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ABSTRACT
Large astronomical databases obtained from sky surveys such as the SuperCOSMOS
Sky Survey (SSS) invariably suffer from spurious records coming from artefactual
effects of the telescope, satellites and junk objects in orbit around earth and physical
defects on the photographic plate or CCD. Though relatively small in number these
spurious records present a significant problem in many situations where they can
become a large proportion of the records potentially of interest to a given astronomer.
Accurate and robust techniques are needed for locating and flagging such spurious
objects, and we are undertaking a programme investigating the use of machine learning
techniques in this context. In this paper we focus on the four most common causes of
unwanted records in the SSS: satellite or aeroplane tracks, scratches, fibres and other
linear phenomena introduced to the plate, circular halos around bright stars due to
internal reflections within the telescope and diffraction spikes near to bright stars.
Appropriate techniques are developed for the detection of each of these. The methods
are applied to the SSS data to develop a dataset of spurious object detections, along
with confidence measures, which can allow these unwanted data to be removed from
consideration. These methods are general and can be adapted to other astronomical
survey data.

Key words: astronomical databases: miscellaneous – catalogues – surveys – methods:
data analysis – statistical

1 INTRODUCTION

Sky surveys in astronomy are a fundamental research re-
source (Banday et al. 2001). Surveys form the basis of sta-
tistical studies of stars and galaxies, enabling work ranging
in scale from the solar neighbourhood to a significant frac-
tion of the observable universe. Surveys are carried out in all
wavelength ranges, from high energy gamma rays (Paciesas
et al. 1999) to the longest wavelength radio atlases (Bock
et al. 1999). Despite this diversity, there are certain features
common to most digital surveys: pixel images at a given
spatial and spectral resolution are processed using a pixel
analysis engine to generate lists of object detections con-
taining parameters describing each detection. In most cases,
the object detection algorithm has to be capable of finding
a heterogeneous family of objects, for example point–like
sources (stars, quasars); resolved sources (e.g. galaxies) and
diffuse, low surface–brightness, extended objects (e.g. nebu-
lae). Object parameters describing each detection typically
include positions, intensities and shapes. The volume of pixel
data required to be processed necessitates totally automated

pixel processing, and of course no imaging system is perfect.
These facts (imperfect image recording and automated, gen-
eralised pixel processing) lead to the problem of spurious ob-
ject catalogue records in all sky survey databases, although
the exact nature of the spurious objects varies. For exam-
ple, direct digital sky surveys suffer less from satellite tracks
(though they do exist) because of the short exposure time
needed for charge coupled device (CCD) arrays compared
with photographic plates. In fact because the satellite tracks
tend to be significantly shorter, they are harder to detect
using standard approaches making the developments in this
paper more rather than less important. Infra-red surveys
are likely to suffer less from satellite track problems as the
tracks will be a couple of orders of magnitude fainter in the
near-infra-red than in the optical. However it is still likely
that some will be detectable, even if in smaller numbers.
Optical artefacts from telescope design occur independent
of the digitisation method.

This paper looks at a class of problems which are the
most significant sources of unwanted records in the Super-
COSMOS Sky Survey (SSS) data. The SSS is described
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in a series of papers (Hambly & et al 2001 and references
therein). Briefly, the SSS consists of Schmidt photographic
plates scanned using the fast, high precision microdensito-
meter SuperCOSMOS (e.g. Hambly et al. 1998). The survey
is made from 894 overlapping fields in each of three colours
(blue, red and near–infrared denoted by the labels J, R and I
respectively); one colour (R) is available at two epochs to
provide additional temporal information. Each image con-
tains approximately 109 2-byte pixels. The pixel data from
each photograph in each colour and in each field are pro-
cessed into a file of object detections; each object record
contains parameters describing that object. The SuperCOS-
MOS pixel analyser is described in Hambly et al. (2001)
and references therein. Also described are some classification
and quality flags that are derived for each object detection,
and the deblending algorithm which attempts to unscram-
ble groups of close or merged objects. Presently, the entire
southern hemisphere is covered, primarily using plates from
the UK Schmidt Telescope. Data and many more details are
available online at http://www-wfau.roe.ac.uk/sss.

SSS data take the form of pixel images and object cat-
alogues derived from them. The SSS database is, like any
other astronomical database, subject to the limitations of
its imaging system and pixel processing engine. The SSS
object catalogues are therefore contaminated by spurious
object records. The types of spurious objects fall into three
broad classes:

• Linear features: Satellite tracks, aeroplane tracks, fibres
left on the plates during digitisation and scratches on the
emulsion all produce linear features with varying curvature
characteristics and lengths. Scratches and fibres tend to be
short. Satellite tracks can be short or long for a variety of
reasons. Aeroplane tracks usually traverse the plate but of-
ten consist of dashed sections corresponding to a flashing
light. Spinning satellites can also caused dashed tracks.

• Near-circular elliptical optical artefacts around bright
stars due to the internal reflections within the telescope.

• Diffraction spikes: linear features which are located (al-
most) horizontally and (almost) vertically on the plate in
the region of bright stars.

How these features translate into objects in the sky sur-
vey catalogue depends also on the approach of the program
which processes the digital picture into object catalogue
records. For the SuperCOSMOS Sky Survey many of the
largest linear features or parts of linear features are clearly
non–astronomical in origin, cannot be processed by the pixel
analyser, and therefore do not give rise to spurious object
catalogue records. The rest tend to be represented in the
catalogue as a number of objects lying along a line. Hence
even if a track traversed the whole plate in the original im-
age, in the derived catalogue data it might only translate
into a set of objects traversing a short section of the original
track.

The focus of this paper is on locating objects in an as-
tronomical dataset derived from or affected by the charac-
teristics listed above, and distinguishing them from true as-
tronomical objects. Because much work has usually already
been done deriving the object data from images, because in
many cases original image data may not be available, and
because of the huge size of the images involved, we are not

considering working with the images directly, only with the
derived datasets.

The paper continues with Section 2, giving further de-
tail of the different sorts of spurious data which might be en-
countered. Some standard image processing techniques from
the computer vision community are introduced in Section 3,
along with an assessment of how appropriate they are for
problems of this paper. It turns out that more accurate and
informative methods can be made available. The method of
renewal strings (Storkey et al. 2003) has been developed for
overcoming the difficulties of the standard approaches, and
is ideally suited for detection of satellite tracks, scratches
and other linear phenomena. It is a Bayesian probabilistic
method, and so also provides some confidence measures for
the classification. Renewal strings are described in Sections 4
and 5. Their use is elaborated in Section 6. The results of
applying these different methods are shown in Sections 7
through to 9 along with some analysis of performance. Eval-
uation of the results is given in Section 10. In conclusion,
information on how these results have been made available
for the SSS data, along with discussion of further work in
this area and of the reciprocal benefits of this work to the
machine learning community can be found in Section 11.

2 SPURIOUS OBJECTS IN ASTRONOMICAL
DATA

A number of distinct classes of spurious object commonly
occur in optical/ near-infrared sky survey data. The descrip-
tions given here refer to the form they take within the SSS
data. However many other astronomical databases have sim-
ilar characteristics.

2.1 Satellite Tracks

Satellite Tracks are due to movement of the satellite over
the duration of exposure for a given field. They follow paths
which are almost straight elliptic sections. Movement into
or out of the Earth’s shadow, the two ends of exposure, or
removal by the object recogniser can all stop the data re-
lated to a satellite track from traversing the whole plate.
The positions of satellite tracks are unpredictable, and us-
ing a (probably incomplete) catalogue of satellites and orbit-
ing debris would be a complicated and probably unreliable
way of locating them. The data related to satellite tracks
can vary considerably. For some narrow and faint tracks the
data can be sparsely distributed along the track. For bolder
tracks the data might consist of objects with ellipses aligned
along the track. Sometimes the data take the form of very
dense circular objects. Figure 1 gives two examples of satel-
lite tracks on the SuperCOSMOS Sky Survey plates and the
resulting data derived from them.

2.2 Aeroplane Tracks

Aeroplane tracks arise from aeroplane lights as they cross the
field of view. Often (but not always) the lights are flashing
and so dashed tracks are seen. All the representational issues
which apply to satellite tracks also apply to the data derived
from aeroplane lights. Examples can be seen in Figure 2.
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(a)

(b)

Figure 1. (a) and (b): Two tracks seen close up. Extracted data
is shown as ellipses superimposed on the digitised image. (a) A

faint satellite track with sparse spurious objects distributed along

it. (b) A denser track with spurious objects elongated along the
track. The ‘blocky’ appearance of the sky pixels is a result of them
having passed through a Haar–transform compression algorithm.

2.3 Scratches

Scratches on the plate surface are not uncommon despite all
the effort taken to protect the emulsion from such. These
scratches can be seen by the SuperCOSMOS digitiser as
darker regions and hence are confused with photographic ex-
posure. They are usually (but not always) short, they tend
to be curved, and sometimes the curvature can vary signif-
icantly along the scratch. Again the same issues occur in

(a)

(b)

Figure 2. (a) A number of aeroplane tracks in field UKJ413:
the most vertical is a very solid aeroplane track, which has been

converted into very large elliptical objects. Some of the objects

corresponding to this track were too large for pixel analysis and
hence are effectively removed. The second (sloping left) is a solid
track converted into a large number of small objects lying along

the track. The third is one section of a dashed aeroplane track cor-
responding to flashing lights. (b) A small slightly curved scratch.

Scratches are often longer, fainter or more curved than this, but

small scratches are also common.

translating these linear features into data. An example of a
scratch can be seen in Figure 2.
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2.4 Dust fibres

Fibres from clothing which contaminate the plate during
scanning are not a large problem in the original SSS data,
but are a noticeable problem in the SSS H–alpha survey, de-
spite ‘clean room’ operating conditions for the SuperCOS-
MOS measuring machine. This is because the original pho-
tographic medium for the latter is film rather than glass, and
film is more prone to electrostatic attraction of particles. Al-
though some of the features of fibres can be removed by the
methods developed here, many of the very small tangled fi-
bres of the H alpha survey would not be detected. Although
they are strictly one-dimensional features they tend to have
many discontinuities in their first derivative. They are often
small, and the combination of these effects mean they might
only result in a few unaligned objects in the derived dataset.
Many of these fibres might be hard to locate without going
back to the original image data. See Figure 3 for an example.

2.5 Stellar Halos

Because survey observations are optimised for faint objects,
bright stars and galaxies can often have annoying optical
artefacts associated with them. The halos around bright
stars are the first of these which we will be considering.
These halos come from internal reflections within the tele-
scope and take a number of forms. First there is an area of
brightness directly surrounding a bright star, decaying with
distance away from the star centre. Second there could be a
smaller uniform disc around the star which is more exposed
than the background. In the centre of a plate this disc will
be centred at the star, but at the edges it could be offset
from the centre. This disc could have an outer edge which
is more exposed than the disc itself. Outside this inner disc
there might be another outer disc. This will be larger than
the inner disc and centred further from the star than the
centre of the inner disc. Once again this disc could have a
more exposed outer edge. It is theoretically possible to have
further discs, but these are only occasionally observed. The
discs are elliptical.

When images containing these halo artefacts undergo
pixel analysis, there are generally two types of spurious
record that are produced. First there is a high density of
erroneous detections in the vicinity of the bright star cor-
responding to the immediate bright area surrounding the
star, or in the region of the inner disc. Second there can be
a ring of object detections following the edge of either or
both of the inner and outer discs. Examples of this are seen
in Figure 3.

2.6 Diffraction Spikes

Diffraction spikes are also associated with bright objects.
They are almost horizontal and almost vertical lines emanat-
ing from the bright star which are due to diffraction about
the telescope struts. The size and length of the diffraction
spikes is dependent on the brightness of the star: brighter
stars produce longer diffraction spikes. The deviation of the
lines from the horizontal and vertical is related to the posi-
tion on the plate. Once again greater deviations occur fur-
ther from the field centre.

(a)

(b)

Figure 3. (a) A small fibre on a plate resulting in 3 spurious
objects. It would be hard to detect these on database information

alone. (b) A large bright star on UKR005. the diffraction spikes

and halos, along with their data counterparts are clear. An outer
halo is also evident, but in this case it is too faint to have caused
any detections.

Because the SuperCOSMOS image analyser fits ellipses
to objects, spurious objects in the dataset along the line of
the diffraction spikes often have ellipses aligned along (or oc-
casionally perpendicular to) the diffraction spike. Examples
are given in Figure 3.

2.7 Other Detritus

The vast majority of spurious objects fall into the above
classes. However other problems such as defects in the plate
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emulsion can produce spurious objects in the dataset. Also
small defects may not be detectable from only the catalogue
data alone and so it might be necessary to return to the orig-
inal images. This paper deals only with detecting spurious
records from catalogue data.

2.8 Problems Caused by Spurious Objects

Spurious objects will introduce errors in statistical results
derived from the data, and make locating particular classes
of objects much harder. The fainter tracks result in many
spurious, elliptical low surface brightness ‘galaxies’ con-
taminating the respective object catalogue. A single–colour
galaxy catalogue, created from the UKJ survey for the pur-
poses of studying faint blue galaxies would therefore be
highly contaminated by spurious, aligned image records.
This could severely impact a statistical analysis of the type
described in Brown et al. (2002), where the degree and scale
of real galaxy alignment is being sought. In order to elim-
inate this possibility, Brown et al. used a two–colour (JR)
paired catalogue, but this of course compromised the depth
of the study and also biased it against faint blue galaxies
which do not appear on the R plates. Ideally, one might like
to perform this study on a single colour (J) galaxy catalogue.
In many general problems we may be interested in real ob-
jects which might be in one dataset but not in an other. For
example, objects which are evident at one wavelength but
not at another may be of interest. Fast moving stars will
also be in different places in catalogues derived from obser-
vations at different times, meaning that they will not have
exact positional matches across the datasets, (e.g. Oppen-
heimer et al. (2001)). Unfortunately satellite track artefacts
have the same characteristics, as they will only ever appear
(in the same place) in one dataset, and not in any other.
Searches on non-matching objects will bring up all the ob-
jects of interest plus all of these artefacts. When searching
for rare objects the spurious records can be overwhelming.
Removing spurious objects, then, is of broad importance in
astronomy.

3 POSSIBLE APPROACHES

There have not been many attempts at tackling the problem
of labelling spurious objects derived from satellite tracks,
scratches or other linear phenomena despite the ubiquitous
nature of the problem and the difficulties these objects pro-
duce for many tasks which sky surveys are used for.

3.1 Hough Transform

The most obvious way to locate lines of objects in two
dimensional data utilises the Hough transform. Indeed in
Cheselka (1999) and Vandame (2001) the authors followed
this approach. The Hough transform (Hough 1959) is a stan-
dard image processing method from which other related ap-
proaches have been developed. In its standard form it is
generally used in low dimensional situations to find lines
containing a high density of points hidden amongst a large
number of other points distributed widely across the whole
space. Commonly it is used for line detection in images.

The Hough transform works by moving from the space

of points to the Hough space, that is the space of lines.
Every point (d, θ) in Hough space corresponds to a line in
the original space which is a perpendicular distance d from
the centre of the data space and inclined at angle θ from the
vertical.

One method of implementing the Hough transform
would search through a finite number of line angles θ. For
each angle all the data points would be considered. For each
data point we would find the (perpendicular) distance from
the origin of the straight line through that point at the rele-
vant angle. This distance would then be discretised, and the
count in an accumulator corresponding to this discretised
distance would be increased by one1. The result of this is a
count for each angle and each perpendicular distance. Ne-
glecting dependencies between the accumulators at different
angles and assuming, as a null hypothesis, a uniform scat-
tering of points2 in the data space, we know the distribution
of the count in a given Hough accumulator will be Poisson
with a mean proportional to the length of the corresponding
line. If on the other hand there is also a line of high density
points in amongst the uniform scattering, then this Poisson
distribution will not be the correct model for the Hough ac-
cumulator corresponding to this line. In fact the count will
be significantly higher than that expected under the null
hypothesis. Hence looking at the probability of the actual
count under this null hypothesis, and ideally comparing this
to an alternative hypothesis based on some prior model of
line counts for satellite tracks, will indicate how likely it
is that this accumulator corresponds to a satellite track. A
surprisingly large number of papers on, and applications of,
the Hough transform focus on finding large absolute values
contained within the Hough accumulators rather than com-
paring them with the null distribution. Needless to say that
approach is significantly less accurate and powerful and is
not to be recommended.

For an SSS dataset derived from field UKJ005, Fig-
ure 4a illustrates the Hough transform of the data. In
this figure lighter regions correspond to higher accumulator
counts. The large scale variation in light and dark regions
comes from the square shape of the plate: lines through the
centre along a diagonal are longer than off centre or off diag-
onal lines, and hence will generally contain more stars. It is
also possible to see some sinusoidal lines of slightly increased
intensity. These are caused by a local cluster of large num-
bers of objects - either a galaxy or artefacts surrounding a
bright star.

The points in Figure 4a which have been circled cor-
respond to points which have an accumulator count much
higher than that which would be suggested by the null Pois-
son model. In fact one of these Hough accumulators com-
bined with its highest count nearest neighbours corresponds
to the data illustrated in figure 4b. In this figure the data
have been rotated so that the horizontal axis shows the
length along the line of the Hough box (the region in data
space corresponding to a given accumulator), and the ver-
tical axis corresponds to the much smaller combined width

1 A concise tutorial/demo of the Hough transform can be found
at http://www.storkey.org/hough.html
2 More formally assuming that points are sampled from a homo-
geneous Poisson process.
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Figure 4. (a) Hough transform of data from field UKJ005. The

vertical axis gives the distance from an origin in the centre of the
plate (400 bins), the horizontal axis gives the angle of orientation

(200 bins). Lighter colours are higher accumulator counts. The

circled points are Hough accumulators with a significantly high
count, and which correspond to satellite tracks on the plate. The

original data which was accumulated in the 3 Hough accumulators

at points (0.38,[79 81]) of (a), that is points in the lower circle,
is shown in (b). Note the different scales of the two axes. The

curvature of the track is obvious from this plot.

of the two neighbouring Hough boxes. The representation
shows that this Hough box does indeed contain (part of) a
satellite track, in fact the most prominent track on the plate.
Part of this track is illustrated in Figure 1(b).

The curved shape of the track gives some hints of the
problems which will be encountered when working with
satellite tracks. Many real stars and galaxies lie within the
the smallest Hough box which could contain the satellite
track. Hence flagging everything within the Hough box as
possibly spurious will not suffice. Reducing the size of the
Hough boxes means that the data from a single track will
be split across a number of boxes, and the data within each
box might begin to be swamped by the general variations
in underlying star and galaxy distribution. This, combined
with the fact that some of the tracks and scratches we are in-

terested in locating are very short segments means that the
data from the line can be swamped by the random varia-
tions in sample density of all the other points along the line.
Therefore nonlinear robust fits to the data within Hough
boxes are not enough. Add to this the problems of dashed
aeroplane tracks and the variable curvature of scratches and
it becomes clear that an approach is needed that is more
flexible than the Hough transform. Comparisons of the re-
sults obtained by the methods developed in this paper and
a Hough approach can be found in section 7.

3.2 Elliptical Hough Transform

Hough transforms can also be used for features other than
straight lines, although more than a few degrees of freedom
increases the Hough space which needs to be considered, and
for large problems such as these this would quickly become
impractical. In fact even a standard circular Hough trans-
form, having three degrees of freedom to the Hough space
(centre x coord, centre y coord, radius) would be beyond rea-
sonable computation for large astronomical datasets. How-
ever if these degrees of freedom can be constrained then the
search space can be reduced to a reasonable size.

In the case of optical halos we know that the ellipti-
cal patterns are centred at or near to bright stars, are axis
aligned and are near circular. This provides a significant con-
straint on the centre of the halo which is enough to make an
elliptical Hough transform entirely feasible for astronomical
data. The details of this particular implementation are given
in Section 8. In general, though, the elliptical Hough trans-
form is implemented in much the same way as the linear
Hough transform. First we decide on the Hough bin width,
denoted ε. The parameter set, consisting of deviation from
star centre, horizontal radius, and deviation of vertical ra-
dius from a circle, are searched through. Each record in the
relevant locality is placed in the two accumulators corre-
sponding to the epsilon-width ellipses (with current param-
eters) which go through that point. Again, after the pro-
cess is completed, the expected count in each accumulator
is Poisson with mean proportional to the area of the corre-
sponding ellipse. A much higher count than that expected
from this distribution would correspond to an abnormally
high density of points within that ellipse.

3.3 RANSAC

RANSAC (Random Sampling and Consensus, Fischler &
Bolles 1981) is a robust estimation technique which is used
when a large proportion of the data provided is expected
to be comprised of outliers. Unlike other robust estimation
techniques RANSAC does not use as much data as possible
to obtain an initial fit estimate. Rather it chooses a sam-
ple of as little data as possible which will determine the
required curve (2 points in the case of a straight line). This
sampling is repeated as many times as is necessary to en-
sure that there is a high probability that one sample will
obtain no outliers. Each of these samples is then scored by
calculating the number of points that are no greater than a
given distance d away from the line. An estimate of the line
parameters can then be made from these points, or further
re-estimation methods can be used.

c© 0000 RAS, MNRAS 000, 000–000
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The RANSAC algorithm is simple. Suppose we are in-
terested in fitting a parametric curve/line with k parame-
ters, and there are n data items. Choose an acceptable prob-
ability of failure P (fail). Suppose we expect there are t items
which will lie along the curve or line we want to find and fit.
The algorithm is

• Repeat s times

(i) Select k data items.
(ii) Fit the curve or line to these k items.
(iii) Calculate the support this curve has (i.e. how many
other points lie along the curve).
(iv) Decide whether this curve is to be accepted or re-
jected dependent on the support.

• End repeat

Under these simple assumptions it is straightforward to
show that we need

s =
log P (fail)

log(1− t/n)
(1)

to get the required failure probability.
RANSAC is useful in situations where there are a large

number of outliers. However the situation presented here is
one which exceeds the usefulness of a naive RANSAC ap-
plication. Given that we might be interested in finding lines
of 20 data points in a dataset of 1 million data points, that
gives a proportion of 1/50000 of points not considered to be
outliers. A naive application of RANSAC would require a
sample size s of the order of (50000)2. Furthermore calcu-
lating the support for a curve would involve at worst another
run through the whole data, making the full cost o(500003).

Less naively, a local RANSAC method could be devel-
oped. Most tracks are at least piecewise continuous, and it
is rare for large regions of tracks to be unrepresented by an
object in the catalogue. Recognising, then, that given a true
point (a point which is in the track) generally has another
true point within its 40 nearest neighbours, say, reduces the
required sampling size to an order of 40×50000. However for
each of these samples we would also have to assess the qual-
ity of the local support for the points, which would involve
the further consideration of about 1000 points in the local
area to assess whether they lie along the required line. Pre-
suming we would be happy with a P (fail) = 1/100 (where
here this is the probability of detection failure for each sec-
tion of track) this gives a cost of the order of 1× 1010 oper-
ations. A very accurate Hough transform considering 1000
different angles will cost about 1 × 109. Here we have ne-
glected the cost of finding the local neighbours. Again with
this RANSAC approach, accurately delineating the ends of
a scratch requires further processing, although the more lo-
cal nature of the algorithm makes it easier. Local density
variations can also be included as this form of RANSAC
involves local assessment of support. The algorithm will be
less accurate in situations where large faint lines occur, as
then the line will have to be recognised on the basis of small
amounts of local information alone, as there is no way of ac-
cumulating information over larger distances. Also focusing
on too local a region can cause problems. Objects along a
track will deviate from the track a little, and if too short
a distance is used to estimate the line of a track, the true
track line might never be found to enough accuracy.

In higher dimensions RANSAC becomes much more
efficient. The Hough transform scales exponentially with
dimensionality, whereas dimensionality is irrelevant for
RANSAC. In general this makes RANSAC a more powerful
technique.

The renewal strings algorithm of this paper is intro-
duced and implemented in a Hough-like framework. However
it is a simple modification to implement it in a RANSAC like
framework. In this situation the line angle and positions are
chosen by sampling two points (ideally using the local form
above), and considering the line through the two points. The
rest of the procedure remains the same. With the data in
this problem, we would expect the Hough-like and the local
RANSAC-like approaches to be the same order of magnitude
in terms of cost.

3.4 Variations on the Hough transform

The Hough transform has been part of the image process-
ing toolbox for many years, and it would be surprising if
adaptations and advances had not been made.

3.4.1 Probabilistic Hough Transform.

That which has become known as the probabilistic Hough
Transform (Kiryati et al. 1991) is simply a way of using a
subsample of the data to speed things up. It is straightfor-
ward to calculate the probability of failing to detect a line
that would have been detected if all the data had been used.
This can be used to choose an appropriate number of points
to subsample.

3.4.2 Generalised Hough Transform.

If the feature to be detected is not easily represented ana-
lytically, it might be possible to describe the shape using a
lookup table based on a prototype shape. The generalised
Hough transform (Ballard 1981) uses this approach.

3.5 Related Work

In addition to the work already discussed, there is a fair
body of vision literature on robust techniques for line seg-
mentation. For example in Kiryati & Bruckstein (1992) the
authors use a smoothing of the Hough accumulator (Hough
1959) to obtain a robust fit. However these approaches tend
to be global straight line methods, in the sense that they
would not work well for either short line segments or curved
lines. In Cheng, Meer and Tyler (Chen et al. 2001), the au-
thors provide methods for dealing with multiple structures
which need not cover the whole space. Once again the model
deals with straight line fits, and is tested on examples where
there is not dominant background data, or large numbers of
outliers. Image based techniques for line extraction are com-
mon, but tend to be based on continuity considerations, and
they are not appropriate in the context where we might be
working with data derived from images rather than the im-
ages themselves. The important work of Hastie and Stuetzle
(Hastie & Stuetzle 1989) on principal curves provides a dif-
ferent direction which does model curved data, but does not
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provide the robustness and efficiency needed for situations
when curves are set in large amounts of other data.

4 RENEWAL STRINGS

Renewal strings, first introduced in the machine learning lit-
erature in Storkey et al. (2003), are a new probabilistic data
mining tool for finding subsets of records following unknown
line segments in data space which are hidden within large
amounts of other data. The method was developed specifi-
cally to address the problem of this paper. Renewal strings
combine a model for two dimensional data and a set of mod-
els for small numbers of data lying on one dimensional man-
ifolds within the two dimensional space. The design of the
model allows efficient line based techniques to be used for
separating out the data from the different one dimensional
manifolds.

Renewal strings rely on a Bayesian generative approach,
and so this section of the paper starts by describing how re-
newal strings can be used to generate, or simulate, artificial
data of the sort we are interested in. Generative models are a
probabilistic framework, whereby a prior probability distri-
bution is built that represents belief about what data might
be expected. This usually involves forming a model where
explanatory hidden (or latent) variables provide a descrip-
tion of the data. The form of this model is such that artificial
data can be sampled from the prior distribution.

To use a generative model, it is inverted using Bayes’
theorem to provide the posterior distribution over the latent
variables given the observed data. This posterior distribu-
tion can provide answers to any questions regarding particu-
lar explanations for the data. Hence after the renewal strings
model is formulated, the same generative model is then in-
verted using the standard Bayesian formalism to enable the
key variables to be inferred from the real data. Although
this inversion is approximate, it captures the fundamental
characteristics of the model.

Renewal strings depend on two tools of probabilistic
modelling: the renewal process and hidden Markov models.
Hence these two models are introduced here.

4.1 Renewal Process Description

One way of modelling points along a line is through renewal
processes. A renewal process is a model for event times ob-
tained by defining a probability distribution for the time be-
tween events (commonly termed the inter-arrival time). The
time at which event i occurs is dependent only on the time of
the previous event i− 1; it obeys the Markov property. The
typical example of a renewal process is light bulb failure. The
probability that a light bulb is about to fail depends only
on how long the light bulb has been burning (the time since
the last bulb failed) and not on the life (or any other char-
acteristics) of any of the other light bulbs which had been
in the fitting previously. Hence renewal models have the ad-
vantage that they are Markovian while at the same time
allowing complete flexibility in modelling the inter-arrival
times. As we will generally be dealing with one-dimensional
spatial concepts rather than temporal ones we will use the
term ‘inter-point distance’ rather than ‘inter-arrival time’ in
the context of this paper.

It is possible that a Markovian model does not capture
the major features of a line process, for example a large inter-
point distance might be much more likely to be followed
by a smaller inter-point distance (a problem characteristic
of bus arrival times, for example). The benefits of using a
Markovian model, in terms of speed and tractability, led to
the decision to focus exclusively on the inter-arrival char-
acteristics of the data and ignore any slight non-Markovian
characteristics there might be. If this Markovian model is
not good enough then it can be possible to incorporate the
non-Markovian elements into the hidden Markov part of the
renewal string model, described in the next section.

4.2 Hidden Markovian Dynamics

Hidden Markov Models (HMMs) are a ubiquitous tool, seen
in many different applications. Almost all speech recogni-
tion systems use a hidden Markov model framework. They
have also been found to be a vital tool in gene sequence
analysis, computer vision, time series prediction and natu-
ral language processing. A standard introduction to hidden
Markov models can be found in Rabiner (1989). In this sec-
tion we show how a hidden Markov model can be used to
combine a number m of different sorts of satellite tracks or
processes together into a switching system.

Suppose we are given an inter-point distance ∆ti at a
point i and given prior renewal models for the m different
types of satellite track processes. Then given a prior proba-
bility of a point being part of a particular type of satellite
track, we can obtain a posterior probability that the inter-
arrival time was characteristic of a particular type satellite
track:

P (Xi|∆ti) =
P (∆ti|Xi)P (Xi)∑
Xi

P (∆ti|Xi)P (Xi)
, (2)

where Xi labels the type of process (1, 2, . . . , m for the dif-
ferent types of satellite track).

The problem with this is that the prior probability of
a point being part of a satellite track will be highly depen-
dent on whether the last point in the line was part of the
same type of satellite track or not. Hence we need some prior
model for satellite track continuity. This is most easily de-
fined using a Markov model for the track labels Xi. Because
Xi are not observable the whole model is called a hidden
Markov model.

We introduce a set of conditional transition probabil-
ities P (Xi|Xi−1) for the change in label between object
i− 1 and object i along the line. We also allow a transition
P (Xi = 0|Xi−1) where Xi = 0 denotes the end of the line.
The belief network for this system is illustrated in Figure 5.
In a belief network, each node represents a random variable,
and each directed edge is a direct probabilistic dependence.
Hence a belief network is an implicit representation of the
conditional independence structures in a distribution. The
nodes directly upstream from a given node are called the
parents of that node. For each node V a conditional dis-
tribution P (V |Parents of V ) needs to be defined. The joint
probability distribution over all the nodes is simply the prod-
uct of the conditional distributions for each node. For more
details on belief networks see e.g. Castillo et al. (1997). Prob-
ability models which can be represented as belief networks
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Figure 5. Belief network for the hidden Markov renewal process.

without undirected cycles have the advantage of allowing ef-
ficient exact inference to be done using belief propagation
(Pearl 1988).

The combination of renewal processes and hidden
Markov models, henceforth called renewal process hidden
Markov models is not new within temporal settings. It has
been used for (amongst other things) modelling the pecking
behaviour of pigeons (Otterpohl et al. 2000)! Also, in the
case that the renewal processes are all Poisson processes,
there is a direct relationship between the Renewal Process
hidden Markov model and the Markov modulated Poisson
process (Scott & Smyth 2003).

4.3 Other Variables

Though the positions of the objects will play the most im-
portant part in the characterisation of line processes, other
characteristics of the data might well be able to contribute
to the classification. For example, in satellite tracks, the ob-
ject ellipses tend to be aligned along the track.

We can modify the hidden Markov model to include in-
put units to Xi relating to any other data fields associated
with each point. This produces an obvious generalisation to
the hidden Markov model, known as an input-output hid-
den Markov model (Bengio & Frasconi 1996). Specifically
we include elliptical alignment information in the model.

5 RENEWAL STRING GENERATION

One way to visualise the complete renewal string model in-
volves building a background image of the stars and galaxies.
Having decided on the number and location of the satel-
lite tracks, and the type of each, we thread beads onto a
string for each satellite track, where the distances between
the beads are defined by the hidden Markov renewal process,
stopping when we get Xi = 0 in the hidden Markov model.
Then we place the beads down on to a background image,
keeping the string tight. The final data consists of the po-
sitions of the stars and galaxies in the background model,
combined with the positions of the beads.

More formally, the Renewal String generative model is
built as follows. First 2 dimensional star and galaxy posi-
tions are generated from a background spatial model. This
could be any spatial process such as an inhomogeneous Pois-
son process. For the purposes of this paper we define the
background model to be a Poisson process which is homo-
geneous within small regions, but has different rates in dif-
ferent regions. Denote this rate function Λ(r) for positions
r.

Track processes are superimposed on the background

data, to simulate satellite tracks or scratches. There are po-
tentially a number of different track classes, each with dif-
ferent inter-point distributions. The tracks are generated as
follows:

• For each θ from a large but finite set of angles Θ, and
for each of a finite set of lines L at that angle, each of a
given (narrow) width w, a renewal process HMM is used to
generate track data.

The renewal process hidden Markov model along the line is
implemented using this procedure:

• Along each line, a Poisson process (with large mean
inter-point distance γ) is used as a birth process for the
track; an event in this process signifies the start of the track
generation.
• The class of the track is chosen from the prior distri-

bution P (X0), and track points are sampled by generating
from a renewal process HMM: the inter-point distance is
sampled from P (∆ti|Xi) conditioned on the current class,
and a new point ti+1 is placed the distance ∆ti away from
the current point, at angle θ from that point. Then the next
class is chosen from the transitions P (Xt+1|Xt).
• We stop generating the track either when the edge of the

plate is reached or the hidden Markov chain transitions into
the ‘stop’ class. The transition into the stop class initiates
the birth process again, which allows more than one track
to be generated along the same line.
• Each point in each track is independently perturbed

perpendicular to the line of the track uniformly across the
track width w.

Note that it is possible for a track to be turned on before
reaching the region of interest (in this case the plate edge),
but not yet be turned off, and hence the track will start at
the edge of the plate. As the birth process produces rare
events most lines will not contain any tracks at all.

The set of angles Θ is generally chosen to be regularly
spaced between 0 and 180 degrees, and the lines L are chosen
to cover the region of consideration with a 2 line overlap;
each point in the space lies in 2 and only 2 lines at a given
angle.

Figure 6 illustrates a sample from a generative model of
this form. We see a background model, along with two dif-
ferent types of tracks, one of which is a high density broken
line, the other a medium density line. The model only gen-
erates straight line segments. Curves can be approximated
using piecewise linear segments.

6 INFERENCE AND LEARNING

The generative Renewal String model says how to simulate
background data and the data corresponding to different
tracks from a given parameter set. These two elements can
then be combined to form the final observable data. What
we are interested in is the inverse model: how to separate
the background and track records given the whole data and
a particular set of parameters. This inverse is given by Bayes
theorem:

P (X|D, Φ) =
P (D|X, Φ)P (X|Φ)

P (D|Φ)
(3)
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Figure 6. A sample from a 3 hidden-state renewal strings prior,

illustrating a background model, and 7 lines with differing char-
acteristics.

where D denotes the data, X a set with each element la-
belling whether a point corresponds to a star/galaxy or one
of the different types of track. Φ is presumed to be a known
set of parameters.

We require a reasonably fast inference scheme for this
model. Borrowing from the Hough transform approach it
could be sensible to resort to line-based techniques in order
to perform inference. The Hough transform looks through a
comprehensive set of lines in the data, and finds those with a
high accumulator. To implement the renewal string we take
this one step further. Rather than just count the points along
the line, a renewal process HMM is run along the line to find
points which could be best classified as part of a track. This
approach is only an approximate inference scheme for the
aforementioned generative model. The main issue is that, as
with the Hough transform, the dependence between lines at
different angles is ignored. The inference scheme for a single
line is exact in the case where data from all tracks other
than those along that line have been removed. In reality,
though, such data remains. However because there are few
tracks, tracks at other angles will contribute at most a small
number of points to the data along the current line, and so
this is likely to have limited effect on the inference for the
current line. This is the primary approximation assumption
of the inference method.

To work with lines rather than with spatial variables,
we use the fact that a spatial point distribution which is
an inhomogeneous Poisson process will correspond to an in-
homogeneous Poisson process along the length of any line
(with some given width) going through that region of space.
Hence when we condition on the fact that we are considering
one particular line, a one dimensional Poisson process can
be used instead of a spatial one. The inhomogeneity of the
Poisson process takes care of the fact that the background
model is not likely to take the same form across the whole
plate.

Suppose we have an estimate for the density Db of back-
ground objects local to each point. The full initialisation
and inferential process can now be given. As stated above,

Θ gives the set of angles to be considered (from 0 to 180
degrees), and L = L(Θ) the set of lines at each angle:

1) Set the line width w based on the expected maximum
width of the lines to be found. Define the inter-point dis-
tance distribution P (∆t|X, Db) for each class X including
the background class. This can depend on the background
object density at that point. Define the class transition prob-
abilities P (Xk

i |Xk
i−1) and initial probabilities P (Xk

0 ).

2) For each angle θ from the set Θ

a) For every point in the dataset, find all the lines L′ of
width w in L which contain the point. Store the position
t along each line in l′ in a bin corresponding to that line.

b) For each line in L, sort all the distances in its bin.
Use these distances as the data for an HMM with emis-
sion probabilities P (∆t|X, Db) and transition probabil-
ities P (Xk

i |Xk
i−1). Run the usual forward-backward in-

ference (see Appendix A) to get marginal posterior class
probabilities for each point. Flag any points which have a
low probability of being background objects and note the
angle at which these points were detected.

3) End for

At the end of this process, the flagged points are the points
suspected to be part of a track or scratch. The associated
probability gives extra information regarding the certainty
of this classification.

Note that, in terms of the generative model, the tran-
sition probability out of the background state, P (Xk

i 6=
0|Xk

i−1 = 0), is given by the probability that the point is
generated by the birth process rather than the background
process. In practice, at least for this work, we approximate
this by a fixed empirically determined value. Then we can
take the initial class probability P (Xk

0 ) as given by the equi-
librium distribution of the Markov chain.

To estimate the rate Λ(r) of the background inhomoge-
neous Poisson process, we assume there is a length scale s
such that, for regions of size s×s, the contributions from the
satellite tracks to the total number of points, and the varia-
tion in background star/galaxy density are both negligible.
Then the local mean of the background Possion process can
be approximately obtained from the total density of points
in a local region of size s× s.

Tuning of the parameters could be done with the usual
expectation maximisation algorithm for HMMs (Rabiner
1989). On the other hand empirical ground truth estimates
could be used to set the parameters. In this work the tracks
are also modelled as Poisson processes (a specific form of
renewal process with an exponential inter-point distance).
The fundamental reason for this is that along the line of
a satellite track there will also be objects corresponding to
stars and galaxies. The point density along a track from a
satellite moving in front of a dense distribution of stars will
be higher than one passing in front of a relatively sparse re-
gion of sky, and hence the line of objects along each track is
a superposition. Poisson processes have the advantage that
the superposition of two Poisson processes is a Poisson pro-
cess. The equivalent statement is not true for more general
forms of renewal processes.
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6.1 Preprocessing using the Hough transform

Although we will show in section 7.1 that a standard Hough
transform will not be able to find all the linear features in the
data, it is certainly true that it will find the larger satellite
tracks and other features that cover a significant distance
on the plate. If these larger features were the only ones of
significant interest then the Hough transform could be used
as a preprocessor to determine which lines should be checked
for the features we want. The renewal string algorithm is
only run along a particular line if there seems to be enough
support obtained from the number of objects along that line.
In this sense renewal strings are a complement to the Hough
transform rather than an alternative.

7 DETECTIONS OF SATELLITE TRACKS,
AEROPLANE TRACKS AND SCRATCHES

A simple form of the renewal strings model was tested
on plate datasets within the SSS. For the background
star/galaxy process the local density was obtained by grid-
ding the whole space into 40, 000 boxes and counting the
elements in each box. Improvements could be made through
the use of a k-means or other density estimate. 1000 differ-
ent angle settings were used, and 18000 different bins for
the distance from the origin. Each data point was put in
two bins (i.e. the line width was twice the distance sepa-
ration). These values were obtained from simple geometric
arguments. The number of bins for the distance from the
origin was chosen based on the largest widths of the tracks
which we were trying to detect. Then the angular variation
was then chosen such that any significant length of any track
will not be missed between two different angles.

A simple model of two hidden states was used, one cor-
responding to the background, another to the satellite track.
The inter-point distribution for the satellite track was set
to be an exponential distribution using the empirical mean
from a training set including 30 different satellite tracks from
low density plates (the resulting mean was 360 microns on
the plate, corresponding to 24 arcsec on the sky). As stars
and galaxies also appear along satellite tracks, this empir-
ical mean was added to the mean of the background pro-
cess to properly model the density along a satellite track
in different circumstances. The transition probabilities were
set approximately using prior knowledge about the number
of satellite tracks etc. on the training plates, the number
of objects in total and the number of objects per satellite
track. This resulted in the transition matrix P (Xt|Xt−1) for
X = {background, track} of(

0.999998 0.04
2× 10−6 0.96

)
The initial prior probabilities were assumed to be the equi-
librium probabilities of a Markov chain with these transi-
tions.

Figures 7 and 8 gives a few examples of the results.
The whole plate is a little under 350mm square, so some of
these images are for very small regions. Figure 7b shows the
results for a whole plate. Note these images also contain the
results for diffraction spike and halo detection discussed in
Sections 8 and 9. Stars or galaxies lying behind the path
of a satellite track are also flagged, as the characteristics
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Figure 7. (a) An aeroplane track sloping from the bottom left to

the top right: a faint dashed line caused by a flashing light is prop-
erly detected. (b) The detection results for the whole of UKJ159,
including a number of satellite tracks or aeroplane tracks. One

flashing aeroplane track traverses the right side of the plate.

recorded for those objects will be affected by the existence
of the track, and will therefore be unreliable.

7.1 Comparison of results with naive Hough
transform

The simple Hough transform does a slightly different job
from the renewal string approach, as it is designed to find
lines which traverse the whole plate. If we wish to find line
segments we have to do some post-processing of the results.
The exact position of the tracks would still need separating
from the other points in that Hough box. Even so we can
assess how well the Hough transform can find lines which
contain linear features.
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Figure 8. Detections along the parts of two satellite tracks on

UKJ005. Other parts of these tracks were illustrated in Figure
1(a) the sparse track and (b) the dense track.

There are many decision functions which can be used
with the Hough transform. For a useful comparison with the
renewal string results, we look at the significance level which
would be needed to detect each track that was detected with
the renewal string method. We also look at how many other
false positive tracks would also be detected for given sig-
nificance levels. The number of angles and line widths con-
sidered were set to match the renewal string settings (1000
angles, 9000 different perpendicular distances)

Results for doing this on plate UKR002 are shown in
Table 1. This plate has no satellite tracks that traverse the
whole plate, but does have some smaller to medium size
(a quarter of plate width) tracks and scratches. Each track
was located in a semi-automated way, and diffraction spikes
were ignored by removing all tracks within 1.5 degrees of the
horizontal or vertical. The position and angle of each track
was noted, and included in a track list. In general each track

was noted once. However, where there was a large curvature
to a track, more than one reference could have been included
in the list. The points corresponding to the plate notes in
the bottom left of the plate, and detections relating to a
halo about a bright star were removed by hand. This left 35
tracks or scratches in the reference list.

For comparison purposes, we looked at all the listed
tracks and calculated what significance level would be
needed in order to detect the line containing that track with
the Hough transform. The table shows the significance level
required to detect the tracks along with the total number
of tracks (true and false) which would have been detected
by the Hough transform at various significance levels. These
counts once again exclude Hough accumulators correspond-
ing to lines within 1.5 degrees of the horizontal or vertical.
The result was that a total of 968 different angles were con-
sidered. Accumulators with an expected count less than 12
were discarded as these are easily affected by isolated points.

Many of the tracks are picked up by the Hough trans-
form for high significance levels. However some of the tracks
are not even detectable at significance levels of 0.5 and
smaller. Hence the renewal string approach is certainly in-
creasing the detection rate compared with using the Hough
transform alone. Furthermore the Hough transform pro-
duces large numbers of false positives even when only choos-
ing very significant lines. The number of false positives on
this plate is much greater than the theoretical number that
should be found at the high significance levels. Some of these
will be contributions from accumulators mapping to lines
overlapping a track at a slight angle. However a dominant
reason for the discrepancy is that global approaches like the
Hough transform do not easily deal with variations in the
background density; there is an assumption of homogeneity.
If many stars are clustered in one location, then they can
cause a significant contribution to a single Hough accumula-
tor. As mentioned in section 6.1, if only the more significant
detections are wanted then the Hough transform can be used
to find proposal search lines, and then the renewal string ap-
proach allows the exact points in the track to be found along
that line (if there are any). This can be a significant speed
up over running a hidden Markov renewal process along ev-
ery line. How many tracks would be missed depends on the
significance level used, and in this circumstance can be es-
timated from Table 1. The lower the significance level, the
more lines that would have to be checked, and hence the
greater the computational cost.

8 DETECTIONS OF OPTICAL HALOS

Finding optical halos is possible using elliptical Hough trans-
forms described in section 3.2. As the halos are almost cir-
cular, and centred near to bright stars it is only necessary
to consider ellipses up to a certain radius, and in a limited
number of centres, and with a limited amount of ellipticity.
The possible centres are chosen to be near to bright stars.

To search around bright stars, a bright star set is
needed. The measurement of the photographic magnitude
of bright stars can be subject to quite large error. For this
reason the measured size of the star is used as an indicator of
its likelihood of producing halos (or diffraction spikes). We
chose to consider all stars with a measured radius greater
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SIGLEV DET TOT THEOR

0.5 31 3.18× 106 4.4× 106

0.7 26 2.09× 106 2.6× 106

0.9 21 8.96× 105 8.7× 105

0.95 15 5.34× 105 4.4× 105

0.99 9 1.62× 105 8.7× 104

0.999 7 30147 8712

1− 10−4 5 5903 871.2

1− 10−5 4 1158 87.12
1− 10−6 3 257 8.7

1− 10−7 2 71 0.87

1− 10−8 2 25 0.087
1− 10−9 1 16 0.0087

Table 1. The number of the 35 tracks/scratches on UKR002

which would have been detected using the hough transform.
SIGLEV gives the significance level used. DET gives the number

of the tracks which would have been flagged at that significance

level, TOT the total number of lines flagged as significant by the
Hough transform, and THEOR the theoretical number of false

positives for a homogeneous Poisson distribution. A significance

level of 1− 10−7 is needed to reduce the theoretical false positive
detection rate to a suitably low level. Then only two of the tracks

could have been detected, and in practice there would have been
many false positives flagged.

than 200 microns. The star/galaxy classification flag can also
be inaccurate for very bright stars, and so any object which
is approximately circular is presumed stellar. We allowed a
minimum ratio of 0.7 between the minor and major elliptical
axes. This does result in some misclassification where stars
in circular galaxies are presumed to be part of a halo around
a star. Solutions to this problem are being investigated, in-
cluding the possibility of building more accurate classifiers
for stars and galaxies by training on the Sloan Digital Sky
Survey classifications.

To detect the halos an elliptical Hough transform was
used. The elliptical axes were presumed to be aligned along
the x and y axes, and the ratio of the horizontal and ver-
tical axes was varied from 0.8 to 1.2 in intervals of 0.05.
The ellipse centres were chosen to be within 400 microns of
the measured star centre, stepping in 80 micron intervals.
The Hough transform searched through 200 different radii,
each of width 40 micron. An allowance for the variation in
background density of 1.1 times the measured density was
used. The halos were expected to have a mean line density
of 1 point every 380 microns over and above the background
density, obtained from observations regarding the density
of halos. Empirical estimates were used to calculate a prior
probability of a randomly chosen ring about a bright star
containing a halo of about 0.00003.

The objects were flagged when any ellipse containing
them was found to have a posterior probability of greater
than 0.5 of being a halo. The posterior probability of an
object being part of a halo was assumed to be the great-
est posterior probability of all the ellipses containing that
object.

9 DETECTION OF DIFFRACTION SPIKES

Diffraction spikes occur around bright stars. They are linear
features with many of the characteristics that other linear

features have, and it is true that the application of the stan-
dard renewal string approach of the previous section will
detect a large number of the diffraction spikes without any
modification. This is because the renewal string approach
is particularly suited to detection of short linear features as
it is based on a model which allows the generation of short
lines.

Despite the fact that diffraction spikes are also linear
phenomena similar to scratches, there are significantly fewer
degrees of freedom regarding where they lie. Hence they can
be found with greater accuracy by focusing exclusively on
lines passing through bright stars, and aligned almost hori-
zontally and almost vertically to the image axes. This means
that the renewal string methods described in the previous
sections can be enhanced by restricting the renewal string
algorithm to look only at near vertical and near horizontal
lines in the region of a bright star. This enables the proba-
bility model to be tailored specifically to diffraction spikes
rather than to all linear features.

The restricted renewal string approach was used in or-
der to try to pinpoint the diffraction spike positions more
accurately. The bright star set described in section 8 was
used. 17 different angles in 0.3 degree gradations, and 17
different line positions at gradations of 13 micron were con-
sidered near to the axis aligned lines through the centre of
the bright stars. These values appeared to cover the varia-
tion in the position and angle of the spikes without introduc-
ing excessive computational burden. In a similar way to the
renewal string model, a hidden Markov renewal process was
run along each of these lines. The main difference is that the
process started at the closest point to the star centre, work-
ing out to the edge. The mean of the spike Poisson process
was taken to be 190 microns, and the transition probabilities
P (Xt|Xt−1) for X = {background, track} were(

0.9992 0.23
0.0008 0.77

)
Due to the increased probability of a point near to the star
being a part of a spike, the initial probabilities are no longer
the equilibrium probabilities of the Markov chain. The initial
probabilities P (X0) were set to be(

0.994
0.006

)
These probabilities were estimates based on the number of
lines considered, the expected number of diffraction spikes
which existed per star examined, the overlap of the lines, and
the expected length of the lines. It is possible that these hand
estimates could be enhanced using the expectation maximi-
sation (EM) algorithm to obtain maximum likelihood pa-
rameter estimates. However that would increase the com-
putational burden significantly for what would probably be
small gain.

The usual renewal string inference (the forward back-
ward equations of appendix A) was used to detect the po-
sitions of the diffraction spikes, again flagging for posterior
probabilities greater than 0.5.

10 EVALUATION

The detections were evaluated by an astronomer (NCH),
who looked through a printed version of the plate data for a

c© 0000 RAS, MNRAS 000, 000–000
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FP FP% FN FN% DET TOT

Tracks 60 0.7 14 0.0033 8539 429238

Halos 60 1.2 32 0.0075 5063 429238

Spikes 30 2.0 175 0.04 1482 429238

Table 2. Numbers of false positive (FP) and false negative (FN)

records for satellite track/scratch detection, halo detection and
diffraction spike detection on plate UKR001. False positive per-

centage expressed as percentage of total detections (DET); false
negative percentage expressed as percentage of [total objects

(TOT) - total detections (DET)].

whole plate (UKR001). The plate was split into 36 regions,
each region being printed on an A3 sheet. These A3 sheets
were examined closely for false negative and false positive
detections, and the astronomer also commented on other
aspects of the detection he felt notable. In this analysis fea-
tures corresponding to small fibres were ignored. As the mea-
sured characteristics of true stars or galaxies along or very
near a satellite track will be affected by the track, these
objects should also be flagged.

A general summary of the results can be found in Ta-
ble 2. All the major satellite tracks were found and the ends
of the tracks were generally accurately delineated. All of
the small scratches were properly identified, although one of
them involved a significant bend. Figure 9 illustrates this.
Some of the objects along the bend were improperly clas-
sified as real objects. A small number of small false posi-
tive linear detections were made. Some objects due to fibres
on the plate were also picked up, although as expected the
method was not designed for and is not ideally suited to
their detection.

Another useful evaluation involves comparing the detec-
tions with cross-plate matches. Any objects which are due
entirely to a satellite track or scratch will not have a corre-
sponding record in other data taken at different epochs or
different wavelengths. If we presume that any objects which
do pair across different surveys are real astronomical objects
or optical artefacts, then we can make an assessment of how
many objects are being flagged which are definitely not due
to a track or scratch.

Of the 3.1 million objects on the 8 plates, 10029 objects
were located by the renewal string algorithm as part of a
scratch or track. Of these only 552 (5%) were paired across
different surveys, indicating they were true astronomical ob-
jects or related to optical artefacts. Nearly all of these were
stars and galaxies lying along the line of the satellite tracks,
which should be flagged as problematic anyway.

Some examples of the tracks found can be seen in Fig-
ure 10. Figure 11a shows a number of points which were
flagged as spurious by the renewal string approach. This is
located on UKR001 around RA = 2 : 34 : 52, DEC = −86 :
32 : 16. The astronomer marked this up as a false positive

175 180 185 190 195 200 205
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160

165

170

175

180

185

x/mm

y/
m

m

FP

FN

FN

(a)

(b)

(c)

Figure 9. (a) False positives (FP) and false negatives (FN)

for detections along a very faint highly curved scratch on plate
UKR001. This is the only significant source of false negatives for

scratch/track detection that the astronomers found on this plate
(the others were isolated points at the end of a scratch). The
scratch is not easily seen in the corresponding image (b), but can

be seen in the detail (c) of the brightened region of (b).
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Figure 10. (a) A very short scratch which was detected. (b) A

typical part of a large satellite track.

detection, as it did seem to look like stars and galaxies which
just happened to be aligned. However when looking at the
image (Figure 11b), it is clear that these points are aligned
along a very faint track. For most of the track the image is
too faint to produce any spurious records. However for this
short section some spurious records do occur. The fact that
this is the case can be seen by looking at the corresponding
image part in the overlap with plate UKJ003, where no such
objects are recorded.

Again on UKR001, the halos of the bright stars were
picked up accurately. There were some false positives due to
the other local features being misinterpreted as halos. For
example a high density cluster might contribute to a high
Hough accumulator count for a given ellipse, causing other
points in that ellipse to also be classified inaccurately. In
general though because the halo detection is a Hough ap-
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Figure 11. (a) A set of detections on UKR001 which were marked

up as false positives by the astronomers. (b) A look at the image
shows the points are in fact part of a faint track.

proach, the density variation along the path of the larger
halos is not taken into account, and this can cause problems
such as these. From Table 2, it can be seen that the num-
ber of false positives is still a small proportion of the total
detections 3.

Most, but not all of the diffraction spikes were detected.
In general we presume that a diffraction spike will need to
contain about 4 objects before we would expect this algo-
rithm to detect it. The most common failures were false
negatives. The majority of these were diffraction spikes on
stars which were only just bright enough to have spikes,

3 Classifications are only illustrated for the deblended objects.
Some of the objects on these plots can be seen to be larger parent
objects which have a number of deblended children.
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Figure 12. (a) A set of halos and diffraction spikes around a
bright star on UKR002 at RA= 23 : 52 : 7, DEC= −82 : 01 : 14.

(b) One of many medium-bright stars on UKR002 with associated
halo and diffraction spikes.

where the spikes were represented as four objects. Some were
failures to recognise the true extent of a diffraction spike.
Even so the number of false negatives was relatively small.
There were also some false positives due to overrun of the
diffraction spike detection beyond the end of the spike, and
other effects such as two adjacent bright stars whose halos
and diffraction spikes interacted with one another. Again
the number of false positives was a small percentage of the
overall detections.

Examples of the halo and diffraction spike detection can
be found in Figure 12. These show one bright (a) and one
less bright (b) star, and their associated halos and diffraction
spikes. Example detections on a whole plate can be seen in
Figure 7b.

In general we are getting good detection rates for all

three problem features. This will make a major difference to
the reduction in spurious data problems in the catalogue.

11 DISCUSSION

Renewal Strings have certainly aided the process of detec-
tion of spurious objects in astronomical data: given very
large amounts of data only a small number of detections
were made, most of which were correct. The form of the
model allows the use of the hidden Markov models and re-
newal processes, resulting in a model that is efficient even
for huge datasets. It has been run all the plates of the SSS
data (over 3000 in total), providing a valuable resource to
astronomers.

Renewal strings are a practical, probabilistic approach
to a large problem requiring high accuracy. Renewal strings
go beyond a local Hough transform method to a general
approach for detecting line segments within large amounts
of other data. Slightly curved lines are also detectable as a
set of locally linear parts.

Hough transform approaches were also suitable for halo
detection. Some of the false positives reflected the diffi-
culty that Hough approaches have in dealing with local den-
sity variations. One way of improving the current approach
would use renewal strings around the arc of the halo in much
the same way that is currently used for straight lines. This
would allow the local densities to be modelled more accu-
rately.

The renewal string approach has also been adapted
for diffraction spike detection, and shows promising results.
One noticeable improvement would involve the introduction
of prior information regarding the length of the diffraction
spike depending on the brightness of the star. However in-
accuracies in the measured star brightness, and significant
variations in spike length depending on the position of the
star, or density and colour of the plate, have made this a
nontrivial task. Despite this the current method is provid-
ing accurate detection results, and enables the recognition of
the vast majority of diffraction spike objects with relatively
few false positives.

The renewal string approach shows clear benefits over
Hough approaches, and has proven a highly effective method
for detection of spurious data in the SuperCOSMOS Sky
Survey. The results of the method will reduce the problem
of spurious data in these surveys to insignificant levels. Fur-
thermore the technique is general and can be adapted for use
in future sky surveys. The techniques will also be useful in
fully digital sky surveys. These techniques are particularly
suitable for detection of the shorter satellite and aeroplane
tracks which can be found in many digital surveys.

The results of the application of this approach to the
SuperCOSMOS Sky Survey will be made available in a forth-
coming new release (Hambly et al., 2003, in preparation) of
the survey data. This new release will incorporate several
new data enhancements (eg. to proper motions, photomet-
ric calibration scales and source pairing) along with enhance-
ments to user access. The existing standard SSS distribution
is available at http://www-wfau.roe.ac.uk/sss/.
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APPENDIX A: INFERENCE IN HIDDEN
MARKOV MODELS

In this Appendix the update equations for a hidden Markov
model are given. For more details see e.g. Rabiner (1989);
Castillo et al. (1997). Suppose the number of states for the
HMM is denoted by M , the latent class variables denoted
by X and the visible variables by Y . Subscripts are used to
denote the time index from 0 to T . Then the state transition
matrix at time i is P (Xi+1|Xi). The output distribution is
P (Yi|Xi), and the initial class probabilities are P (X0). The
update equations for inference in a hidden Markov model
consists of a backward and a forward pass. We presume that
all the Yi are given. The backward pass propagates the data
likelihood back through time. Once that is complete, the for-
ward pass propagates the prior information forward through
time.

Let λi(Xi) = P (Yi−|Xi) denote the backward message
at time i for each class (1 to M) taken by Xi. Here Yi−
denotes the set of all of the observable values for times after
and including time i. Likewise ρi(Xi) ∝ P (Yi+, Xi) is the
forward message at time i, where Yi+ denotes the set of all
of the observable values for times before time i. Then we
can update λ by using the initialisation λT (XT ) = 1 ∀XT

and then applying the recursive formula

λi = P (Yi|Xi)
∑

Xi+1

P (Xi+1|Xi)λ(Xi+1). (A1)

Likewise we initialise ρi(X0) = P (X0) and apply the recur-
sive formula

ρi(Xi) =
∑

Xi−1

P (Xi|Xi−1)ρi(Xi−1)P (Yi−1|Xi−1) (A2)

The final marginal posterior probabilities (beliefs) are
given by

P (Xi|{Yj ∀j}) = αλi(Xi)ρi(Xi) (A3)

with α a normalisation constant.
The beliefs can be calculated in time linear in the num-

ber of nodes.
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