
Semantic Optimization of Conjunctive Queries

Advanced Topics in Foundations of Databases, University of Edinburgh, 2016/17

Semantic Acyclicity

Definition: A CQ Q is semantically acyclic if there exists an acyclic CQ

Q’ such that Q ´ Q’

Q(x,z) :- R(x,y), R(y,z), R(x,w), R(w,z)

{w ! y, z ! y}

Q(x,z) :- R(x,y), R(y,z)

w

yx z

yx z

Semantic Acyclicity

But, semantic acyclicity is rather weak:

• Not many CQs are semantically acyclic

•) consider acyclic approximations of CQs

• Semantic acyclicity is not an improvement over usual optimization – both

approaches are based on the core

•) exploit semantic information in the form of constraints

Constraints Enrich Semantic Acyclicity

Q :- R(x,y), R(y,z), R(z,x)

z

yx

R[1,2] µ P[1,2] ´ 8x8y (R(x,y) ! 9z P(x,y,z))

P[2,3] µ R[1,2] ´ 8x8y8z (P(x,y,z) ! R(y,z))

P[3,1] µ R[1,2] ´ 8x8y8z (P(x,y,z) ! R(z,x))

• Assume that Q will be evaluated over databases that comply with the following

set of inclusion dependencies

• Then Q can be replaced by

Q’ :- R(x,y) yx

Constraints Enrich Semantic Acyclicity

Q :- R(x,y), R(y,z), R(z,x)

z

yx

R[1,2] µ P[1,2] ´ 8x8y (R(x,y) ! 9z P(x,y,z))

P[2,3] µ R[1,2] ´ 8x8y8z (P(x,y,z) ! R(y,z))

P[3,1] µ R[1,2] ´ 8x8y8z (P(x,y,z) ! R(z,x))

• Assume that Q will be evaluated over databases that comply with the following

set of inclusion dependencies

• Moreover, Q can be replaced by

Q’ :- R(x,y), R(y,z), R(z,x), P(x,y,z)

z

yx

Constraints Enrich Semantic Acyclicity

Q :- R(x,y), R(y,z), R(z,x), R(x,z)

z

yx

R : {1} ! {2} ´ 8x8y8z (R(x,y) ^ R(x,z) ! y = z))

• Assume that Q will be evaluated over databases that comply with the following

functional dependency

• Then Q can be replaced by

Q’ :- R(x,y), R(y,y), R(y,x) yx

Semantic Acyclicity Under Constraints

Definition: Given a CQ Q and a set of constraints Σ, we say that Q is

semantically acyclic under Σ if there exists an acyclic CQ Q’ such that Q ´Σ Q’

for every database D that satisfies Σ, Q(D) = Q’(D)

(analogously, we define the notation Q µΣ Q’)

all databases

databases

that satisfy Σ

in the above definition, we

only care for the databases

in the shaded part

(henceforth, by set of constraints we mean a set of inclusion or functional dependencies)

Semantic Acyclicity Under Constraints

Definition: Given a CQ Q and a set of constraints Σ, we say that Q is

semantically acyclic under Σ if there exists an acyclic CQ Q’ such that Q ´Σ Q’

for every database D that satisfies Σ, Q(D) = Q’(D)

(analogously, we define the notation Q µΣ Q’)

(henceforth, by set of constraints we mean a set of inclusion or functional dependencies)

Two crucial questions: given a CQ Q and a set Σ of constraints

1. Can we decide whether Q is semantically acyclic under Σ, and what is the exact

complexity?

2. Does this help query evaluation?

Semantic Acyclicity Under Constraints

Definition: Given a CQ Q and a set of constraints Σ, we say that Q is

semantically acyclic under Σ if there exists an acyclic CQ Q’ such that Q ´Σ Q’

for every database D that satisfies Σ, Q(D) = Q’(D)

(analogously, we define the notation Q µΣ Q’)

(henceforth, by set of constraints we mean a set of inclusion or functional dependencies)

Two crucial questions: given a CQ Q and a set Σ of constraints

1. Can we decide whether Q is semantically acyclic under Σ, and what is the exact

complexity? First, we need to understand CQ containment under constraints

2. Does this help query evaluation?

CQ Containment Revisited

Q µ Q’ , there exists a query homomorphism from Q’ to Q

Q µΣ Q’

+ *

Q :- R(x,y), R(y,z), R(z,x)

Q’ :- R(x,y), R(y,z), R(z,x), P(x,y,z)

R[1,2] µ P[1,2]

P[2,3] µ R[1,2]

P[3,1] µ R[1,2]

Σ =

Q µΣ Q’ but there is no query homomorphism from Q’ to Q

CQ Containment Revisited

Q µ Q’ , there exists a query homomorphism from Q’ to Q

Q µΣ Q’

+ *

Q :- R(x,y), R(y,z), R(z,x)

Q’ :- R(x,y), R(y,y), R(y,x)

R : {1} ! {2}Σ =

Q µΣ Q’ but there is no query homomorphism from Q’ to Q

CQ Containment Revisited

We need a result of the form:

Theorem: Let Q and Q’ be conjunctive queries, and Σ a set of constraints. It

holds that: Q µΣ Q’ , there exists a query homomorphism from Q’ to QΣ

a CQ that acts as a representative for all the

specializations of Q that comply with Σ

QΣ can be constructed by applying a well-known algorithm – the chase

The Chase by Example

Q(x) :- R(x,y)
R[2] µ P[1]

P[1,2] µ P[2,1]
Σ =

(inclusion dependencies)

The Chase by Example

Q(x) :- R(x,y)

Q(x) :- R(x,y)
R[2] µ P[1]

P[1,2] µ P[2,1]
Σ =

(inclusion dependencies)

The Chase by Example

Q(x) :- R(x,y)

Q(x) :- R(x,y), P(y,z)

Q(x) :- R(x,y)
R[2] µ P[1]

P[1,2] µ P[2,1]
Σ =

(inclusion dependencies)

The Chase by Example

Q(x) :- R(x,y)

Q(x) :- R(x,y), P(y,z)

Q(x) :- R(x,y), P(y,z), P(z,y)

Q(x) :- R(x,y)
R[2] µ P[1]

P[1,2] µ P[2,1]
Σ =

(inclusion dependencies)

The Chase by Example

Q(x) :- R(x,y) R[2] µ R[1] Σ =

(inclusion dependencies)

The Chase by Example

Q(x) :- R(x,y) R[2] µ R[1] Σ =

…

we need to build an infinite CQ

Q(x) :- R(x,y)

Q(x) :- R(x,y), R(y,z)

Q(x) :- R(x,y), R(y,z), R(z,w)

(inclusion dependencies)

The Chase by Example

Q(x,y) :- R(x,y), R(y,z), R(x,z) R : {1} ! {2} Σ =

(functional dependencies)

The Chase by Example

Q(x,y) :- R(x,y), R(y,z), R(x,z) R : {1} ! {2} Σ =

(functional dependencies)

Q(x,y) :- R(x,y), R(y,z), R(x,z)

The Chase by Example

Q(x,y) :- R(x,y), R(y,z), R(x,z) R : {1} ! {2} Σ =

(functional dependencies)

Q(x,y) :- R(x,y), R(y,z), R(x,z)

Q(x,y) :- R(x,y), R(y,y)

The Chase by Example

Q(x,y) :- R(x,a), R(y,z), R(x,b) R : {1} ! {2} Σ =

(functional dependencies)

(a,b are constants)

The Chase by Example

Q(x,y) :- R(x,a), R(y,z), R(x,b) R : {1} ! {2} Σ =

(functional dependencies)

(a,b are constants)

Q(x,y) :- R(x,a), R(y,z), R(x,b)

Q(x,y) :-

the chase fails – constants cannot be unified

the empty query is returned

CQ Containment Under Functional Dependencies

Theorem: Let Q and Q’ be conjunctive queries, and Σ a set of functional dependencies.

It holds that: Q µΣ Q’ , there exists a query homomorphism from Q’ to chase(Q,Σ)

the result of the chase algorithm starting from

Q and applying the constraints of Σ

Proof hint: adapt the proof for the homomorphism theorem by exploiting the following:

• The canonical database of chase(Q,Σ) is a finite database that satisfies Σ

• Main property of the chase: there exists a homomorphism that maps the body of

chase(Q,Σ) to every D that (i) can be mapped to the body of Q, and (ii) satisfies Σ

CQ Containment Under Inclusion Dependencies

Theorem: Let Q and Q’ be conjunctive queries, and Σ a set of inclusion dependencies. It

holds that: Q µΣ,1 Q’ , there exists a query homomorphism from Q’ to chase(Q,Σ)

for every, possibly infinite, database D that satisfies Σ, Q(D) µ Q’(D)

• Things are much more difficult for inclusion dependencies. By following the same

approach as for functional dependencies we only show the following:

• Interestingly, the following highly non-trivial and deep theorem holds:

Theorem (Finite Controllability): Q µΣ Q’ , Q µΣ,1 Q’

CQ Containment Under Constraints

Theorem: Let Q and Q’ be conjunctive queries, and Σ a set of constraints. The problem of

deciding whether Q µΣ Q’ is

• NP-complete, if Σ is a set of functional dependencies

• PSPACE-complete, if Σ is a set of inclusion dependencies

Proof Idea:

(NP-membership) (i) Construct chase(Q,Σ) in polynomial time, (ii) guess a substitution h,

and (iii) verify that h is a query homomorphism from Q’ to chase(Q,Σ)

(NP-hardness) Inherited form the constraint-free case

(PSPACE-membership) (i) Non-deterministically construct a subquery Q’’ of chase(Q,Σ)

with |Q’’| ≤ |Q’|, (ii) guess a substitution h, and (iii) verify that h is a query hom. from Q’ to Q’’

(PSPACE-hardness) Simulate a PSPACE Turing machine

Back to Semantic Acyclicity Under Constraints

Definition: Given a CQ Q and a set of constraints Σ, we say that Q is

semantically acyclic under Σ if there exists an acyclic CQ Q’ such that Q ´Σ Q’

Q µΣ Q’ and Q’ µΣ Q

Two crucial questions: given a CQ Q and a set Σ of constraints

1. Can we decide whether Q is semantically acyclic under Σ, and what is the exact

complexity? Now, we have the tools to study this problem

2. Does this help query evaluation?

Semantic Acyclicity Under Inclusion Dependencies

Proposition (Small Query Property): Consider a CQ Q and a set Σ of

inclusion dependencies. If Q is semantically acyclic under Σ, then there exists

an acyclic CQ Q’ such that |Q’| ≤ 2 · |Q| and Q ´Σ Q’

Guess-and-check algorithm:

1. Guess an acyclic CQ Q’ of size at most 2 · |Q|

2. Verify that Q µΣ Q’ and Q’ µ Σ Q

Theorem: Deciding semantic acyclicity under inclusion dependencies is:

• PSPACE-complete in general

• NP-complete for fixed arity (because containment is NP-complete)

Proposition (Small Query Property): Consider a CQ Q and a set Σ of functional

dependencies over unary and binary relations. If Q is semantically acyclic under

Σ, then there exists an acyclic CQ Q’ such that |Q’| ≤ 2 · |Q| and Q ´Σ Q’

Semantic Acyclicity Under Functional Dependencies

Guess-and-check algorithm:

1. Guess an acyclic CQ Q’ of size at most 2 · |Q|

2. Verify that Q µΣ Q’ and Q’ µ Σ Q

Theorem: Deciding semantic acyclicity under inclusion dependencies is NP-complete

Semantic Acyclicity Under Functional Dependencies

R : {1} {3} ´ R(x,y,z,w), R(x,y’,z’,w’) z = z’

Theorem: Semantic acyclicity under unary functional dependencies (over

unconstrained signatures) is NP-complete

only one attribute

Open Problem: Deciding semantic acyclicity under arbitrary (or even binary)

functional dependencies is a non-trivial open problem

Evaluating Semantically Acyclic CQs

• Recall that evaluating Q over D takes time |D|O(|Q|)

• Evaluating a CQ Q that is semantically acyclic under Σ over D takes time

2O(|Q| + |Σ|) + O(|D| ¢ |Q|)

• Observe that 2O(|Q| + |Σ|) + O(|D| ¢ |Q|) is dominated by O(|D| ¢ 2O(|Q| + |Σ|))

•) fixed-parameter tractable

time for computing an acyclic

CQ Q’ such that |Q’| ≤ 2·|Q|

and Q ´Σ Q’

time for evaluating Q’

- |Q’| ≤ 2·|Q|

- Evaluation of an acyclic CQ QA

is feasible in time O(|D| ¢ |QA|)

Acyclic Approximations Under Constraints

• There are CQs that are not semantically acyclic even in the presence of constraints

• The small query properties lead to acyclic approximations

Theorem: Consider a CQ Q and a set Σ of constraints. There exists an acyclic

CQ Q’ of size at most 2 · |Q| that is maximally contained in Q under Σ

Q’ µΣ Q and there is no acyclic CQ Q’’ such that Q’’ µΣ Q and Q’ ½Σ Q’’

• We know that acyclic approximations of polynomial size always exist

• However, by exploiting the constraints we obtain more informative approximations

Semantic Optimization: Recap

• Constraints enrich semantic acyclicity

• We can decide semantic acyclicity in the presence of inclusion dependencies and

functional dependencies over unary and binary relations

‒ The underlying tool is CQ containment under constraints

• Semantic acyclicity under functional dependencies is an important open problem

• Semantically acyclic CQs can be evaluated “efficiently” (fixed-parameter tractability)

• For CQs that are not semantically acyclic, even in the presence of constraints, we

can always compute (more informative) acyclic approximations

Semantic Acyclicity: Wrap-Up

• Semantic acyclicity is an interesting notion that allows us to replace a CQ with

an acyclic one – this significantly improves query evaluation

• But, semantic acyclicity is rather weak:

‒ Not many CQs are semantically acyclic

•) consider acyclic approximations of CQs

‒ Semantic acyclicity is not an improvement over usual optimization – both

approaches are based on the core

•) exploit semantic information in the form of constraints

Associated Papers

• Pablo Barceló, Georg Gottlob, Andreas Pieris: Semantic Acyclicity Under Constraints.

PODS 2016: 343-354

• Sementic acyclcitiy under several classes of constraints

• Diego Figueira: Semantically Acyclic Conjunctive Queries under Functional

Dependencies. LICS 2016: 847-856

• Semantic acyclicity under unary functional dependencies

• David S. Johnson, Anthony C. Klug: Testing Containment of Conjunctive Queries under

Functional and Inclusion Dependencies. J. Comput. Syst. Sci. 28(1): 167-189 (1984)

• Containment of CQ under inclusion dependencies via the chase

• David Maier, Alberto O. Mendelzon, Yehoshua Sagiv: Testing Implications of Data

Dependencies. ACM Trans. Database Syst. 4(4): 455-469 (1979)

• The paper that introduced the chase algorithm

