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Abstract. We argue that visual, analogical representations of mathematical
concepts can be used by automated theory formation systems to develop fur-
ther concepts and conjectures in mathematics. We consider the role of visual
reasoning in human development of mathematics, and consider some aspects
of the relationship between mathematics and the visual, including artists us-
ing mathematics as inspiration for their art (which may then feed back into
mathematical development), the idea of using visual beauty to evaluate math-
ematics, mathematics which is visually pleasing, and ways of using the visual
to develop mathematical concepts. We motivate an analogical representation
of number types with examples of “visual” concepts and conjectures, and
present an automated case study in which we enable an automated theory
formation program to read this type of visual, analogical representation.

1 Introduction

1.1 The Problem of Finding Useful Representations

Antirepresentationalism aside, the problem of finding representations which
are useful for a given task is well-known in the computational worlds of A.I.
and cognitive modelling, as well as most domains in which humans work.
The problem can be seen in a positive light: for instance, in “discovery”,
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or “constructivist” teaching, a teacher is concerned with the mental repre-
sentations which a student builds, tries to recognise the representations and
provide experiences which will be useful for further development or revision
of the representations [6]. As an example, Machtinger [22] (described in [6,
pp. 94–95]) carried out a series of lessons in which groups of kindergarten
children used the familiar situation of walking in pairs to represent basic
number concepts: an even number was a group in which every child had a
partner, and odd, a group in which one child had no partner. Machtinger
encouraged the children to evolve these representations by physically moving
around and combining different groups and partners, resulting in the chil-
dren finding relatively interesting conjectures about even and odd numbers,
such as:

even + even = even
even + odd = odd
odd + odd = even.

The problem of representation can also be seen in a negative light: for instance
automated systems dealing in concepts, particularly within analogies, are
sometimes subject to the criticism that they start with pre-ordained, human
constructed, special purpose, frozen, apparently fine-tuned and otherwise ar-
bitrary representions of concepts. Thus, a task may be largely achieved via
the natural intelligence of the designer rather than any artificial intelligence
within her automated system. These criticisms are discussed in [2] and [20].

1.2 Fregean and Analogical Representations

Sloman [29, 30] relates philosophical ideas on representation to A.I. and
distinguishes two types of representation: Fregean representations, such as
(most) sentences, referring phrases, and most logical and mathematical for-
mulae; and representations which are analogous – structurally similar – to
the entities which they represent, such as maps, diagrams, photographs, and
family trees. Sloman elaborates the distinction:

Fregean and analogical representations are complex, i.e. they have parts and
relations between parts, and therefore a syntax. They may both be used
to represent, refer to, or denote, things which are complex, i.e. have parts
and relations between parts. The difference is that in the case of analogical
representations both must be complex (i.e. representation and thing) and there
must be some correspondence between their structure, whereas in the case of
Fregean representations there need be no correspondence. [30, p. 2]

In this paper we discuss ways of representing mathematical concepts which
can be used in automated theory formation (ATF) to develop further concepts
and conjectures in mathematics. Our thesis is that an analogical representa-
tion can be used to construct interesting concepts in ATF. We believe that
analogical, pre-Fregean representations will be important in modeling Lakoff
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and Núñez’s theory on embodiment in mathematics [19], in which a situated,
embodied being interacts with a physical environment to build up mathe-
matical ideas1. In particular, we believe that there is a strong link between
analogical representation and visual reasoning.

The paper is organized as follows: we first consider the role of vision in
human development of mathematics, and consider some aspects of the re-
lationship between mathematics and the visual, in section 2. These include
artists using mathematics as inspiration for their art (which may then feed
back into mathematical development), the idea of using visual beauty to
evaluate mathematics, mathematics which is visually pleasing, and ways of
using the visual to develop mathematical concepts. In section 3 we motivate
an analogical representation of number types with examples of “visual” con-
cepts and conjectures, and in section 4 we present an automated case study
in which we enable an automated theory formation program to read this
type of visual representation. Sections 5 and 6 contain our further work and
conclusions. Note that while we focus on the role that the visual can play
in mathematics, there are many examples of blind mathematicians. Jackson
[16] describes Nicolas Saunderson who went blind while still a baby, but went
on be Lucasian Professor of Mathematics at Cambridge University; Bernard
Morin who went blind at six but was a very successful topologist, and Lev
Semenovich Pontryagin who went blind at fourteen but was influential partic-
ularly in topology and homotopy. (Leonhard Euler was a particularly eminent
mathematician who was blind for the last seventeen years of his life, during
which he produced half of his total work. However, he would still have had a
normal visual system.)

2 The Role of Visual Thinking in Mathematics

2.1 Concept Formation as a Mathematical Activity

Disciplines which investigate mathematical activity, such as mathematics ed-
ucation and philosophy of mathematics, usually focus on proof and problem
solving aspects. Conjecture formulation, or problem posing, is sometimes ad-
dressed, but concept formation is somewhat neglected. For instance, in the
philosophy of mathematical practice, which focuses on what mathematicians
do (as opposed to proof and the status of mathematical knowledge), Gi-
aquinto gives an initial list of some neglected philosophical aspects of mathe-
matical activity as discovery, explanation, justification and application, where
the goals are respectively knowledge, understanding, relative certainty and
practical benefits [12, p. 75]. Even in research on visual reasoning in math-
ematics education, visualizers are actually defined as people who “prefer to
use visual methods when attempting mathematical problems which may be
1 One of the goals of a project we are involved in, the Wheelbarrow Project, is to

produce a computational model of Lakoff and Núñez’s theory.
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solved by both visual and non-visual methods” [24, p. 298] (our emphasis; see
also [25, 26, 34] for similar focus) and mathematical giftedness and ability
are measured by the ability to solve problems [17].

2.2 Problems with Visual (Analogical)
Representations in Mathematics

Debate about the role of visual reasoning in mathematics has tended to fol-
low the focus on proof, and centers around the controversy about whether
visual reasoning – and diagrams in particular – can be used to prove, or to
merely illustrate, a theorem. In contrast, in this paper we focus on the of-
ten overlooked mathematical skills of forming and evaluating concepts and
conjectures. We hold that visual reasoning does occur in this context. For
instance, the sieve of Eratosthenes, the Mandelbrot set and other fractals,
and symmetry are all inherently visual concepts, and the number line and
Argand diagram (the complex plane diagram) are visual constructs which
greatly aided the acceptance of negative (initially called fictitious) and imag-
inary numbers, respectively.

The principle objection to using visual reasoning in mathematics, and di-
agrams in particular, is that it is claimed that they cannot be as rigorous as
algebraic representations: they are heuristics rather than proof-theoretic de-
vices (for example, [31]). Whatever the importance of this objection, it does
not apply to us since we are concerned with the formation of concepts, open
conjectures and axioms, and evaluation and acceptance criteria in mathemat-
ics. The formation of these aspects of a mathematical theory is not a question
of rigor as these are not the sort of things that can be provable (in the case
of conjectures it is the proof which is rigorous, rather than the formation of
a conjecture statement). However, other objections may be relevant. Winter-
stein [35, chap. 3] summarizes problems in the use of diagrammatic reason-
ing: impossible drawings or optical illusions, roughness of drawing, drawing
mistakes, ambiguous drawing, handling quantifiers, disjunctions and gener-
alization (he goes on to show that similar problems are found in sentential
reasoning). Another problem suggested by Kulpa [18] is that we cannot vi-
sually represent a theorem without representing its proof, which is clearly
a problem when forming open conjectures. Additionally, in concept forma-
tion, it is difficult to represent diagrammatically the lack, or non-existence
of something. For instance, primes are defined as numbers for which there
do not exist any divisors except for 1 and the number itself. This is hard to
represent visually. However, we hold that these problems sometimes occur
because a diagrammatic language has been insufficiently developed, rather
than any inherent problem with diagrams, and are not sufficient to prevent
useful concept formation.
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2.3 Automated Theory Formation and Visual
Reasoning

We support our argument that visual reasoning plays a role in mathematical
theory formation with a case study of automated visual reasoning in concept
formation, in the domain of number theory. Although the automated reason-
ing community has focused on theorem proving, it is also well aware of the
need to identify processes which lead to new concepts and conjectures being
formed, as opposed to solely proving ready made conjectures. Although such
programs [8, 11, 21, 27] include reasoning in the domains of graph theory and
plane geometry – prime candidates for visual reasoning – representation in
theory formation programs has tended to be algebraic.

2.4 Relationships between Mathematics and Art

Artists who represent mathematical concepts visually develop a further re-
lationship between mathematics and the visual. For instance, Escher [10]
represented mathematical concepts such as regular division of a plane, su-
perposition of a hyperbolic plane on a fixed two-dimensional plane, polyhe-
dra such as spheres, columns, cubes, and the small stellated dodecahedron,
and concepts from topology, in a mathematically interesting way. Other ex-
amples include Albrecht Dürer, a Renaissance printmaker and artist, who
contributed to polyhedral literature [7]; sculptor John Robinson, who dis-
played highly complex mathematical knot theory in polished bronze [1]; and
the artist John Ernest (a member of the British constructivist art move-
ment), who produced art which illustrates mathematical ideas [9], such as
his artistic representation of the equation for the sum of the first n natural
numbers 1+2+3+ ...+n = n(n+1)/2 , a Möbius strip sculpture and various
works based on group theory (Ernest’s ideas fed back into mathematics as
contributions to graph theory).

2.5 Using the Visual to Evaluate Mathematical
Concepts

A visual representation of mathematical concepts and conjectures can also
suggest new ways of evaluation. As opposed to the natural sciences, which
can be evaluated based on how they describe a physical reality, there is no ob-
vious way of evaluating mathematics beyond the criteria of rigor, consistency,
etc. Aesthetic judgements provide a further criterion. [28] examines the roles
of the aesthetic in mathematical inquiry, and describes views by Hadamard
[13], von Neumann [32] and Penrose [23], who all argue that the motivations
for doing mathematics are ultimately aesthetic ones. There are many quotes
from mathematicians concerning the importance of beauty in mathematics,
such as Hardy’s oft-quoted “The mathematician’s patterns, like the painter’s
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or the poet’s must be beautiful; the ideas, like the colors or the words must
fit together in a harmonious way. Beauty is the first test: there is no perma-
nent place in this world for ugly mathematics.” [14, p. 85]. Clearly, beauty
may not be visual (one idea of mathematical beauty is a “deep theorem”,
which establishes connections between previously unrelated domains, such as
Euler’s identity eiπ + 1 = 0). However, aesthetic judgements of beauty can
often be visual: Penrose [23], for example, suggests many visual examples of
aesthetics being used to guide theory formation in mathematics.

3 Visual Concepts and Theorems in Number Theory

3.1 Figured Number Concepts

Figured numbers, known to the Pythagoreans, are regular formulations of
pebbles or dots, in linear, polygonal, plane and solid patterns. The polygonal
numbers, for instance, constructed by drawing similar patterns with a larger
number of sides, consist of dot configurations which can be arranged evenly in
the shape of a polygon [15, 33]. In Figure 1 we show the first three triangular
numbers, square numbers and pentagonal numbers. These provide a nice
example of Sloman’s analogical representations.

Fig. 1 Instances of the first three polygonal numbers: triangular numbers 1–3,
square numbers 1–3 and pentagonal numbers 1–3.
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The first six triangular numbers are 1, 3, 6, 10, 15, 21; square numbers
1, 4, 9, 16, 25, 36; and pentagonal numbers 1, 5, 12, 22, 35, 51. Further polyg-
onal numbers include hexagonal, heptagonal, octagonal numbers, and so on.
These concepts can be combined, as some numbers can be arranged into
multiple polygons. For example, the number 36 can be arranged both as
a square and a triangle. Combined concepts thus include square triangular
numbers, pentagonal square numbers, pentagonal square triangular numbers,
and so on.

3.2 Conjectures and Theorems about Figured
Concepts

If interesting statements can be made about a concept then this suggests
that it is valuable. One way of evaluating a mathematical concept, thus, is by
considering conjectures and theorems about it. We motivate the concepts of
triangular and square numbers with a few examples of theorems about them.
Firstly, the formula for the sum of consecutive numbers, 1 + 2 + 3 + ... + n =
n(n + 1)/2, can be expressed visually with triangular numbers, as shown in
Figure 2.

Fig. 2 Diagram showing that 1+2+3+4 = 4∗5/2. This generalizes to the theorem
that the sum of the first n consecutive numbers is n(n + 1)/2.

Secondly, Figure 3 is a representation of the theorem that the sum of the
odd numbers gives us the series of squared numbers:

1 = 12

1 + 3 = 22

1 + 3 + 5 = 32

1 + 3 + 5 + 7 = 42

. . .

Finally, Figure 4 expresses the theorem that any pair of adjacent triangular
numbers add to a square number:
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1 + 3 = 4
3 + 6 = 9
6 + 10 = 16
45 + 55 = 100
. . .

Further theorems on polygonal numbers include the square of the nth
triangular number equals the sum of the first n cubes, and all perfect numbers
are triangular numbers.

Fig. 3 Diagram showing that 1+3+5+7+9 = 52; This generalizes to the theorem
that the sums of the odd numbers gives us the series of squared numbers.

Fig. 4 Diagram showing that S2 = T1 + T2; S3 = T2 + T3; S3 = T2 + T3; This
generalizes to the theorem that each square number (except 1) is the sum of two
successive triangular numbers.

4 An Automated Case Study

4.1 The HR Machine Learning System

The HR machine learning system2 [3] takes in mathematical objects of
interest, such as examples of groups, and core concepts such as the concept
of being an element or the operator of a group. Concepts are supplied with
a definition and examples. Its concept formation functionality embodies the
constructivist philosophy that “new ideas come from old ideas”, and works

2 HR is named after mathematicians Godfrey Harold Hardy (1877–1947) and Srini-
vasa Aiyangar Ramanujan (1887–1920).
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by applying one of seventeen production rules to a known concept to generate
another concept. These production rules include:

• The exists rule: adds existential quantification to the new concept’s defi-
nition

• The negate rule: negates predicates in the new definition
• The match rule: unifies variables in the new definition
• The compose rule: takes two old concepts and combines predicates from

their definitions in the new concept’s definition

For each concept, HR calculates the set of examples which have the property
described by the concept definition. Using these examples, the definition and
information about how the concept was constructed and how it compares
to other concepts, HR estimates how interesting the concept is, [4], and this
drives an agenda of concepts to develop. As it constructs concepts, it looks for
empirical relationships between them, and formulates conjectures whenever
such a relationship is found. In particular, HR forms equivalence conjectures
whenever it finds two concepts with exactly the same examples, implication
conjectures whenever it finds a concept with a proper subset of the examples
of another, and non-existence conjectures whenever a new concept has an
empty set of examples.

4.2 Enabling HR to Read Analogical Representations

When HR has previously worked in number theory [3], a Fregean representa-
tion has been used. For example the concept of integers, with examples 1− 5
would be represented as the predicates: integer(1), integer(2), integer(3), in-
teger(4), integer(5), where the term “integer” is not defined elsewhere. In
order to test our hypothesis that it is possible to perform automated concept
formation in number theory using analogical representations as input, we
built an interface between HR and the Painting Fool [5], calling the resulting
system HR-V (where “V” stands for “visual”). The Painting Fool performs
colour segmentation, thus enabling it to interpret paintings, and simulates
the painting process, aiming to be autonomously creative. HR-V takes in di-
agrams as its object of interest, and outputs concepts which categorise these
diagrams in interesting ways.

As an example, we used the ancient Greek analogical representation of
figured numbers as dot patterns. We gave HR-V rectangular configurations
of dots on a grid for the numbers 1–20, as shown in Figure 5 for 7, 8 and
9. Rearranging n dots as different rectangular patterns and categorizing the
results can suggest concepts such as:

• equality (two separate collections of dots that can be arranged into exactly
the same rectangular configurations),

• evens (numbers that can be arranged into two equal rows),
• odds (numbers that cannot be arranged into two equal rows),
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Rectangular representations of the number 7

Rectangular representations of the number 8

Rectangular representations of the number 9

Fig. 5 Rectangular configurations for the numbers 7, 8 and 9.

• divisors (the number of rows and columns of a rectangle),
• primes (a collection of dots that can only be arranged as a rectangle with

either 1 column or 1 row),
• composite numbers (a collection of dots that can be arranged as a rectangle

with more than 1 column and more than 1 row), and
• squares (a collection of dots that can be arranged as a rectangle with an

equal number of rows and columns).

HR-V generated a table describing the rectangle concept, consisting of triples:
[total number of dots in the pattern, number of rows in the rectangle, number
of columns in the rectangle]. This is identical to the divisor concept (usually
input by the user) and from here HR-V used its production rules to generate
mathematical concepts. For instance, it used match[X, Y, Y ], which looked
through the triples and kept only those whose number of columns was equal
to the number of rows, and then exists[X ] on this subset, which then omit-
ted the number of rows and number of columns and left only the first part
of the triple: number of dots. This resulted in the concept of square numbers
(defined as a number y such that there exists a number x where x∗x = y) In
another example, HR-V counted how many different rectangular configura-
tions there were for each number – size[X ] – and then searched through this
list to find those numbers which had exactly two rectangular configurations
– match[X, 2] – to find the concept of prime number. In this way, HR-V cat-
egorized the type or shape of configuration which can be made from different
numbers into various mathematical concepts.
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4.3 Results

After a run of 10,000 steps, HR-V discovered evens, odds, squares, primes,
composites and refactorable numbers (integers which are divisible by the
number of their divisors), as shown in Figure 6, with a few dull number types
defined.

corresponds to the number of rows in one of the rectangles

.

Square numbers can be represented as rectangles
with the same number of rows as columns

Even numbers can be represented as rectangles with two columns;
odd numbers cannot

Prime numbers have exactly two rectangular configurations;
composite numbers have more than two

The number of different rectangular configurations of refactorable numbers

Fig. 6 The concepts which HR-V generated from rectangular configurations of
numbers 1–20: evens, odds, squares, primes, composites and refactorables.

Thus, HR-V is able to invent standard number types using number rect-
angle definitions of them. This is a starting point, suggesting that automatic
concept formation is possible using analogical representations. We would like
to be able to show that analogical representations can lead to concepts which
would either not be discovered at all, or would be difficult to discover, if
represented in a Fregean manner.



312 A. Pease et al.

5 Further Work

Although the representations can be seen as analogous to the idea they rep-
resent, they are still subject to many of the criticisms described in Section 1,
such as being pre-ordained, human constructed, special purpose and frozen.
In order to address this, we are currently enabling HR to produce its own dot
patterns, via two new production rules. These production rules are different
to the others in that they produce a new model or entity from an old one (or
old ones), as opposed to the other seventeen production rules which produce
a new concept from an old concept (or old concepts). In both production
rules, an entity is a configuration of dots which is represented by a 100*100
grid with values of on/off where “on” depicts a dot.

The first new production rule will take in one entity and add dots to
produce a new one. There are two parameters:

(i) the type of adding (where to put the dot);
(ii) the numerical function (how many dots to add).

The second new production rule will take in two entities and merge them
to produce a new one. This is like the “compose” production rule but takes
entities rather than concepts. Alternatively, it can take in one entity and
perform symmetry operations on it.

While we have focused on concept formation in this paper, we believe that
analogical representations, and visual reasoning in particular, can be fruitful
in other aspects of mathematical activity; including conjecture and axiom
formation, and evaluation and acceptance criteria. We hope to develop the
automated case study in these aspects, as well as to extend concept formation
to further mathematical domains.

6 Conclusion

We have argued that automatic concept formation is possible using analo-
gous representations, and can lead to important and interesting mathematical
concepts. We have demonstrated this via our automated case study. Finding
a representation which enables either people or automated theory formation
systems to fruitfully explore and develop a domain is an important challenge:
one which we believe will be increasingly important, given the current focus
in A.I. on embodied cognition.
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