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Abstract : The problem of record linkage is often seen simply in terms of making links between data
points that might be generated from the same source. However, in many cases the grounds for linking
items is itself not certain. In fact it is often desirable to learn, in an unsupervised manner, what form
linked objects take in different databases. One simple case of this is the “one to many” linkage problem,
where each object in one dataset is potentially linked to one of many objects in another dataset, and where
the candidate matches are mutually exclusive. We show how the Expectation Maximisation algorithm can
be used for this matching problem, both to calculate the probability of a match, and to learn something
about the characteristics that matched objects have. The approach is derived for the specific astronomical
problem of linking far infra-red observations to optical counterparts, but is generally applicable. This
report outlines the theory of this record linkage procedure, but does not discuss its application or any
implementational details.
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1 Introduction

Data integration is becoming increasingly important in many endeavours. One key aspect of data
integration is data linkage, the process of making meaningful links between different items in a
variety of databases. Due to increasing data sizes it has become critical that automated techniques
should play some part in this process. The most common data linkage issue is record linkage:
linking together records in different databases that are derived from the same underlying source.
This is appropriate for data derived from individual people across different census datasets for
example, or for linking similar DNA sequence sections from different organisms, for linking features
derived from different images which might contain the same objects, or matching astronomical
objects in catalogues from observations at different wavelengths.

Record linkage is a non-trivial exercise. For example in astronomy the same astronomical
object might have a very different apparent form at different wavelengths, even discounting the
different measurement capabilities we have. In record linkage on census data, people move house,
change their name, die, are born, move countries, change jobs, change religious affiliations etc.
between the census periods. Furthermore the data sizes can be large and the number of potential
reasonable matches to any one data point may well be fairly large. There are often matching
constraints such as if one record matches to another, it cannot also match to yet another, and it
is also likely that the knowledge about what makes a match likely is vague.

Record linkage can reap major benefits. For example it is a vital part of epidemiological study;
it was useful in the analysis of the impact of air travel in deep vein thrombosis [6]. The general
benefit is that the combined data from linked records allows statements to be made about the
data that could not be ascertained from the individual databases alone.

One key research direction in record linkage involves learning the characteristics of linked data.
Especially in scientific linkage studies, the characteristics of the linked objects is not necessarily
known a priori. It is vital to be able to take steps towards learning what features make a particular
record more or less likely to be linked to another record.

1.1 Current Procedure for Record Linkage

Felligi and Sunter [4] developed a framework by Newcombe et al [10] into a mathematical formula-
tion for record linkage, with the emphasis on developing an efficient linkage rule. This model has
been subject to significant analysis and development. Thibaudeau [14] notes that the indepen-
dence across fields assumption results in poor discrimination in more realistic circumstances. A
reduction in this assumption (Winkler [16]) creates some improvements. Belin and Rubin [1] note
poor false match rates in the Felligi and Sunter Model, and develop a mixture model approach to
improve the model, and Larsen and Rubin [7] use maximum likelihood learning amongst candidate
models.

A summary of these approaches can be summarised by the following outline:

• Define some similarity measure between records in one dataset and those in another.

• Estimate or specify distributions of this similarity measure in the two cases: where the
records match, and where the records are unmatched.

• Use this distribution to classify potential record pairs as either matched or unmatched.

The limitations of this approach are well understood. First it does not take into account any
characteristics that matched and unmatched records have. For example in linking astronomical
databases, faint objects are much more likely to be unmatched than bright ones. Second it makes
assumptions of independence of the pairwise similarity measure. However for the problem of
linking two datasets of size m and n, here are mn such similarities for a system with only m + n
degrees of freedom. Hence this assumption is invalid and causes failures in cases of, for example,
clustered data where within-cluster links are made which should not be. The most important
problem of this approach is that, because it does not capture the actual data generation process,
there is little room for learning what characteristics matched object have.
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Record linkage is necessary in many distinct areas. The methods grew up out of the need
for linkage in census data [17], but there are significant uses in medical data [11], genealogy
[12], astronomical data [13] and citation indexing [5, 15]. Similar methods, albeit with a slightly
different history, are used in image registration [2, 18] and feature matching [8]. There are related
problems in phylogeny and biological sequence alignment, both of which can be seen in terms of
matching [3]. Coupled clustering [9] is a relevant technique which uses linked information from
multiple datasets to enable better clustering of data than can be obtained from one.

1.1.1 Learning

One of the key issues in record linkage which is not addressed by the current formalisms is how to
learn about the characteristics that linked data has. The Felligi-Sunter model has the facility to
adapt the choice of linking or not linking dependent on the level of certainty, but does not have
the ability to adapt the grounds for making a link. When the characteristics of linked objects
is not fully known a priori, such as in a data mining problem, then the facility for learning the
characteristics of linked data is vital in understanding not just the certainty of the link, but the
actual grounds for which a link should be made.

This learning-linkage issue is the main focus of this report. The issue will be addressed in a
particular simplified circumstance (where link candidates are mutually exclusive), but nevertheless
one that covers many uses.

1.2 Context

The methods outlined in this paper can be applied to a general set of problems. However, they
are formulated here in terms of a specific problem in order to make the applicability clearer and
to provide an obvious grounding to the methods.

The focus of this paper is the issue of finding corresponding optical records to astronomical
objects which emit in the far infra-red region of the spectrum. A few astronomical objects emit
in the far infra-red, but at the moment little is known about the characteristics of such objects.
Furthermore, far infra-red observations have a low spatial resolution. It would be helpful in trying
to understand such objects if optical counterparts could be obtained, that is if each infra-red record
could be paired with a particular record in an optical database referring to the same underlying
object.

The low spatial resolution of the far infra-red measurements makes the task difficult: there are
sometimes up to 100 optical records which could potentially be the correct candidate on position
alone. In addition not much is known about what characteristics far infra-red emitters have in
the optical spectrum. Hence any approach to record linkage will need to be able to learn these
characteristics from the data.

2 The Model

We presume that we have an astronomical dataset consisting of a number of objects (stars or
galaxies) which emit radiation in the far infra-red region of the electromagnetic spectrum, along
with some measurements from such objects, such as position, flux1 etc. For each infra-red object
we also have a list of possible optical records which match. Each optical record will consist of
various optical measurements of the object, including position (which is much more accurate than
the infra-red position measurement), magnitude, ellipticity shape etc. In addition we could have
derived quantities such as the probability that the object is a star or galaxy.

More formally, we presume we have a number M of far infra-red sources, labelled by r, which
have known characteristics (eg position, flux). For each of these sources, r, we limit ourselves
to considering a limited number of possible optical counterparts: those within a radius Rr from

1The flux can be thought of as the magnitude, or brightness of the object in the infra-red.
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the measured location of the far-infra object2. The number of such optical objects is denoted by
Nr. Suppose the relative position of one of those possible optical counterparts, labelled i, to the
position of the infra-red source is xr

i . The magnitude of that optical source is denoted mr
i . Let zr

i

be an indicator variable that is one if the infra-red source r is associated with the optical object i,
and zero otherwise. We also allow the possibility zr

0 = 1, representing the fact that the infra-red
source has no optical counterpart. Adding the constraint

∑Nr

i=0 zr
i = 1 ensures that the infra-red

source has at most one optical counterpart.
The task we are interested in is twofold. First we wish to be able to learn the characteristics

that linked objects have. Second we wish to be able to infer which objects should be linked
together. The overall framework we will use to do this is a generative model with the following
characteristics.

For the optical records in the region of each infra-red object there are two generative processes.
For the at most one case where the optical record is a counterpart (i.e. linked to) the far infra-red
record, we might expect its position to be local to the measured position of the infra-red source,
and have particular characteristics which are different from other optical sources. For the many
cases where an optical record is not a counterpart, the measurements will be totally independent of
the far-infra red object. We can write this model down for each infra-red object r in the following
way

P (Xr,Mr, Zr) = P (Zr)
∏

i

P (xr
i ,m

r
i |zr

i ) (1)

where Zr denotes the family of indicators (zr
i )i=0,1,...,M , Mr the family (mr

i )i=1,2,...,M and Xr

the family (xr
i )i=1,2,...,M . For P (xr

i ,m
r
i |zr

i ), the two cases zr
i = 1 and zr

i = 0 must be considered,
corresponding to the cases where the optical source is or is not linked to the infra red source. It
is worth emphasising again that zr

i = 1 for only one value of i and is otherwise zero.
When using this model for inference, the position and magnitude of the optical objects, and the

position measurement for the far infra red record are given. Hence by Bayes rule we are interested
in finding the posterior values

P (zr
i = 1|Xr,Mr) =

P (zr
i = 1)P (xr

i ,m
r
i |zr

i = 1)
∏

j 6=i P (xr
j ,m

r
j |zr

j = 0)

P0 +
∑Nr

i=1 P (zr
i = 1)P (xr

i ,m
r
i |zr

i = 1)
∏Nr

j=1|j 6=i P (xr
j ,m

r
j |zr

j = 0)
(2)

where P0 = P (zr
0 = 1)

∏Nr

j=1 P (xr
j ,m

r
j |zr

j = 0) is the probability of seeing the data we have in the
case that there is no link. The probabilities of (2) are precisely the linkage probabilities, where
we have accounted for all the information available.

2.1 Distributions

It can be assumed that many of the parameters given above are known, or failing that, that their
distributions are known. For example Rr is chosen to be large enough to definitely include any
possible optical counterpart. Nr is determined by that choice of Rr. The measurement error of the
far-infra red position P (xr

i |zr
i = 1) can reasonably be assumed to be spherically Gaussian (centred

at the true position of the far infra-red object), and for now it is presumed that the variance can
be estimated from the characteristics of the instruments.

We assume that, within our radius of interest, the probability of a star or galaxy turning up
in one particular position is the same as one appearing in any other position. Hence we set the
prior distribution of positions for unlinked optical records using P (xr

i |zr
i = 0) = µr, where µr is

the number of optical objects per unit area. By neglecting the effect of the (at most) one linked
object, we can presume µr = Nr/(π(Rr)2) to high enough accuracy. In the event that the spatial
distribution of stars and galaxies within the region of interest is not reasonably assumed to be

2Theoretically, a priori (before knowing the infra-red location) we should consider every optical record we have to
be a possible counterpart. However as we will find later, those optical records at great distances from the infra-red
location will have exceedingly small likelihood of being linked, so we can save some computational effort by ignoring
them at this stage. Making Rr as big as the whole sky would have negligible effect on the final answers.
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homogenous, more localised density measures may need to be used. However in the case here
homogeneity is a reasonable assumption, and it would be hard to infer inhomogeneity from the
small number (e.g. 50 to 100) of counterparts we are considering.

There are two distributions for optical magnitude. The first is for optical objects which are
not counterparts to an infra-red object. This is given by P (mr

i |zr
i = 0), and is assumed known,

calculated from the overall distribution of optical magnitudes, only a negligible contribution of
which will be represented in the far-infra red.

The second magnitude distribution is the critical one. This is the primary unknown which
will need to be learnt from the data. This magnitude distribution is that of objects visible in
the optical, but which are also far infra-red emitters. As the properties of infra-red emitters is
unknown there is no way of setting this distribution a priori. We presume this is represented as a
histogram, with B bins, and bin widths of w. Hence

P (mr
i |zr

i = 1) =
B∑

t=1

htTt(mr
i ) (3)

where Tt is a top hat function that is one if mr
i lies within the tth bin, and zero otherwise. To

ensure correct normalisation to a probability, we have the constraint w
∑

t ht = 1. Hence ht is the
normalised bin height. It is these bin heights that must be learnt. Note that in this derivation
we have assumed that the optical magnitude is independent of the flux of the far infra-red object.
Including this dependence is theoretically trivial, but will significantly increase the number of
parameters as a two dimensional histogram will need to be estimated.

It is also possible that a far-infra red emitter does not emit (or at least does not emit brightly
enough to be measured) in the optical. The prior probability that a randomly chosen far infra-red
emitter has no optical counterpart is denoted γ = P (zr

0 = 1), and is another parameter that must
be learnt. If there is a counterpart, then we assume a priori that any of these possible counterparts
could be the true one with equal probability, i.e. P (zr

i = 1) = (1− γ)/Nr.

2.1.1 Summary

The previous discussion allows a full probabilistic model to be formulated. The likelihood, P (D|Θ),
for the model, where Θ is a compact representation for the parameters we wish to learn, and D is
the data {Xr,Mr}, can be written as

P (D|Θ) =
∑
Z

∏
ri

P (xr
i |zr

i )P (mr
i |zr

i )P (zr
i ) (4)

where Z denotes the family of all the Zr for all r. The parameters that need to be learnt are the
ht in P (mr

i |zr
i ) given in (3), and γ, which is P (zr

0 = 1).

3 The Expectation Maximisation (EM) Algorithm

The previous section provides all the distributions that are needed along with the full likelihood
for the model that will be used. In this section, for convenience3, the basic derivation of the EM
algorithm, which allows learning and inference in this model, is provided.

We can show by simple manipulation of probabilities that

log P (D|Θ) = 〈log P (D,Z|Θ)〉Q(Z) − 〈log Q(Z)〉Q(Z) + KL(Q(Z)||P (Z|D,Θ)) (5)

where Z is the shorthand for the set of all the zr
i , and Q(Z) is an arbitrary distribution over Z.

KL(Q||P ) is the KL divergence and is given by

KL(Q(Z)||P (Z|D,Θ)) = 〈log Q(Z)〉Q − 〈log P (Z|D,Θ)〉Q. (6)
3For many readers this derivation is obvious and superfluous. However it is included here for readers interested,

say, in the astronomical application, who may be unfamiliar with EM.
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It is always greater than zero, and is minimised to zero by setting Q = P .
Equation (5) is the basis upon which the EM algorithm is developed. We wish to maximise

log P (D|Θ). As the second term on the right hand side (the entropy) is independent of Θ, whereas
the KL divergence is not, we wish to choose Q to minimise the KL divergence. This ensures
that changing the parameters by maximising the first term on the right hand side of (5) does not
inadvertently reduce the KL divergence at the same time, and thereby reduce the log likelihood.
This KL divergence is minimised (and is zero) if we set Q(Z) to be the current estimate for the
posterior distribution of Z. Hence then maximising

〈log P (D,Z|Θ)〉Q(Z) (7)

can only increase the log likelihood, as the KL divergence can only get larger. Adapting Q to fit
the new posterior given the new parameter set does not affect the parameters, and so cannot affect
the log probability. Hence this provides an iterative procedure for maximising the log probability.

1. Initialise the parameters.

2. Set Q to be the current estimate of the posterior distribution for Z.

3. Maximise (7) given this Q.

4. Repeat until suitably converged.

4 EM for Record Linkage

In this section the use of EM for the record linkage model is described. As everything is mutually
independent between each infra-red source r,

〈log P (D,Z|Θ)〉Q = 〈log
∏
r

P (Dr, Zr|Θ)〉Q =
∑

r

〈log P (Dr, Zr|Θ)〉Q (8)

where again Zr is shorthand for the family of all zr
i for a given r, and Dr does the same for the

data. Here

P (Dr, Zr|Θ) = P (Zr)
Nr∏
i=1

P (xr
i |zr

i )P (mr
i |zr

i ), (9)

remembering that zr
0 = 1 covers the case where no optical counterpart exists. Substituting for

P (zr
i = 1) = αi, where αi = (1− γ)/N for i > 0 and αi = γ for i = 0, we have

P (Dr, Zr|Θ) =

(
Nr∏
i=0

α
zr

i
i

)
Nr∏
i=1

[
P (xr

i |zr
i = 1)zr

i P (mr
i |zr

i = 1)zr
i

× P (xr
i |zr

i = 0)(1−zr
i )P (mr

i |zr
i = 0)(1−zr

i )

]
, (10)

where we have used the fact that the zr
i are indicator variables to pull out the correct components

for the linked and unlinked cases. Substituting further we get

P (Dr, Zr|Θ) =

(
Nr∏
i=0

α
zr

i
i

)
Nr∏
i=1

[
P (xr

i |zr
i = 1)zr

i

(∑
t

htTt(mi)

)zr
i

µ
(1−zr

i )
r P (mr

i |zr
i = 0)(1−zr

i )

]
.

(11)
This is the final form of this joint distribution, and given the family of parameters Θ ≡ (γ, ht), can
be calculated directly from the distributions we specified initially. We use equation (9) to calculate
the posterior distribution P (Zr|Dr,Θ) = P (Zr, Dr|Θ)/

∑
Zr P (Zr, Dr|Θ), by calculating (9) for

all Nr different possibilities that Zr can take, and then normalising.
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Taking logarithms of the above equation, and substituting into (8) we can perform the expec-
tations with respect to Q to get

〈log P (D,Z|Θ)〉Q =
∑

r

[
n∑

i=0

〈zr
i 〉 log αi +

n∑
i=1

〈zr
i 〉 log P (xr

i |zr
i = 1) + 〈zr

i 〉 log

(∑
t

htTt(mi)

)

+ (1− 〈zr
i 〉) log µ + (1− 〈zr

i 〉) log P (mr
i |zr

i = 0)

]
(12)

where all expectations are with respect to Q(Z), taken to be fixed at the current posterior estimate.
All the expectations we need are calculable from the marginal posterior distribution P (zr

i |D,Θ),
obtainable from (11). Note the expectation of an indicator variable is just its probability of being
1.

Only a few parts of Equation (12) are dependent on ht. Adding a Lagrange multiplier term,
λ(w

∑
ht − 1), to account for the normalisation constraint on ht, and taking derivatives we have

∂

∂ht
〈log P (D,Z|Θ)〉Q =

∑
r

Nr∑
i=1

〈zr
i 〉

Tt(mi)
ht

+ λw

Setting the derivative to zero and solving for ht gives

ht ∝
∑

r

n∑
i=1

〈zr
i 〉Tt(mi) (13)

where the constant of proportionality is given by the normalisation constraint.
A similar procedure for γ gives

γ =
∑

r〈zr
0〉∑

r

(
〈zr

0〉+
∑Nr

i=1〈zr
i 〉Nr

) (14)

4.1 Final Procedure

The E-Step involves calculating the marginal posteriors, obtained from (11)

〈zr
i = 1〉 = P (zr

i = 1|Dr,Θ) (15)

∝ αiP (xr
i |zr

i = 1)

(∑
t

htTt(mi)

)
Nr∏

j=1,j 6=i

(
µrP (mr

j |zr
j = 0)

)
(16)

for i > 0, and

〈zr
0 = 1〉 = P (zr

0 = 1|Dr,Θ) ∝ α0

Nr∏
i=1

(µrP (mr
i |zr

i = 0)) (17)

and then setting the constant of proportionality to ensure the probabilities sum to one.
The M-Step involves setting ht and γ according to equations (13) and (14).

5 Extensions

5.1 Mixture-Model Densities

Using histograms to model the conditional magnitude distribution is not ideal. It would be better
to use a smoother density model. Two alternatives are either a fixed kernel model or a Gaussian
mixture model. For Gaussian kernels we can view the former as a Gaussian mixture model where
the kernel widths and positions are fixed. Hence we focus on the Gaussian mixture model. This
is a trivial addition to the formalism, as the standard EM learning procedure for mixture models
can be used, where the mixture model E step can either be combined with the overall E step, or
the mixture model EM can be iterated as a subprocess.
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5.2 Star Galaxy Classification

Further variables can be included in the model, such as a flag to label whether an optical object
is understood to be a star or galaxy. Adding these variables is straightforward, but will result in
additional parameters that need to be estimated. In the case described in this paper this may
well provide additional advantages to add a star/galaxy flag as it is expected that far infra-red
emitters are more likely to be galaxies.

Other considerations regarding the addition of other variables include whether they need to be
modelled jointly with others already introduced. It might be that the variables are not independent
from one another, and that dependence must be modelled for result to be accurate.

6 Conclusion

This report outlines an approach for learning the parameters that can be used for linking data from
different databases. It has specifically been derived for the astronomical problem of linking far
infra-red observations to optical counterparts. Current work includes doing tests of this approach
on artificial data, to examine the success and failure modes of the approach, as well as tests on
real astronomical data. Additional extensions such as those suggested are being investigated.
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