
Mixture Regression for Covariate Shift

Amos J Storkey
Institute of Adaptive and Neural Computation

School of Informatics, University of Edinburgh
a.storkey@ed.ac.uk

Masashi Sugiyama
Department of Computer Science

Tokyo Institute of Technology
sugi@cs.titech.ac.jp

Abstract

In supervised learning there is a typical presumption that the training and test
points are taken from the same distribution. In practice this assumption is com-
monly violated. The situations where the training and test data are from different
distributions is called covariate shift. Recent work has examined techniques for
dealing with covariate shift in terms of minimisation of generalisation error. As
yet the literature lacks a Bayesian generative perspective on this problem. This
paper tackles this issue for regression models. Recent work on covariate shift can
be understood in terms of mixture regression. Using this view, we obtain a general
approach to regression under covariate shift, which reproduces previous work as
a special case. The main advantages of this new formulation over previous mod-
els for covariate shift are that we no longer need to presume the test and training
densities are known, the regression and density estimation are combined into a
single procedure, and previous methods are reproduced as special cases of this
procedure, shedding light on the implicit assumptions the methods are making.

1 Introduction

There is a common presumption in developing supervised methods that the distribution of training
points used for learning supervised models will match the distribution of points seen in a new test
scenario. The expectation that the training and test points follow the same distribution is explicitly
stated in [2, p. 10], is an assumption of empirical risk minimisation, [see e.g. 9, p. 25], and is
implicit in the common practice of randomized splitting given data into a “training set” and a “test
set”, where the latter is used in assessing performance [5, p. 482-495].

This paper, then, is concerned with the following issue. A set of real valued training data pairs of
the form (x,y) is provided to train a model for a supervised learning problem. In addition data of
the form x is provided from one (or more) test environments where the model will be used. The
question to be addressed is “How should we predict a value of y given a value x from within that
particular test environment?”

Cases where test scenarios truly match the training data are probably rare. The problem of mismatch
has been grappled within literature from a number of fields, and has become known as covariate
shift [14]. Specific examples of covariate shift include situations in reinforcement learning [c.f. 13]
and bio-informatics [c.f. 1]. The common issue of sample selection bias [7] is a particular case of
covariate shift.

Much of the recent analysis of covariate shift has been made in the context of assessing the asymp-
totic bias of various estimators [15]. In general it has been noted that in the case of mismatched
models (i.e. where the model from which the training data is generated is not included in the training
model class), some typical estimators, such as least squares approaches, produce biased asymptotic
estimators [14]. It might appear that the presumption of matched models in Bayesian analysis means
covariate shift is not an issue: failure or otherwise under situations of covariate shift is solved by
valid choice for the prior distribution over conditional models. The difficulty with this dismissal



of the subject is that modelling conditional distributions alone is not always valid. In fact we can
categorise at least three different types of covariate shift:

1. Independent covariate shift: Ptrain(y|x) = Ptest(y|x), but Ptrain(x) 6= Ptest(x).

2. Dependent prior probability change: Ptrain(x|y) = Ptest(x|y), but Ptrain(y) 6= Ptest(y).

3. Latent prior probability change: Ptrain(x,y|r) = Ptest(x,y|r) for all values of some
latent variable r, but Ptrain(r) 6= Ptest(r).

Let us presume that we are only interested in the quality of the conditional model Ptest(y|x). Then
Case 1 is the only one of the above where covariate shift will have no effect on modelling. Case
2 is the well known situation of class prior probability change and, for example, is considered in
comparing the benefits of a naive Bayes model, which allows for class prior probability change, and
discriminant models, which typically do not.

Case 3 involves a more general assumption, and arguably can be used to cover most situations of
covariate shift, by incorporating any known structural characteristics of the problem into some latent
variable r. Change in the distribution of x points implicitly informs us about variation in the targets
y via the shift in the latent variable r, which is the causal factor for the change. The purpose of this
paper is to provide a generative framework for analysis of covariate shift. The main advantages of
this new formulation over previous approaches are

• It provides an explicit model for the changes occurring in situations of covariate shift, and
hence the predictions that result from it.

• There is no need to presume the training and test distributions are known. Furthermore the
test covariates are also used as part of the model estimation procedure, resulting in better
predictions.

• Previous results, such as Importance Weighted Least Squares, are special cases of this
method with explicit presumptions that can be relaxed to gain more general models. Hence
this paper is a natural extension to the existing work.

• Utilising the test covariate distribution gives performance benefits over using the same
model for training data alone.

• All the usual machinery for mixture of experts are available, and so this approach allows
model selection and many natural extensions.

Outline. In Section 2, related work is discussed, before the problem is formally specified and a
general model is derived in Section 3. A specific form of mixture regression model is formulated
and an Expectation Maximisation solution is given in Section 3.1. The specific relationship to Im-
portance Weighted Least Squares is discussed in Section 3.1.2. Test examples are given in section
4. The results and methods are discussed in Section 5.

2 Prior work

Covariate shift will be interpreted, in the context of this work, using mixture of regressor models,
where the regression model is dependent on a latent class variable. Clustered regression models have
been discussed widely [4, 18, 8, 16]. The benefits of the mixture of regressor approach for heteroge-
neous data was discussed in [17], but not formulated specifically for the problem of covariate shift.
This paper establishes for the first time the relationship between the mixture of regressor model and
the typical statistical results in the literature on covariate shift. The main differences of our approach
from a standard mixture of regressor formalism is that we utilise the training and test distributions
as part of the model and do not use only a conditional model, and we allow coupling of regressors
across different mixture components. The main significance with regard to the literature on covari-
ate shift is that we establish covariate shift within a general probabilistic modelling paradigm and
hence extend the standard techniques to establish more general methods, which are also applicable
when the training and test distributions are not explicitly given. The mixture of regressors form for
(x,y) used in this paper is a specific from of mixture of experts [10]. Hence hierarchical extensions
are also possible in the form of [11].



The problem of sample selection bias is related to covariate shift. Sample selection bias has been
discussed in [19], where they estimate the distribution determining the bias for a classification prob-
lem. The problem of sample selection bias differs from the case in this paper as here there is no
fundamental requirement of distribution overlap between the training and test sets. First, each can
have zero density in regions the other is non-zero. Second, the presumption is different: rather than
there being a sample rejection process that characterised the difference between training and test
sets, there is a sample production process that differs.

3 Framework for Covariate Shift
This paper follows most others in considering the restricted case of a single training and single test
set. Each datum x is assumed to have been generated from one of a number of data sources using
a mixture distribution corresponding to the source. The proportions of each of the sources varies
across the training and test datasets. Hence, in the context of this paper, we understand covariate
shift to be effected by a change in the contribution of different sources to the data.

The motivation of the framework in this paper is that there is a latent feature set upon which each
dataset is dependent, and the the variations between the two datasets are dependent upon variation
of the proportions, but not the form, of those latent features. This is characterised by presuming
each data source is a member of one of two different sets. Each of the two sets of sources is also
associated with a regression model. The two sets of sources have the following characteristics:

• Source set 1 corresponds to sources that may occur in the test data, and potentially also in
the training data, and are associated with regression model P1(y|x).

• Source set 2 corresponds to sources that occur only in the training data, and are associated
with regression model P2(y|x).

By taking this approach we note that we will be able to separate out effects that we expect to be only
characteristics of the training data from effects that are common across training and test sets.

The full generative model for the observed data consists of the model for the training data D and
model for the test data T . The test data is just used to determine the nature of the covariate shift, and
consists of only of the covariates x, and not any targets y. We emphasise that we do not presume to
have seen the test data we wish to predict. Rather a prior model is built for the training and test data,
and this is then conditioned on the information from the training data and the known covariates for
the test data but not the unknown targets.

3.1 Mixture Regression for Covariate Shift
In this section the full model is introduced. This significantly extends the previous work on covariate
shift, in that the model allows for unknown training and test distributions, and utilises a mixture
model approach for representing the relationship between the two. In Section 3.1.2, we will show
how the previous results on covariate shift are special cases of the general model. We will develop
this formalism for any parametric form for the regressors P (y|x). In fact this restriction is mainly
for ease of explanation, and the method can be used with non-parametric models too, and will be
tested in the case of Gaussian process models1.

The model takes the following form

• The distribution of the training data and test data are denoted PD and PT respectively, and
are unknown in general.

• Source set 1 consists of M mixture distributions, where mixture t is denoted P1t(x). Each
of the components is associated2 with regression model P1(y|x).

• Source set 2 consists of M2 mixture distributions, where mixture t is denoted P2t(x). Each
of the components is associated with the regression model P2(y|x).

1The primary restriction is than we need to be able to compute standard EM responsibilites for a given
regressor, and hence for Gaussian processes a variational approximation is needed to do this.

2If a component i is associated with a regression model j, this means that any datum x generated from
the mixture component i, will also have a corresponding y generated from the associated regression model
Pj(y|x).



• The training and test data distributions take the following form:

PD(x) =
∑

t

β1γ
D
1tP1t(x) + β2γ

D
2tP2t(x) and PT (x) = γT

1tP1t(x) (1)

Hence β1 and β2 are parameters for the proportions of the two source sets in the training data, γD
1t are

the relative proportions of each mixture from source set 1 in the training data, and γD
2t are the relative

proportions of each mixture from source set 2 in the training data. Finally γT
1t are the proportions

of each mixture from source set 1 in the test data. All these parameters are presumed unknown. At
some points in the paper it will be presumed the mixtures are Gaussian, when the form N(x;m,K)
will be used to denote the Gaussian distribution function of x, with mean m and covariance K.

For a parametric model, with the collection of mixture parameters denoted by Ω, the collection
of regression parameters denoted by Θ, and the mixing proportions, γ and β we have the full
probabilistic model

P ({iµ,yµ,xµ|µ ∈ D}, {iν ,xν |ν ∈ T}|β,Θ,Ω) =∏

µ∈D

P (sµ|β)P (tµ|γ, sµ)Psµtµ(xµ|Ωtµ)Psµ(yµ|xµ,Θ)
∏

ν∈T

P (tν |γ)P1tµ(xν |Ω). (2)

where sµ denotes the source set used to generate the data point µ, and tµ denotes the particular
mixture from that source set used to generate the data point µ. In words, this says that the model for
the training dataset involves sampling the particular source set sµ, then the mixture component tµ

from that particular source set. Given these we then sample an xµ from the relevant mixture and a
yµ conditionally on xµ from the relevant regressor. The same procedure is followed for the test set,
except now there is only one source set to consider.

3.1.1 EM algorithm

A maximum likelihood solution for the parameters (β,γ,Θ,Ω) can be obtained for this model
(given the training data and test covariate) using Expectation Maximisation (EM) [3]. The deriva-
tions are standard EM calculations (see e.g. [2]), and hence are not reiterated here. Denote the
responsibility of mixture i for data point µ by αµ

i . Then the application of EM involves maximisa-
tion of

log P ({yµ,xµ|µ ∈ D}, {xν |ν ∈ T}|β, γ,Θ,Ω) (3)
with respect to the parameters through iteration of E and M steps. The E-step update uses current
parameter values to compute the responsibility (denoted by αs) of each mixture 1t and 2t for each
data point µ in the training set and each data point ν in the test set using

αµ
st =

βsγ
D
stPst(xµ|Ω)Ps(yµ|xµ,Θ)∑

s,t βsγD
stPst(xµ|Ω)Ps(yµ|xµ,Θ)

and αν
1t =

γT
1tP1t(xµ|Ω)∑

t γT
1tP1t(xµ|Ω)

. (4)

We set αµ
2t = 0 for ν ∈ T , as none of these mixtures are represented in the test set. The parameters

of the mixture model distributions are then updated with the usual M steps for the relevant mix-
ture component, and the regression parameters are updated using maximum responsibility-weighted
likelihood. When each mixture component is a Gaussian of the form N(x;mst,Kst), when we
have a Gaussian regression error term, and denoting the (vector of) regression functions by fs for
each source set s, these update rules are:

mst =

∑
µ∈(D,T ) αµ

stx
µ

∑
µ∈D,T αµ

st

, Kst =

∑
µ∈(D,T ) αµ

st(xµ −mst)(xµ −mst)T

∑
µ∈D,T αµ

st

(5)

βs =
1
|D|

∑

µ∈D,t

αµ
st , γD

st =
1
|D|

∑

µ∈D

αµ
st

βs
, γT

1t =
1
|T |

∑

ν∈T

αν
1t (6)

fs = arg min
fs

[∑
µ,t

αµ
st(fs(x

µ)− yµ)T (fs(xµ)− yµ)

]
(7)

Given the learnt model, inference is straightforward. The test data is associated with a single regres-
sion model P1(y|x), and so the predictive distribution for the test set is the learnt predictor P1(y|xi)
for each point xi in the test set.



3.1.2 Importance Weighted Least Squares
Previous results in modelling covariate shift can be obtained as special cases of the general approach
taken in this paper. Suppose we make the assumptions that PD and PT are known, and that the
source set 1 contains just the one component, which must be PT by definition. Suppose also that the
two regressors have a large and identical variance Σ. In this simple case, we do not need to know
the actual test points (in this framework these are only used to infer the test distribution, which is
assumed given here). The M step update only involves update to the regressor. For the E step we
use the approximation P (yµ|xµ, Θ1) ≈ P (yµ|xµ, Θ2), which becomes asymptotically true in the
case of infinite variance Σ. The resulting E and M steps are

αµ ≈ PT (xµ)β1

PD(xµ)
and f1 = arg min

f1

[∑
µ

αµ(f1(xµ)− yµ)T (f1(xµ)− yµ)

]
(8)

where we note that β1 is a common constant and can be dropped from the calculations. Hence
we never need to learn β1 or the parameters associated with mixture 2 in this procedure. Also no
iterative EM procedure is needed as the E step is independent of the M step results. Hence this
is a one shot process. This is the Importance Weighted Least Squares estimator for covariate shift
[14]. A simple extension of this model will allow the large variance assumption to be relaxed, so the
model can use the regressor information for computing responsibilities.

4 Examples
4.1 Generated Test Data

We demonstrate the mixture of regressors approach to covariate shift (MRCS) on generated test
data: a one dimensional regression problem with two sources each corresponding to different linear
regressors. Regression performance for MRCS with Gaussian mixtures and linear regressors is
compared with three other cases. The first is an importance weighted least squares estimator (IWLS)
given the best mixture model fit for the data, corresponding to the current standard for modelling
covariate shift. The second uses a mixture of regressors model that ignores the form of the test data,
but chooses the regressor corresponding to the mixtures which best match the test data distribution
using a KL divergence measure (MRKL). This corresponds to recognising that covariate shift can
happen, but ignoring the nature of the test distribution in the modelling process, and trying to choose
the best of the two regressors. The third case is where the mixture of regressors is used simply as a
standard regression model, ignoring the possibility of covariate shift (MRREG).

The generative procedure for each of the 100 test datasets involves generating random parameter
values for between 1 and 3 mixtures for each of two linear regressors. Test and training datasets
of 200 data points each are generated from these mixtures and regression models, using different
mixing proportions in each case. The various approaches were run 8 times with different random
starting parameters for all methods. 80 iterations of EM were used. A fixed number of iterations
was chosen to allow reasonable comparison. Analysis was done for fixed model sizes and for model
choice using a Bayesian Information Criterion (BIC). Even though the regularity conditions for BIC
do not hold for mixture models, it has been shown that BIC is consistent in this case [12]. It has also
been shown to be a good choice on practical grounds [6].

The results of these tests show the significant benefits of explicit recognition of covariate shift over
straight regression even compared with the use of the same mixture of regressors model, but without
reference to the test distribution. It also shows benefits of the approach of this paper over the current
state of the art for modelling covariate shift. Table 1 gives the result of these approaches for various
fixed choices of numbers of mixtures associated with each regressor. Independent of the use of any
model order choice, the Mixture of Regressors for Covariate Shift (MRCS) performs better than the
other approaches. Table 1 also gives the results when the Bayesian Information Criterion is used
for selecting the number of mixtures. Again MRCS performs best, and consistently gives better
performance on the test data for more than 70 percent of the test cases.

To illustrate the difference between the methods, Figure 1 plots the results of training a MRCS
model on some one dimensional data using a regularised cubic regressor. The fit to the test data is
also shown. Once again this is compared with IWLS and MRKL. It can be seen that both IWLS and
MRKL fail to untangle the regressors associated with the overlapping central clusters in the training
data and hence perform badly in that region of the test data.
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Figure 1: Nonlinear regression using covariate shift. (a),(c),(e) Training set fit and (b),(d),(f) test data with
predictions for MRCS (top), IWLS (middle) and MRKL (bottom) respectively. In (a),(c),(e), the ’.’ data labels
the points for which the test regressor has greater responsibility, and the ’+’ data labels points for which the
training only regressor has greater responsibility.



Table 1: Average mean square error over all 100 datasets for each choice of fixed model mixture size. The
actual number of mixtures in the data varies. MRCS - mixture of regressors for covariate shift, IWLS - Im-
portance weighted least squares, MRKL - Mixture of regressors, evaluated on regressor with best fit to test
distribution. MRREG - Mixture of regressors as a standard regression model, ignoring covariate shift. The
sixth row gives the average mean square error over all 100 datasets, with number of mixtures chosen using a
Bayesian information criterion for each case, and the last row gives the proportion of times MRCS performs
better than the other cases for a BIC choice of model. PValues: If two of the approaches were equivalent
performers, empirically better performance for 70/100 or more cases would only occur on less than 1× 10−4

such trials.

MRCS IWLS MRKL MRREG
1 Mixture 0.588 0.797 3.274 0.890
2 Mixtures 0.536 0.804 2.673 0.881
3 Mixtures 0.601 0.831 3.390 0.887
4 Mixtures 0.623 0.817 2.823 0.894
5 Mixtures 0.612 0.837 2.817 0.898
BIC Choice 0.6100 0.7990 2.8638 0.8813

MCRS better - 77/100 72/100 84/100

4.2 Auto-Mpg Test
It is useful to see that the approach does indeed make a noticeable difference on data that takes
the appropriate prior form, but that says nothing about how appropriate that prior is for real prob-
lems. Here we demonstrate the method on the auto-mpg problem from the UCI dataset. This
provides a natural scenario for demonstrating covariate shift. The auto-mpg data can be found
at http://www.ics.uci.edu/˜mlearn/MLSummary.html and involves the problem of
predicting the city cycle fuel consumption of cars. One of the attributes is a class label dictating the
origin of a particular car. To demonstrate covariate shift we can consider the prediction task trained
on cars from one place of origin and tested on cars from another place of origin. Here we consider
predicting the fuel consumption (attribute 1) using the four continuous attributes. We train the model
using data on cars from origin 1, and test on cars from origin 2 and origin 3. We use the same test
algorithms as the previous section, but now using a Gaussian process regressors for each regression
function. The results of running this are in Table 2. The Gaussian process hyper-parameters were
optimised separately for each case. These are results obtained using a Bayesian Information Crite-
rion for selecting the number of mixtures between 1 and 14 for each of the cases. We obtain similar
results if we compare methods with various fixed numbers of mixtures. Critically, we note that all
covariate shift methods performed better than a straight Gaussian Process predictor in this situation.
The mixture of Gaussian processes did not perform as well as the methods which explicitly recog-
nised the covariate shift, although interestingly did perform better than a straight Gaussian process
predictor. Again the MRCS performed better overall.

5 Discussion
This paper establishes that explicit generative modelling of covariate shift can bring improvements
over conditional regression models, or over standard covariate shift methods that ignore the depen-
dent data in the modelling process. The method is also better than using an identical mixture of
regressors model for the training data alone, as it utilises the positions of the independent test points
to help refine the mixture locations and the separation of regressors.

We expect significant improvements can be made with a fully Bayesian treatment of the parameters.
This framework is currently being extended to the case of multiple training and test datasets using a
fully Bayesian scheme, and will be the subject of future work. In this setting we have a Topic model,

Table 2: Tests of methods on the auto-mpg dataset. These are the (standardised) mean squared
errors for each approach. GP denotes the use of Gaussian Process regression for prediciton. Orgin
2, and Origin 3 denote the two different car origins used to test the model.

GP MRCS IWLS MRKL MRREG
Origin 2 1.192 0.600 0.700 1.2243 0.7397
Origin 3 0.898 0.568 0.691 1.3862 0.706



similar to Latent Dirichlet Allocation, where each dataset is built from a number of contributing
regression components, where each component is expressed in different proportions in each dataset.
The model and tests of this paper show that this multiple dataset extension could well be fruitful.

6 Conclusion
In this paper a novel approach to the problem of covariate shift has been developed that is demon-
strably better than state of the art regression approaches, and better than the current standard for
covariate shift. These have been tested on both generated data, and on a real problem of covariate
shift, derived from a standard UCI dataset. Importance Weighted Least Squares is shown to be a
special case. Specifically we provide explicit modelling of the covariate shift process by assuming a
shift in the proportions of a number of latent components. A mixture of regressors model is used for
this purpose, but it differs from standard mixture of regressors by allowing sharing of the regression
functions between mixture components and explicitly including a model for the test set as part of
the process.
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