) 6.20 (0.4)
KFB RK4(5) Reg Filter 0.1 0.507 (0.04) 0.477 (0.04) 0.164 (0.05) 3826 (1389) 3.29 (0.3)
KFB RK4(5) Reg Filter 0.2 0.596 (0.09) 0.555 (0.07) 0.211 (0.07) 5741 (2344) 3.28 (0.4)
KFB RK4(5) Reg Filter 0.3 0.756 (0.05) 0.690 (0.05) 0.306 (0.05) 6690 (1630) 3.25 (0.4)
KTF RK4(5) Reg Custom 0.1 0.542 (0.07) 0.510 (0.06) 0.166 (0.09) 528 (165) 6.21 (0.4)
KTF RK4(5) Reg Custom 0.2 0.578 (0.07) 0.546 (0.07) 0.179 (0.06) 1653 (396) 5.95 (0.5)
KTF RK4(5) Reg Custom 0.3 0.626 (0.07) 0.598 (0.07) 0.177 (0.06) 2403 (444) 6.22 (0.4)
KTF RK4(5) Reg Filter 0.1 0.672 (0.09) 0.607 (0.09) 0.280 (0.06) 1206 (415) 3.93 (0.3)
KTF RK4(5) Reg Filter 0.2 0.705 (0.07) 0.639 (0.06) 0.293 (0.05) 3702 (1036) 3.96 (0.3)
KTF RK4(5) Reg Filter 0.3 0.738 (0.05) 0.671 (0.05) 0.305 (0.05) 5955 (1327) 3.82 (0.4)

TABLE II
RESULTS FOR EXPERIMENTS ON THE SIM DATA SET FOR THE PARTICLE FILTER (PF), AND FORWARD-BACKWARD (FB), KERNEL FORWARD-BACKWARD
(KFB) AND KERNEL TWO-FILTER (KTF) SMOOTHERS, USING BOOTSTRAP (BOOT), AUXILIARY (AUX) AND REGULARISED (REG) STRATEGIES FOR THE

FORWARD FILTER, AND EULER-MARUYAMA (EM1) AND FEHLBERG (RK4(5)) NUMERICAL INTEGRATORS. FOR KERNEL-BASED METHODS, k GIVES THE
CONSTANT FACTOR IN THE BANDWIDTH USED (SEE EQN. 8). ROOT MEAN SQUARE ERROR (RMSE) AGAINST GROUND TRUTH, EFFECTIVE SAMPLE SIZE

(ESS) AND RUNTIME (IN WALLCLOCK SECONDS) ARE GIVEN AS MEANS (AND STANDARD DEVIATIONS) ACROSS 40 RUNS WITH DIFFERENT RANDOM
NUMBER SEEDS USING P = 500 PARTICLES. RUNTIMES FOR SMOOTHERS DO NOT INCLUDE THAT OF THE PRECEDING FILTER.
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Fig. 2. Regularised particle filter (first column), kernel forward-backward smoother (second column) and kernel two-filter smoother (third column) results
for the SessFX data set: deconvolved neural activity (first four rows) and predicted BOLD signal (final four rows, actual observations as circles). Solid lines
represent means and shaded area two standard deviations either side, with vertical grid lines delimiting the periods of the box-car input. The custom proposal
with a bandwidth of 0.1hopt has been used.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 9

order RK4(5) integrator do so approximately five times faster
than those using the low-order EM1.

All smoothers improve on the accuracy of their base particle
filter, as should be expected. Runtime of the kernel smoothers
represents a major improvement over that of the forward-
backward smoother. The kernel forward-backward smoother
with filter proposal performs fastest overall – to be expected
given the additional optimisations available in this case [30].
Some caution should be taken in interpreting runtime results
given that implementations have not been thoroughly opti-
mised or tuned for the underlying hardware. However, the
faster performance of the kernel smoothers is consistent with
expectations given algorithmic complexity, recalling that they
areO(T lgP lgP ) in the best case toO(TP 2) for the forward-
backward smoother. Fig. 3 seems to confirm this.

Accuracy of the kernel smoothers compared to the forward-
backward smoother is largely comparable. One result stands
out: that of the kernel forward-backward smoother at k =
.1 with the filter proposal. This achieves significantly better
RMSE, while achieving a high ESS that musters confidence.
Both kernel smoothers achieve noticeably better RMSE with
the custom proposal at k = .1, but a low ESS indicates that
this fit may rely on only a few heavily weighted particles close
to the ground truth trajectory, without adequately supporting
the whole distribution. The custom proposal achieves less error
on parameter estimates – to be expected given it is based on
parameter estimates from the last time step of the filter.

The regularised particle filters and kernel smoothers intro-
duce error in the form of kernel density approximations in
addition to the sampling error inherent in all methods. Table
II gives some indication of the magnitude of this, noting that
RMSE results given are means and standard deviations over
multiple runs. Comparing, say, the bootstrap and auxiliary
against the regularised particle filters, with the RK4(5) inte-
grator, a small increase in RMSE is apparent as bandwidth of
the regularised method increases. This is dwarfed by the total
RMSE, however, suggesting that the additional error is only a
small addition to sampling error.

Kernel smoothers using the custom proposal rest on signifi-
cantly less ESS than those utilising a filter proposal. This is not
overly surprising: given that the custom proposal is bimodal,
only one mode will match the smooth density well at each time
point, so we might expect ESS to roughly halve. The custom
proposal improves RMSE for the kernel two-filter smoother,
but only at the highest bandwidth attempted for the kernel
forward-backward smoother. Runtime increases in both cases.

Kernel density approximations require selection of an ap-
propriate bandwidth parameter. RMSE noticeably improves
for the smoothers as bandwidth decreases in Table II, but
ESS also decreases sharply, so that one might question the
usefulness of some of the low-bandwidth results. This is to be
expected when one considers how the breadth of support for
the various densities approximated increases with bandwidth.
Larger bandwidths produce broader distributions that are likely
to increase ESS and provide greater robustness to degeneracy
in extreme cases. The combination of a custom proposal
with inflated bandwidth may be a generally good strategy to
mitigate degeneracy risks, albeit at some loss of precision.

The parameter estimation regimen employed here treats
parameters as slowly moving state variables. If static terms
are sought, estimates might be improved by adding shrinkage
to the kernel density approximations of the regularised particle
filter, compensating for the information loss caused by the arti-
ficial dynamic [20]. How this then might work in a smoothing
context is not clear, however. At the end of the forward pass
we would have the posterior over parameters p(θ |y1:T ), and
would wish to apply this at all time steps in place of the
filter densities p(θ |y1:n). Presumably this would involve a
draw from p(xn |y1:T ,θ)p(θ |y1:T ), but no existing samples
of this would be available. Arbitrary pairing of parameters
θ′ and state x′ from marginals would not work, as forward
propagation would then yield transient effects whenever x′

is not a member of the equilibrium dynamic induced by θ′.
We have avoided these complexities in the less sophisticated
treatment of parameters here. In practice, running multiple
smoothers, each conditioned on a posterior parameter sample,
may be as viable an option as any other to build a joint
posterior over both parameters and state.

While kernel densities are easy to apply, mileage may vary,
particularly for high-dimensional models. Other techniques
may be worth exploring, such as variational approximations.
The novel particle smoothers presented in this work are
equally applicable in such cases by replacing the pK(·) density
approximations with an alternative form.

Despite density approximation, the kernel smoothers
achieve comparable accuracy to the forward-backward
smoother with its exact evaluation of the transition density
(up to the additional noise on s introduced in Section III-C).
The use of density approximations facilitates higher-order
numerical integrators; we might speculate that the former’s
compromise in the probabilistic model is compensated for by
the latter’s more accurate simulation of the model dynamics.

V. CONCLUSION

This work has presented two novel methods for particle
smoothing in state-space models: the kernel forward-backward
and kernel two-filter smoothers. These are applicable to a
broader class of models than conventional techniques, in
particular where the formulation does not provide a closed-
form transition density, such as for continuous-time ODE
and SDE models. The methods are substantially faster than
conventional techniques, while accuracy is not compromised.
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