
Graph Databases

Advanced Topics in Foundations of Databases, University of Edinburgh, 2016/17

Graph Databases and Applications

• Graph databases are crucial when topology is as important as the data

• Several modern applications

‒ Semantic Web and RDF

‒ Social networks

‒ Knowledge graphs

‒ etc.

1

2

3 4

5

α

β

γ

α

β

Graph Databases vs. Relational Databases

• Why not use standard relational databases

• Problems:

‒ We need to navigate the graph – recursion is needed

‒ We can use Datalog – performance issues (complexity mismatch,

basic static analysis task are undecidable)

1

2

3 4

5

α

β

γ

α

β

Graph id_o label id_t

1 α 3

1 β 5

1 γ 2

2 β 5

2 α 4

Graph Data Model

• Different applications gave rise to different graph data models

• But, the essence is the same

finite, directed, edge labeled graphs

set of edges of the form v u

where u,v 2 V and α 2 Λ

Graph Data Model

(V, E)

An graph database G over a finite alphabet Λ is a pair

finite set of node ids
α

• Path in G: π = v1 v2 v3 vk vk+1

• The label of π is λ(π) = α1α2α3...αk 2 Λ*

α1 α2 αk…

Graph Database: Example

A graph database representation of a fragment of DBLP

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

Regular Path Queries (RPQs)

Basic building block of graph queries

• First studied in 1989

• An RPQ is a regular expression over a finite alphabet Λ

• Given a graph database G = (V,E) over Λ and RPQ Q over Λ

Q(G) = {(v,u) | v,u 2 V and

there is a path π from v to u such that λ(π) 2 L(Q)}

RPQs With Inverses (2RPQs)

Extension of RPQs with inverses – two-way RPQs

• First studied in 2000

• 2RPQs over Λ = RPQs over Λ§ = Λ [{α¡ | α 2 Λ}

• Given a graph database G = (V,E) over Λ and 2RPQ Q over Λ

Q(G) = Q(G§)

obtained from G by adding u v for each v u
α¡ α

Querying Graph Database

Compute the pairs (c,d) such that author c has published in conference or journal d

(creator ‒ ((partOf ¢ series) [journal))

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

Querying Graph Database

Compute the pairs (c,d) such that author c has published in conference or journal d

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series

(creator ‒ ((partOf ¢ series) [journal))

cd

creator

creator

creator

creator

Querying Graph Database

Compute the pairs (c,d) such that author c has published in conference or journal d

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series

(creator ‒ ((partOf ¢ series) [journal))

creator

creator

creator

creator

c

d

Evaluation of 2RPQs

EVAL(2RPQ)

Input: a graph database G, a 2RPQ Q, two nodes v,u of G

Question: (v,u) 2 Q(G)?

RegularPath

Input: a graph database G over Λ, a regular expression Q over Λ§,

two nodes v,u of G

Question: is there a path π from v to u in G§ such that λ(π) 2 L(Q)

It boils down to the problem:

Complexity of RegularPath

Theorem: RegularPath can be solved in time O(|G| ¢ |Q|)

Proof Idea: by exploiting nondeterministic finite automata (NFA)

• Compute in linear time from Q an equivalent NFA AQ

• Compute in linear time an NFA AG obtained from G§ by setting v and u as

initial and finite states, respectively

• There is a path π from v to u in G§ such that λ(π) 2 L(Q) iff L(AG) \ L(AQ)

is non-empty

• Non-emptiness can be checked in time O(|AG| ¢ |AQ|) = O(|G| ¢ |Q|)

A graph database can be naturally seen as an NFA

• nodes are states

• edges are transitions

Complexity of 2RPQs

We immediately get that:

Theorem: EVAL(2RPQ) can be solved in time O(|G| ¢ |Q|)

Regarding the data complexity (i.e., Q is fixed):

Theorem: EVALQ(2RPQ) is in NLOGSPACE

(by exploiting the previous automata construction)

Limitation of RPQs

• RPQs are not able to express arbitrary patterns over graph databases

(e.g., compute the pairs (c,d) that are coauthors of a conference paper)

• We need to enrich RPQs with joins and projections

‒ Conjunctive regular path queries (CRPQs)

‒ C2RPQs if we add inverses

C2RPQs: Example

Compute the pairs (c,d) that are coauthors of a conference paper

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

C2RPQs: Example

Compute the pairs (c,d) that are coauthors of a conference paper

Q(x,u) :- (x, creator ‒, y), (y, partOf ¢ series, z), (y, creator , u)

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

x
y

z

u

(: Moshe_Y_Vardi, :Ronald_Fagin)

C2RPQs: Formal Definition

A C2RPQ over an alphabet Λ is a rule of the form

Q(z) :- (x1, Q1, y1), …, (xn, Qn, yn)

where xi, yi are variables,

Qi is a 2RPQ over Λ,

z are the output variables from {x1, y1, …, xn, yn}

Remark: C2RPQs are more expressive than 2RPQs (previous example)

Evaluation of C2RPQs

To evaluate a C2RPQ of the form

Q(z) :- (x1, Q1, y1), …, (xn, Qn, yn)

we simply need to evaluate the conjunctive query

Q(z) :- Q1(x1, y1), …, Qn(xn, yn)

where each Qi stores the result of evaluating the 2RPQ Qi

Complexity of C2RPQs

Theorem: EVAL(C2RPQ) is NP-complete

Proof Hints:

• Upper bound: polynomial time reduction to EVAL(CQ)

• Lower bound: inherited from CQs over graphs

Regarding the data complexity (i.e., Q is fixed):

Theorem: EVALQ(C2RPQ) is in NLOGSPACE

Basic Graph Query Languages: Recap

• Two-way regular path queries (2RPQs)

‒ Can be evaluated in linear time in combined complexity, and in

NLOGSPACE in data complexity

• Conjunctive 2RPQs (C2RPQs)

‒ Evaluation is NP-complete in combined complexity, and in

NLOGSPACE in data complexity

Towards Tractable C2RPQs

1

6
7

3
4

8

5

2

9

10
11

12

13

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Recall acyclic conjunctive queries

A C2RPQ is acyclic if its underlying CQ is acyclic

Q :- (x, Q1, x), (x, Q2, y), (y, Q3, x)

Q :- (x, Q1, y), (y, Q2, z), (z, Q3, x)

Equivalently, the underlying graph does not contain cycles of length ̧3

Acyclic C2RPQs

yx

z

yx

Complexity of Acyclic C2RPQs

Theorem: EVAL(AC2RPQ) can be solved in time O(|G|2 ¢ |Q|2)

Proof Idea: recall that we can reduce EVAL(C2RPQ) to EVAL(CQ)

{Q 2 C2RPQ | Q is acyclic}

Simple Path Semantics

RegularSimplePath

Input: a graph database G over Λ, a regular expression Q over Λ§,

two nodes v,u of G

Question: is there a simple path π from v to u in G§ such that λ(π) 2 L(Q)

Simple Path: No node is repeated

In this case, EVAL(2RPQ) boils down to the problem:

Simple Path Semantics

Theorem: RegularSimplePath is NP-complete

Theorem: RegularSimplePathQ is NP-complete (data complexity)

• RegularSimplePath(0¢0)*

• Is there a simple directed path of even length? NP-complete

• NP-complete data complexity means impractical

Containment of Graph Queries

CONT(L)

Input: two queries Q1 2 L and Q2 2 L

Question: Q1 µ Q2? (i.e., Q1(G) µ Q2(G) for every graph database G?)

Containment of Graph Queries

Theorem: CONT(RPQ) is PSPACE-complete

Proof Hint: exploit containment of regular expressions

Theorem: CONT(2RPQ) is PSPACE-complete

Proof Hint: exploit containment of two-way automata, while the lower bound

is inherited from RPQs

Theorem: CONT(C2RPQ) is EXPSPACE-complete

Proof Hint: exploit containment of two-way automata, while the lower bound

is by reduction from a tiling problem

Limitations of CRPQs

Compute the pairs (c,d) that are linked by a path labeled in {αnβn | n ¸ 0}

v w u
π1 π2

such that λ(π1) 2 L(α*) and λ(π2) 2 L(β*) and |λ(π1)| = |λ(π2)|

Not expressible using CRPQs. We need:

• To define complex relationships among labels of paths

• To include paths in the output of a query

Comparing Paths With Regular Relations

• Regular languages for n-ary relations

• n-ary regular relations: set of n-tuples (w1,…,wn) of words over an alphabet Λ

• Accepted by a synchronous automaton over Λn

‒ The input strings are written in the n-tapes

‒ Shorter strings are padded with the symbol # not in Λ

‒ At each step, the automaton simultaneously reads the next symbol

on each tape, terminating when it reads # on each tape

Synchronous Automata

w1 = α α β ... α β γ

w2 = α β α ... α

w3 = β β ...

...

wn = α β β ... α γ

Synchronous Automata

w1 = α α β ... α β γ

w2 = α β α ... α # #

w3 = β β # ... # # #

...

wn = α β β ... α γ #

Synchronous Automata

w1 = α α β ... α β γ

w2 = α β α ... α # #

w3 = β β # ... # # #

...

wn = α β β ... α γ #

Synchronous Automata

w1 = α α β ... α β γ

w2 = α β α ... α # #

w3 = β β # ... # # #

...

wn = α β β ... α γ #

Synchronous Automata

w1 = α α β ... α β γ

w2 = α β α ... α # #

w3 = β β # ... # # #

...

wn = α β β ... α γ #

Regular Relations: Examples

• All regular languages – regular relations of arity 1

• Path equality: w1 = w2

• Length comparison: |w1| = |w2|, |w1| < |w2|, |w1| · |w2|

• Prefix: w1 is a prefix of w2

Extended CRPQs With Regular Relations (REG)

An ECRPQ(REG) is a rule obtained from a CRPQ as follows

Q(z) :- (x1, Q1, y1), …, (xn, Qn, yn)

Q(z) :- (x1, π1, y1), …, (xn, πn, yn)

annotate each

pair (xi,yi) with a

path variable πi

Q(z) :- (x1, π1, y1), …, (xn, πn, yn), ^j Sj(πj)

compare labels

of paths in πj

w.r.t. Sj 2 REG

Q(z,π) :- (x1, π1, y1), …, (xn, πn, yn), ^j Sj(πj)

output some of

πi’s as a tuple π

in the output

Evaluation of EC2RPQ(REG)

Same as CRPQs, but

• Each πi is mapped to a path ρi in the graph database

• For each j, if πj = (πj1,...,πjk)) (λ(ρj1),...,λ(ρjk)) 2 Sj

Q(z,π) :- (x1, π1, y1), …, (xn, πn, yn), ^j Sj(πj)

Example of ECRPQ(REG)

Compute the pairs (c,d) that are linked by a path labeled in {αnβn | n ¸ 0}

v w u
π1 π2

such that λ(π1) 2 L(α*) and λ(π2) 2 L(β*) and |λ(π1)| = |λ(π2)|

Q(x,y) :- (x, π1, z), (z, π2, y), α*(π1), β*(π2), Equal_Length(π1,π2)

ECRPQ(REG) vs. CRPQs

Q(z) :- (x1, Q1, y1), …, (xn, Qn, yn)

Q(z) :- (x1, π1, y1), …, (xn, πn, yn), Q1(π1), …, Qn(πn)

´

Complexity of ΕC2RPQ(REG)

Theorem: It holds that

• EVAL(ECRPQ(REG)) is PSPACE-complete

• EVALQ(ECRPQ(REG)) is in NLOGSPACE (data complexity)

• CONT(ECRPQ(REG)) is undecidable

Beyond Regular Relations

• Subsequences – w1 is a subsequence of w2, i.e., w1 can be obtained

from w2 by deleting some letters

• Subword: w3¢w1¢ w4 = w2

…we can exploit rational relations (RAT) - ECRPQ(RAT)

Path Query Languages: Recap

• CRPQs do not allow to compare labels of paths and export paths

• This has led to the introduction of ECRPQ(REG)

‒ Preserves data tractability

‒ But containment becomes undecidable

• We can go beyond REG – ECRPQ(RAT)

‒ Undecidability of query evaluation

‒ We obtain data tractability if we restrict the syntax

Querying Graphs With Data

• So far queries talk about the topology of the data

• However, graph databases contain data – data graphs

• We have query languages that can talk about data paths

(obtained by replacing each node in a path by its value)

Associated Papers

• Isabel F. Cruz, Alberto O. Mendelzon, Peter T. Wood: A Graphical Query Language

Supporting Recursion. SIGMOD Conference 1987: 323-330

• Mariano P. Consens, Alberto O. Mendelzon: Low Complexity Aggregation in

GraphLog and Datalog. Theor. Comput. Sci. 116(1): 95-116 (1993)

• Original papers introducing (C)RPQs

• Pablo Barcelo: Querying graph databases. PODS 2013: 175-188

• Renzo Angles, Claudio Gutierrez: Survey of graph database models. ACM Comput.

Surv. 40(1) (2008)

• Peter T. Wood: Query languages for graph databases. SIGMOD Record 41(1): 50-60

(2012)

• Three surveys of graph languages, two are more theoretical, one more practical

Associated Papers

• Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Moshe Y. Vardi:

Rewriting of Regular Expressions and Regular Path Queries. J. Comput. Syst. Sci.

64(3): 443-465 (2002)

• Introducing two-way queries

• Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Moshe Y. Vardi:

Reasoning on regular path queries. SIGMOD Record 32(4): 83-92 (2003)

• Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Moshe Y. Vardi:

Containment of Conjunctive Regular Path Queries with Inverse. KR 2000: 176-185

• Static analysis of regular path queries

• Leonid Libkin, Wim Martens, Domagoj Vrgoc: Querying graph databases with

XPath. ICDT 2013: 129-140

 Adding data values to (C)RPQs

Associated Papers

• Pablo Barcelo, Leonid Libkin, Anthony Widjaja Lin, Peter T. Wood: Expressive

Languages for Path Queries over Graph-Structured Data. ACM Trans. Database Syst.

37(4): 31 (2012)

• Extending RPQs with regular relations

• Pablo Barcelo, Diego Figueira, Leonid Libkin: Graph Logics with Rational Relations.

Logical Methods in Computer Science 9(3) (2013)

• Extending RPQs with rational relations

• Dominik D. Freydenberger, Nicole Schweikardt: Expressiveness and Static Analysis of

Extended Conjunctive Regular Path Queries. AMW 2011

• Resolving some of the questions on the containment of path queries

• Jelle Hellings, Bart Kuijpers, Jan Van den Bussche, Xiaowang Zhang: Walk logic as a

framework for path query languages on graph databases. ICDT 2013: 117-128

• A different approach to expanding the power of path languages

Associated Papers

• Pablo Barcelo, Leonid Libkin, Juan L. Reutter: Querying Regular Graph Patterns.

Journal of the ACM 61(1): 8:1-8:54 (2014)

• Incomplete information in graph databases and querying it

• Wenfei Fan, Xin Wang, Yinghui Wu: Querying big graphs within bounded resources.

SIGMOD Conference 2014: 301-312

• Wenfei Fan: Graph pattern matching revised for social network analysis. ICDT

2012: 8-21

• Two papers on making graph queries scalable

