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Abstract. Image compression methods such as JPEG use quantisation of dis-
crete cosine transform (DCT) coefficients of image blocks to produce lossy com-
pression. During decoding, an inverse DCT of the quantised values is used to
obtain the lossy image. These methods suffer from blocky effects from the region
boundaries, and can produce poor representations of regions containing sharp
edges. Such problems can be obvious artefacts in compressed images but also
cause significant problems for many super-resolution algorithms. Prior informa-
tion about the DCT coefficients of an image and the continuity between image
blocks can be used to improve the decoding using the same compressed image in-
formation. This paper analyses empirical priors for DCT coefficients, and shows
how they can be combined with block edge contiguity information to produce
decoding methods which reduce the blockiness of images. We show that the use
of DCT priors is generic can be useful in many other circumstances.


1 Introduction


A number of image compression methods, most notably including baseline JPEG (joint
photographic experts group), use quantisation of the discrete cosine transform (DCT)
coefficients in order to obtain a lossy compressed representation of an image. Put sim-
ply, baseline JPEG splits each image into 8x8 blocks and then performs a DCT on each
image block. These are then quantised according to a preset quantisation schema which
depends on the compression rate required. The quantised coefficients are then losslessly
compressed and encoded to a bitstream, usually using Huffman codes. To decode the
jpeg, the quantised coefficients are the obtained from the bitstream using the relevant
lossless decompression. The quantised coefficients are then used directly in the inverse
DCT to recreate the image.


The deficits of this scheme are that it can produce blocky artefacts [1] as each 8x8
block is treated independently, and that it can produce poor representation of regions
with significant high frequency information.


In this paper we recognise the fact that the quantised DCT coefficients provide upper
and lower bounds for the true coefficients. It is also possible to obtain empirical prior
DCT coefficient distributions from the examination of many other 8x8 patches from a
database of uncompressed images. Furthermore we can examine the pixel differences
across block boundaries in the uncompressed image database and use that information
as a prior measure for the blockiness effects of compressed images.
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Fig. 1. Prior distribution of DCT coefficients given known quantised coefficientsf . (a) Zero-
quantised coefficient. (b) Non-zero quantised coefficient. (c) Predicted border-pixels are given by
inner border-pixels.


2 The Probabilistic Model


Consider first a single 8x8 image patch, and the set of pixels bordering each edge of
that 8x8 patch. Letw denote the vector of DCT coefficients,v denote the set of quan-
tised coefficients (and implicitly the constraints they give to the real coefficients). Lety
denote the border-pixel intensities. Suppose we have some prior distribution over DCT
coefficientsP (w) and are given the true border-pixel intensitiesy, and quantised DCT
coefficients. Then we wish to calculate the posterior distribution


P (w|y,v) ∝ P (y|w)P (w|v) (1)


HereP (w|v) is the prior distributionP (w) constrained to the region implied by the
quantised coefficientsv, and renormalised. This is illustrated in Figure 1.P (y|w) is
given by the modelP (y|x) of the observed border pixels given the predicted border
pixelsx produced by the extrapolating the DCT basis functions 1 pixel over the bound-
ary of the 8x8 region. This is simple to calculate using the basis function symmetry, and
amounts to using the inner border pixels as the predicted border pixels (see figure 1).


3 Prior distributions
To use the above model two prior distributions are needed. First a prior distribution
P (w) for the DCT coefficients is required. Second we need the distribution of the true
border pixelsP (y|x) given the predicted values. Forms for both of these can be ob-
tained empirically from a set of training images.


The source images used in this report can be found at http://www.hlab.phys.rug.nl/
archive.html. The images were taken with a Kodak DCS420 digital camera. For details
and a description of the calibration see the Methods section of [7]. The images contain
many similar scenes of urban areas, landscapes and woodland areas. The linear intensity
images have been used rather than the de-blurred set in order to reduce the possibility
of artefact introduction. The camera used to capture the images does not deliver the the
two outermost pixels along the edges and so it was necessary to remove them. To main-
tain an image that contains a whole number of 8x8 blocks, the eight outermost pixels
along the edges were cropped. Also to reduce processing time the images were reduced







in size by a factor of two along both the width and height using pixel averaging. The
12-bit images were intensity-scaled linearly to between 0 and 255 to comply with the
JPEG standard. The first twenty images in the set were used as training images. The
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Fig. 2. Distribution of DCT coefficients: (a) The DC coefficient, (b) The (2,2) coefficient, (c) the
(4,6) coefficient. (d) Distribution of differences between the predicted and true border pixels


prior over discrete cosine transform coefficients was modelled as a factorised distribu-
tion P (w) =


∏
i P (wi) wherewi is theith DCT coefficient. Then the prior for each


coefficient was set using empirical values the training images. Histograms of the priors
are given in Figure 2. Note that the lowest frequency coefficient (commonly called the
DC coefficient) has a different structure from the other (AC) coefficients. The AC coef-
ficients appear to have the same form, but have different distribution widths, where the
higher frequency components are more tightly distributed around zero. The prior over
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Fig. 3. Two original scenes







the border pixels was also factorised into independent distributions for each pixel. The
distribution of the difference between the predicted pixel value and the true pixel value
was used as the model forP (y|w). The distribution obtained is illustrated in Figure
2d. More general forms forP (y|w) were tried, but they had little effect on the final
outcome. Gaussian mixture models were fit to these histograms to provide a working
functional representation of the distribution.
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Fig. 4. Results of optimisation. (a) Original patch (b) Patch reconstructed from quantised DCT,
(c) reconstructed from optimised DCT


4 Intermediate results


Although the form of model described is not the final model, as the true border pixel
information is not available, it is instructive to see how it performs. Conjugate gradient
optimisation was used to calculate the maximum a posteriori (MAP) DCT coefficients
given the border pixel data and the quantised DCT coefficients. To test how well the
original values can be recovered if a nearby local minima is found, the coefficients were
initialised at the original values. For the image patch illustrated in figure 3b, and with a
standard lossy decoding given by Figure 4a, we obtain Figure 4b using this approach. A
representation of the true, quantised and optimised DCT coefficients are given in Figure
5. We can also initialise the values at the quantised coefficients. Figure 6 shows the use
of this approach on a test image.
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Fig. 5. Comparison of the different DCT coefficients.







Quantifiable assessment of image quality is notoriously hard and generally an unre-
liable measure of performance. However it is possible to use a perceptual error measure
such as those of [4, 8, 5]. For example, with the image illustrated the perceptual error
measure of [8] improves from8.46 to 8.39. In general we find that for regions with
fewer patches containing clear edges or linear features, most error measures (mean
square error, signal to noise ratio, peak signal to noise ratio, perceptual error measure)
improve, whereas there is loss in systems where edges occur. This is due to the fact that
the current factorised prior does not contain edges and features as part of its model. For
fuller comparisons with other techniques see [2].
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Fig. 6. Results on door scene from 3


5 Full model
As the true pixel data is not available for the border pixels, the model just described is
not directly useful. However it can be incorporated into a Markov Random Field model
which can then be optimised using an iterative checkerboard approach. The simplest
model is to use a model of the form


P (X) ∝
∏


i


P (Xi)
∏


(i,j)∈A,k


P (Xk
i −Xk


j ) (2)


whereXi are the pixel values of theith image patch andXs
i is thekth border pixel of the


ith patch, andA is the set of indices(a, b) of adjacent image patches. Note thatP (Xi)
andP (Xk


i −Xk
j ) are now clique potentials and not probability distributions. This model


can be optimised using an iterative checkerboard scheme. First the coefficients of the
‘black’ coloured patches are fixed and


∏
i P (Xi)


∏
i∈W,j∈A(i),k P (Xk


i −Xk
j ) is opti-


mised, forW denoting the indices of the ‘white’ patches andA(i) the adjacent patches
to patchi. Then the white patches are fixed to their optimised values and the correspond-
ing equation for the black patches is optimised. This process is repeated until a suitable
convergence criterion is satisfied. Due to the symmetry of theP (Xk


i −Xk
j ), each step


is guaranteed to increase the globalP (X). Note eachP (Xi) is implicitly given by the
prior over DCT coefficients and the quantised coefficients. Again the optimisation was
initialised at the known quantised values.


This approach was used on the patch illustrated in figure 7. The blocky artefacts of
the quantised coefficients are significantly reduced.
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Fig. 7. Results of checkerboard iteration on 3x3 block scene


6 Continued work


Blockiness artefacts are only one of the problems of compressed images. More signifi-
cant issues arise from within block edges. However the process of allowing freedom to
choose the coefficients from within the range of values given by the quantised coeffi-
cients can be used in conjunction with any other information about the image patches.
This might include more general patch priors than those given by factorised coefficients.
We are currently working on a fuller quantitative analysis of these techniques.


One area of interest is that the artefacts of jpeg are often serious problems in super-
resolution. [3] provides a good example of this. As this work places jpeg modelling
within a probabilistic framework, we are working on ways to combine it directly with a
number of super-resolution methods such as [6].
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