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Abstract


The problem of super-resolution involves generating feasible higher
resolution images, which are pleasing to the eye and realistic, from
a given low resolution image. This might be attempted by us-
ing simple filters for smoothing out the high resolution blocks or
through applications where substantial prior information is used
to imply the textures and shapes which will occur in the images.
In this paper we describe an approach which lies between the two
extremes. It is a generic unsupervised method which is usable in
all domains, but goes beyond simple smoothing methods in what it
achieves. We use a dynamic tree-like architecture to model the high
resolution data. Approximate conditioning on the low resolution
image is achieved through a mean field approach.


1 Introduction


Good techniques for super-resolution are especially useful where physical limitations
exist preventing higher resolution images from being obtained. For example, in
astronomy where public presentation of images is of significant importance, super-
resolution techniques have been suggested. Whenever dynamic image enlargement
is needed, such as on some web pages, super-resolution techniques can be utilised.
This paper focuses on the issue of how to increase the resolution of a single image
using only prior information about images in general, and not relying on a specific
training set or the use of multiple images.


The methods for achieving super-resolution are as varied as the applications. They
range from simple use of Gaussian or preferably median filtering, to supervised
learning methods based on learning image patches corresponding to low resolution
regions from training data, and effectively sewing these patches together in a consis-
tent manner. What method is appropriate depends on how easy it is to get suitable
training data, how fast the method needs to be and so on. There is a demand for
methods which are reasonably fast, which are generic in that they do not rely on
having suitable training data, but which do better than standard linear filters or
interpolation methods.


This paper describes an approach to resolution doubling which achieves this. The







method is structurally related to one layer of the dynamic tree model [9, 8, 1] except
that it uses real valued variables.


2 Related work


Simple approaches to resolution enhancement have been around for some time.
Gaussian and Wiener filters (and a host of other linear filters) have been used for
smoothing the blockiness created by the low resolution image. Median filters tend
to fare better, producing less blurry images. Interpolation methods such as cubic-
spline interpolation tend to be the most common image enhancement approach.


In the super-resolution literature there are many papers which do not deal with the
simple case of reconstruction based on a single image. Many authors are interested
in reconstruction based on multiple slightly perturbed subsamples from an image [3,
2] . This is useful for photographic scanners for example. In a similar manner other
authors utilise the information from a number of frames in a temporal sequence [4].
In other situations highly substantial prior information is given, such as the ground
truth for a part of the image. Sometimes restrictions on the type of processing
might be made in order to keep calculations in real time or deal with sequential
transmission.


One important paper which deals specifically with the problem tackled here is by
Freeman, Jones and Pasztor [5]. They follow a supervised approach, learning a
low to high resolution patch model (or rather storing examples of such maps),
and utilising a Markov random field for combining them and loopy propagation
for inference. Later work [6] simplifies and improves on this approach. Earlier
work tackling the same problem includes that of Schultz and Stevenson [7], which
performed an MAP estimation using a Gibbs prior.


There are two primary difficulties with smoothing (eg Gaussian, Wiener, Median
filters) or interpolation (bicubic, cubic spline) methods. First smoothing is indis-
criminate. It occurs both within the gradual change in colour of the sky, say, as well
as across the horizon, producing blurring problems. Second these approaches are
inconsistent: subsampling the super-resolution image will not return the original
low-resolution one. Hence we need a model which maintains consistency but also
tries to ensure that smoothing does not occur across region boundaries (except as
much is as needed for anti-aliasing).


3 The model


Here the high-resolution image is described by a series of very small patches with
varying shapes. Pixel values within these patches can vary, but will have a common
mean value. Pixel values across patches are independent. Apriori exactly where
these patches should be is uncertain, and so the pixel to patch mapping is allowed
to be a dynamic one.


The model is best represented by a belief network. It consists of three layers. The
lowest layer consists of the visible low-resolution pixels. The intermediate layer is a
high-resolution image (4 × 4 the size of the low-resolution image). The top layer is
a latent layer which is a little more than 2× 2 the size of the low resolution image.


The latent variables are ‘positioned’ at the corners, centres and edge centres of
the pixels of the low resolution image. The values of the pixel colour of the high
resolution nodes are each a single sample from a Gaussian mixture (in colour space),
where each mixture centre is given by the pixel colour of a particular parent latent
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Figure 1: The three layers of the model. The small boxes in the left figure (64 of
them) give the position of the high resolution pixels relative to the low resolution
pixels (the 4 boxes with a thick outline). The positions of the latent variable nodes
are given by the black circles. The colour of each high resolution pixel is generated
from a mixture of Gaussians (right figure), each Gaussian centred at its latent
parent pixel value. The closer the parent is, the higher the prior probability of
being generated by that mixture is.


variable node. The prior mixing coefficients decay with distance in image space
between the high-resolution node and the corresponding latent node.


Another way of viewing this is that a further indicator variable can be introduced
which selects which mixture is responsible for a given high-resolution node. We say
a high resolution node ‘chooses’ to connect to the parent that is responsible for it,
with a connection probability given by the corresponding mixing coefficient. These
connection probabilities can be specified in terms of positions (see figure 2).


The motivation for this model comes from the possibility of explaining away. In
linear filtering methods each high-resolution node is determined by a fixed relation-
ship to its neighbouring low-resolution nodes. Here if one of the latent variables
provides an explanation for a high-resolution node which fits well with it neighbours
to form the low-resolution data, then the posterior responsibility of the other latent
nodes for that high-resolution pixel is reduced, and they are free to be used to model
other nearby pixels. The high-resolution pixels corresponding to a visible node can
be separated into two (or more) independent regions, corresponding to pixels on
different sides of an edge (or edges). A different latent variable is responsible for
each region. In other words each mixture component effectively corresponds to a
small image patch which can vary in size depending on what pixels it is responsible
for.


Let vj ∈ L denote a latent variable at site j in the latent space L. Let xi ∈ S
denote the value of pixel i in high resolution image space S, and let yk denote the
value of the visible pixel k. Each of these is a 3-vector representing colour. Let V
denote the ordered set of all vj . Likewise X denotes the ordered set of all xi and Y
the set of all yi. In all the work described here a transformed colorspace of (gray,
red-green, blue-yellow) is used. In other words the data is a linear transformation
on the RGB colour values using the matrix


(


0.66 1 0.5
0.66 −1 0.5
0.66 0 −1


)


.


The remaining component is the connectivity (i.e. the indicator for the responsi-
bility) between the high-resolution nodes and the nodes in the latent layer. Let zij







denote this connectivity with zij an indicator variable taking value 1 when vj is a
parent of xi in the belief network. Every high resolution pixel has one and only one
parent in the latent layer. Let Z denote the ordered set of all zij .


3.1 Distributions


A uniform distribution over the range of pixel values is presumed for the latent
variables. The high resolution pixels are given by Gaussian distributions centred
on the pixel values of the parental latent variable. This Gaussian is presumed
independent in each pixel component. Finally the low resolution pixels are given
by the average of the sixteen high resolution pixels covering the site of the low
resolution pixel. This pixel value can also be subject to some additional Gaussian
noise if necessary (zero noise is assumed in this paper).


It is presumed that each high resolution pixel is allowed to ‘choose’ its parent from
the set of latent variables in an independent manner. A pixel has a higher probability
of choosing a nearby parent than a far away one.


For this we use a Gaussian integral form so that :


P (Z) =
∏


ij


p
zij


ij where pij ∝


∫


Bi


dr exp


(


−
(rj − r)2


2Σ


)


, (1)


where r is a position in the high resolution picture space, rj is the position of the
jth latent variable in the high resolution image space (where these are located at
the corners of every second pixel in each direction as described above). The integral
is over Bi defined as the region in image space corresponding to pixel xi. Σ gives
the width (squared) over which the probability decays. The larger Σ the more
possible parents with non-negligible probability. The connection probabilities can
be illustrated by the picture in figure 2.


The equations for the other distributions are given here. First we have


P (X |Z, V ) =
∏


ijm


1


(2πΩm)1/2
exp


(


−zij


(xm
i − vm


j )2


2Ωm


)


. (2)


where Ωm is a variance which determines how much each pixel must be like its
latent parent. Here the indicator zij ensures the only contribution for each i comes
from the parent j of i. Second


P (Y |X) =
∏


km


1


(2πΛ)1/2
exp


(


−
(ym


k − 1
d


∑


i∈Pa(k) xm
i )2


2Λ


)


(3)


Figure 2: An illustration of the connection probabilities from a high resolution pixel
in the position of the smaller checkered square to the latent variables centred at each
of the larger squares. The probability is proportional to the intensity of the shading:
darker is higher probability.







with Pa(k) denoting the set of all the d = 16 high resolution pixels which go to
make up the low resolution pixel yk. In this work we let the variance Λ → 0.
Λ determines the additive Gaussian noise which is in the low resolution image.
Last, P (V ) is simply uniform over the whole of the possible values of V . Hence
P (V ) = 1/C for C the volume of V space being considered.


3.2 Inference


The belief network defined above is not tree structured (rather it is a mixture of tree
structures) and so we have to resort to approximation methods for inference. In this
paper a variational approach is followed. The posterior distribution is approximated
using a factorised distribution over the latent space and over the connectivity. Only
in the high resolution space X do we consider joint distributions: we use a joint
Gaussian for all the nodes corresponding to one low resolution pixel. The full
distribution can be written as Q(Z, V, X) = Q(Z)Q(V )Q(X) where


Q(Z) =
∏


ij


q
zij


ij , Q(V ) =
∏


jm


1


(2πΦm
j )1/2


exp


(


−
(vm


j − νm
j )2


2(Φm
j )


)


and (4)


Q(X) =
∏


km


(2π)−d/2


|Ψm
k |1/2


exp


(


−
1


2
[(x∗)m


k − (µ∗)m
k ]T (Ψm


k )−1[(x∗)m
k − (µ∗)m


k ]


)


(5)


where (x∗)m
k is the vector (xm


i |i ∈ Pa(k)), the joint of all d high resolution pixel
values corresponding to a given low resolution pixel k (for a given colour component
m). Here qij , µm


i , νm
j , Φm


j and Ψm
i are variational parameters to be optimised.


As usual, a local minima the KL divergence between the approximate distribution
and the true posterior distribution is computed. This is equivalent to maximising
the negative variational free energy (or variational log likelihood)


L(Q||P ) =


〈


log
Q(Z, V, X)


P (Z, V, X, Y )


〉


Q(Z,V,X)


(6)


where Y is given by the low resolution image. In this case we obtain


L(Q||P ) = 〈log Q(Z) − log P (Z)〉Q(Z) + 〈log Q(V ) − log p(V )〉Q(V )


+ 〈log Q(X)〉Q(X) − 〈log P (X |Z, V )〉Q(X,Z,V ) − 〈log P (Y |X)〉Q(Y,X). (7)


Taking expectations and derivatives with respect to each of the parameters in the
approximation gives a set of self-consistent mean field equations which we can solve
by repeated iteration. Here for simplicity we only solve for qij and for the means µm


i
and νm


j which turn out to be independent of the variational variance parameters.
We obtain


νm
j =


∑


i qijx
m
i


∑


i qij
and µm


i = ρm
i + Dc(i) where ρm


i =
∑


j


qijv
m
i (8)


where c(i) is the child of i, i.e. the low level pixel which i is part of. Dk is
a Lagrange multiplier, and is obtained through constraining the high level pixel
values to average to the low level pixels:


1


d


∑


i∈Pa(k)


µm
i = ym


k ⇒ Dk ≡ D∗


k = ym
k −


1


d


∑


i∈Pa(k)


ρm
i (9)


In the case where Λ is non-zero, this constraint is softened and Dk is given by
Dk = ΩD∗


k/(Ω + Λ). The update for the qij is given by


qij ∝ pij exp


(


−
∑


m


(xm
i − vm


k )2


2Ωm


)


(10)







where the constant of proportionality is given by normalisation:
∑


j qij = 1.


Optimising the KL divergence involves iterating these equations. For each Q(Z)
optimisation (10), equations (8a) and (8b) are iterated a number of times. Each
optimisation loop is either done a preset number of times, or until a suitable conver-
gence criterion is met. The former approach is generally used, as the basic criterion
is a limit on the time available for the optimisation to be done.


4 Setting parameters


The prior variance parameters need to be set. The variance Λ corresponds to the
additive noise. If this is not known to be zero, then it will vary from image to image,
and needs to be found for each image. This can be done using variational maximum
likelihood, where Λ is set to maximise the variational log likelihood. Σ is presumed
to be independent of the images presented, and is set by hand by visualising changes
on a test set. The Ωm might depend on the intensity levels in the image: very dark
images will need a smaller value of Ω1 for example. However for simplicity Ωm = Ω
is treated as global and set by hand. Because the primary criterion for optimal
parameters is subjective, this is the most sensible approach, and is reasonable when
there are only two parameters to determine. To optimise automatically based on
the variational log likelihood is possible but does not produce as good results due to
the complicated nature of a true prior or error-measure for images. For example, a
highly elaborate texture offset by one pixel will give a large mean square error, but
look almost identical, whereas a blurred version of the texture would give a smaller
mean square error, but look much worse.


5 Implementation


The basic implementation involves setting the parameters, running the mean field
optimisation and then looking at the result. The final result is a downsampled
version of the 4 × 4 image to 2 × 2 size: the larger image is used to get reasonable
anti-aliasing.


To initialise the mean field optimisation, X is set equal to the bi-cubic interpolated
image with added Gaussian noise. The Q(Z) is initialised to P (Z). Although in
the examples here we used 25 optimisations Q(Z), each of which involves 10 cycles
through the mean field equations for Q(X) and Q(V ), it is possible to get reasonable
results with only three Q(Z) optimisation cycles each doing 2 iterations through
the mean field equations. In the runs shown here, Λ is set to zero, the variance Ω
is set to 0.008, and Σ is set to 3.3.


6 Demonstrations and assessment


The method described in this paper is compared with a number of simple fil-
tering and interpolation methods, and also with the methods of Freeman et al.
The image from Freeman’s website is used for comparison with that work (fig-
ure 3). Full colour comparisons for these and other images can be found at
http://www.anc.ed.ac.uk/~amos/superresolution.html. First two linear fil-
tering approaches are considered, the Wiener filter and a Gaussian filter. The third
method is a median filter. Bi-cubic interpolation is also given.


Quantitative assessment of the quality of super-resolution results is always some-
thing of a difficulty because the basic criterion is human subjectivity. Even so we
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Figure 3: Comparison with approach of Freeman et al. (a) gives the 70x70 low reso-
lution image, (b) the true image, (c) a bi-cubic interpolation (d) Freeman et al result
(taken from website and downsampled), (e) dynamic structure super-resolution, (f)
median filter.







compare the results of this approach with standard filtering methods using a root
mean squared pixel error on a set of 8, 128 by 96 colour images, giving 0.0486, 0.0467,
0.0510 and 0.0452 for the original low resolution image, bicubic interpolation, the
median filter and dynamic structure super-resolution respectively. Unfortunately
the unavailability of code prevents representative calculations for the Freeman et al
approach. Dynamic structure resolution requires approximately 30 − 60 flops per
2 × 2 high resolution pixel per optimisation cycle, compared with, say, 16 flops for
a linear filter, so it is more costly. Trials have been done working directly with
2 × 2 grids rather than with 4 × 4 and then averaging up. This is much faster and
the results, though not quite as good, were still an improvement on the simpler
methods.


Qualitatively, the results for dynamic structure super-resolution are significantly
better than most standard filtering approaches. The texture is better represented
because it maintains consistency, and the edges are sharper, although there is still
some significant difference from the true image. The method of Freeman et al
is perhaps comparable at this resolution, although it should be noted that their
result has been downsampled here to half the size of their enhanced image. Their
method can produce 4 × 4 the resolution of the original, and so this does not
accurately represent the full power of their technique. Furthermore this image is
representative of early results from their work. However their approach does require
learning large numbers of patches from a training set. Fundamentally the dynamic
structure super-resolution approach does a good job at resolution doubling without
the need for representative training data. The edges are not blurred and much of
the blockiness is removed.


Dynamic structure super-resolution provides a technique for resolution enhance-
ment, and provides an interesting starting model which is different from the Markov
random field approaches. Future directions could incorporate hierarchical frequency
information at each node rather than just a single value.
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