Semantic Optimization of Conjunctive Queries
Definition: A CQ Q is semantically acyclic if there exists an acyclic CQ Q' such that $Q \equiv Q'$.

$$Q(x,z) \ :- \ R(x,y), R(y,z), R(x,w), R(w,z)$$

$\{w \rightarrow y, z \rightarrow y\}$

$$Q(x,z) \ :- \ R(x,y), R(y,z)$$

Diagram representation:
But, semantic acyclicity is rather weak:

- Not many CQs are semantically acyclic
 ⇒ consider acyclic approximations of CQs

- Semantic acyclicity is not an improvement over usual optimization – both approaches are based on the core
 ⇒ exploit semantic information in the form of constraints
Constraints Enrich Semantic Acyclicity

\[Q \vdash R(x,y), R(y,z), R(z,x) \]

- Assume that \(Q \) will be evaluated over databases that comply with the following set of inclusion dependencies

\[
\begin{align*}
R[1,2] \subseteq P[1,2] & \equiv \forall x \forall y (R(x,y) \rightarrow \exists z P(x,y,z)) \\
P[2,3] \subseteq R[1,2] & \equiv \forall x \forall y \forall z (P(x,y,z) \rightarrow R(y,z)) \\
P[3,1] \subseteq R[1,2] & \equiv \forall x \forall y \forall z (P(x,y,z) \rightarrow R(z,x))
\end{align*}
\]

- Then \(Q \) can be replaced by

\[Q' \vdash R(x,y) \]

\[\begin{tikzpicture}
\node (x) at (0,0) {x};
\node (y) at (1,0) {y};
\end{tikzpicture} \]
Assume that Q will be evaluated over databases that comply with the following set of inclusion dependencies:

- $R[1,2] \subseteq P[1,2] \equiv \forall x \forall y (R(x, y) \rightarrow \exists z P(x, y, z))$
- $P[2,3] \subseteq R[1,2] \equiv \forall x \forall y \forall z (P(x, y, z) \rightarrow R(y, z))$
- $P[3,1] \subseteq R[1,2] \equiv \forall x \forall y \forall z (P(x, y, z) \rightarrow R(z, x))$

Moreover, Q can be replaced by:

$Q' :: R(x, y), R(y, z), R(z, x), P(x, y, z)$
Constraints Enrich Semantic Acyclicity

$Q : \neg \ R(x,y), R(y,z), R(z,x), R(x,z)$

• Assume that Q will be evaluated over databases that comply with the following functional dependency

\[R : \{1\} \rightarrow \{2\} \equiv \forall x \forall y \forall z (R(x,y) \land R(x,z) \rightarrow y = z) \]

• Then Q can be replaced by

$Q' : \neg \ R(x,y), R(y,y), R(y,x)$
Semantic Acyclicity Under Constraints

(henceforth, by set of constraints we mean a set of inclusion or functional dependencies)

Definition: Given a CQ Q and a set of constraints Σ, we say that Q is semantically acyclic under Σ if there exists an acyclic CQ Q' such that $Q \equiv_{\Sigma} Q'$ for every database D that satisfies Σ, $Q(D) = Q'(D)$

(analogously, we define the notation $Q \subseteq_{\Sigma} Q'$)
Semantic Acyclicity Under Constraints

(henceforth, by set of constraints we mean a set of inclusion or functional dependencies)

Definition: Given a CQ Q and a set of constraints Σ, we say that Q is semantically acyclic under Σ if there exists an acyclic CQ Q' such that $Q \equiv_\Sigma Q'$ for every database D that satisfies Σ, $Q(D) = Q'(D)$.

(analogously, we define the notation $Q \subseteq_\Sigma Q'$)

Two crucial questions: given a CQ Q and a set Σ of constraints

1. Can we decide whether Q is semantically acyclic under Σ, and what is the exact complexity?
2. Does this help query evaluation?
Semantic Acyclicity Under Constraints

(henceforth, by set of constraints we mean a set of inclusion or functional dependencies)

Definition: Given a CQ Q and a set of constraints Σ, we say that Q is semantically acyclic under Σ if there exists an acyclic CQ Q' such that $Q \equiv_\Sigma Q'$ for every database D that satisfies Σ, $Q(D) = Q'(D)$

(analogously, we define the notation $Q \subseteq_\Sigma Q'$)

Two crucial questions: given a CQ Q and a set Σ of constraints

1. Can we decide whether Q is semantically acyclic under Σ, and what is the exact complexity? *First, we need to understand CQ containment under constraints*

2. Does this help query evaluation?
CQ Containment Revisited

\[Q \subseteq Q' \iff \text{there exists a query homomorphism from } Q' \text{ to } Q \]

\[\downarrow \uparrow \]

\[Q \subseteq_{\Sigma} Q' \]

\[Q : R(x, y), R(y, z), R(z, x) \]

\[Q' : R(x, y), R(y, z), R(z, x), P(x, y, z) \]

\[\Sigma = \{ R[1,2] \subseteq P[1,2], P[2,3] \subseteq R[1,2], P[3,1] \subseteq R[1,2] \} \]

\[Q \subseteq_{\Sigma} Q' \] but there is no query homomorphism from \(Q' \) to \(Q \)
CQ Containment Revisited

\[Q \subseteq Q' \iff \text{there exists a query homomorphism from } Q' \text{ to } Q \]

\[\downarrow \uparrow \]

\[Q \subseteq_{\Sigma} Q' \]

\[Q \ :- \ R(x,y), R(y,z), R(z,x) \]

\[Q' \ :- \ R(x,y), R(y,y), R(y,x) \]

\[\Sigma = \begin{cases} R : \{1\} \rightarrow \{2\} \end{cases} \]

\[Q \subseteq_{\Sigma} Q' \quad \text{but} \quad \text{there is no query homomorphism from } Q' \text{ to } Q \]
CQ Containment Revisited

We need a result of the form:

Theorem: Let Q and Q' be conjunctive queries, and Σ a set of constraints. It holds that: $Q \subseteq_{\Sigma} Q' \iff$ there exists a query homomorphism from Q' to Q_{Σ}

a CQ that acts as a representative for all the specializations of Q that comply with Σ

Q_{Σ} can be constructed by applying a well-known algorithm – the chase
The Chase by Example

(inclusion dependencies)

\[Q(x) \quad :\quad R(x,y) \]

\[\sum \quad = \quad \left\{ \begin{array}{l}
P[1,2] \subseteq P[2,1]
\end{array} \right\} \]
The Chase by Example

(inclusion dependencies)

\[
\Sigma = \begin{cases}
P[1,2] \subseteq P[2,1]
\end{cases}
\]

\[Q(x) \quad \text{:-} \quad R(x, y)\]
The Chase by Example

(inclusion dependencies)

\[Q(x) \Leftarrow R(x,y) \]

\[\Sigma = \begin{cases}
\text{R[2] } \subseteq \text{P[1]} \\
\text{P[1,2] } \subseteq \text{P[2,1]}
\end{cases} \]

\[Q(x) \Leftarrow R(x,y) \]

\[Q(x) \Leftarrow R(x,y), P(y,z) \]
The Chase by Example

(inclusion dependencies)

\[Q(x) :- R(x,y) \]

\[\Sigma = \begin{cases} \text{R}[2] \subseteq \text{P}[1] \\ \text{P}[1,2] \subseteq \text{P}[2,1] \end{cases} \]

\[Q(x) :- R(x,y) \]

\[Q(x) :- R(x,y), P(y,z) \]

\[Q(x) :- R(x,y), P(y,z), P(z,y) \]
The Chase by Example

(inclusion dependencies)

\[Q(x) : \text{R}(x,y) \]

\[\sum = \left\{ \begin{array}{c} \text{R}[2] \subseteq \text{R}[1] \end{array} \right\} \]
The Chase by Example

(inclusion dependencies)

\[
\begin{align*}
Q(x) & \iff R(x,y) \\
\Sigma & = \{ R[2] \subseteq R[1] \}
\end{align*}
\]

\[
\begin{align*}
Q(x) & \iff R(x,y) \\
Q(x) & \iff R(x,y), R(y,z) \\
Q(x) & \iff R(x,y), R(y,z), R(z,w) \\
& \vdots \\
\text{we need to build an infinite CQ}
\end{align*}
\]
The Chase by Example

(functional dependencies)

\[Q(x,y) \implies R(x,y), R(y,z), R(x,z) \]

\[\Sigma = \{ R : \{1\} \to \{2\} \} \]
The Chase by Example

(functional dependencies)

\[Q(x,y) \rightarrow R(x,y), R(y,z), R(x,z) \]

\[\Sigma = \left\{ R : \{1\} \rightarrow \{2\} \right\} \]

\[Q(x,y) \rightarrow R(x,y), R(y,z), R(x,z) \]
The Chase by Example

(functional dependencies)

\[Q(x,y) \leftarrow R(x,y), R(y,z), R(x,z) \]

\[\Sigma = \{ R : \{1\} \rightarrow \{2\} \} \]

\[Q(x,y) \leftarrow R(x,y), R(y,z), R(x,z) \]
\[Q(x,y) \leftarrow R(x,y), R(y,y) \]
The Chase by Example

(functional dependencies)

\[Q(x, y) \quad :\quad R(x, a), R(y, z), R(x, b) \]

\[\Sigma = \left\{ \begin{array}{c}
R : \{1\} \rightarrow \{2\}
\end{array} \right\} \]

(a, b are constants)
The Chase by Example

(functional dependencies)

\[
Q(x,y) \leftarrow R(x,a), R(y,z), R(x,b)
\]

(a, b are constants)

\[
\Sigma = \begin{cases}
R : \{1\} \rightarrow \{2\}
\end{cases}
\]

Q(x,y) \leftarrow R(x,a), R(y,z), R(x,b)

the chase fails – constants cannot be unified

the empty query is returned
Theorem: Let Q and Q' be conjunctive queries, and Σ a set of functional dependencies.

It holds that: $Q \subseteq_{\Sigma} Q' \iff$ there exists a query homomorphism from Q' to $\text{chase}(Q,\Sigma)$

Proof hint: adapt the proof for the homomorphism theorem by exploiting the following:

- The canonical database of $\text{chase}(Q,\Sigma)$ is a finite database that satisfies Σ
- Main property of the chase: there exists a homomorphism that maps the body of $\text{chase}(Q,\Sigma)$ to every D that (i) can be mapped to the body of Q, and (ii) satisfies Σ
CQ Containment Under Inclusion Dependencies

- Things are much more difficult for inclusion dependencies. By following the same approach as for functional dependencies we only show the following:

Theorem: Let Q and Q' be conjunctive queries, and Σ a set of inclusion dependencies. It holds that: $Q \subseteq_{\Sigma,\infty} Q' \iff$ there exists a query homomorphism from Q' to $\text{chase}(Q,\Sigma)$ for every, possibly infinite, database D that satisfies Σ, $Q(D) \subseteq Q'(D)$

- Interestingly, the following highly non-trivial and deep theorem holds:

Theorem (Finite Controllability): $Q \subseteq_{\Sigma} Q' \iff Q \subseteq_{\Sigma,\infty} Q'$
CQ Containment Under Constraints

Theorem: Let Q and Q' be conjunctive queries, and Σ a set of constraints. The problem of deciding whether $Q \subseteq_\Sigma Q'$ is

- NP-complete, if Σ is a set of functional dependencies
- PSPACE-complete, if Σ is a set of inclusion dependencies

Proof Idea:

NP-membership (i) Construct $\text{chase}(Q,\Sigma)$ in polynomial time, (ii) guess a substitution h, and (iii) verify that h is a query homomorphism from Q' to $\text{chase}(Q,\Sigma)$

NP-hardness Inherited from the constraint-free case

PSPACE-membership (i) Non-deterministically construct a subquery Q'' of $\text{chase}(Q,\Sigma)$ with $|Q''| \leq |Q'|$, (ii) guess a substitution h, and (iii) verify that h is a query hom. from Q' to Q''

PSPACE-hardness Simulate a PSPACE Turing machine
Back to Semantic Acyclicity Under Constraints

Definition: Given a CQ Q and a set of constraints Σ, we say that Q is semantically acyclic under Σ if there exists an acyclic CQ Q' such that $Q \equiv_\Sigma Q'$

$Q \subseteq Q'$ and $Q' \subseteq Q$

Two crucial questions: given a CQ Q and a set Σ of constraints

1. Can we decide whether Q is semantically acyclic under Σ, and what is the exact complexity? *Now, we have the tools to study this problem*

2. Does this help query evaluation?
Semantic Acyclicity Under Inclusion Dependencies

Proposition (Small Query Property): Consider a CQ Q and a set Σ of inclusion dependencies. If Q is semantically acyclic under Σ, then there exists an acyclic CQ Q' such that $|Q'| \leq 2 \cdot |Q|$ and $Q \equiv_{\Sigma} Q'$

<table>
<thead>
<tr>
<th>Guess-and-check algorithm:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Guess an acyclic CQ Q' of size at most $2 \cdot</td>
</tr>
<tr>
<td>2. Verify that $Q \subseteq_{\Sigma} Q'$ and $Q' \subseteq_{\Sigma} Q$</td>
</tr>
</tbody>
</table>

Theorem: Deciding semantic acyclicity under inclusion dependencies is:

- PSPACE-complete in general
- NP-complete for fixed arity (because containment is NP-complete)
Semantic Acyclicity Under Functional Dependencies

Proposition (Small Query Property): Consider a CQ Q and a set Σ of functional dependencies over unary and binary relations. If Q is semantically acyclic under Σ, then there exists an acyclic CQ Q' such that $|Q'| \leq 2 \cdot |Q|$ and $Q \equiv_{\Sigma} Q'$

Guess-and-check algorithm:

1. Guess an acyclic CQ Q' of size at most $2 \cdot |Q|$
2. Verify that $Q \subseteq_{\Sigma} Q'$ and $Q' \subseteq_{\Sigma} Q$

Theorem: Deciding semantic acyclicity under inclusion dependencies is NP-complete
Semantic Acyclicity Under Functional Dependencies

\[R : \{1\} \rightarrow \{3\} \equiv R(x,y,z,w), R(x,y',z',w') \rightarrow z = z' \]

only one attribute

Theorem: Semantic acyclicity under unary functional dependencies (over fixed arity signatures) is NP-complete

Open Problem: Deciding semantic acyclicity under arbitrary (or even binary) functional dependencies is a non-trivial open problem
Evaluating Semantically Acyclic CQs

- Recall that evaluating Q over D takes time $|D|^{O(|Q|)}$.

- Evaluating a CQ Q that is semantically acyclic under Σ over D takes time

 $2^{O(|Q| + |\Sigma|)} + O(|D| \cdot |Q|)$

 time for computing an acyclic CQ Q' such that $|Q'| \leq 2 \cdot |Q|$

 and $Q \equiv_\Sigma Q'$

 time for evaluating Q'

 - $|Q'| \leq 2 \cdot |Q|$
 - Evaluation of an acyclic CQ Q_A is feasible in time $O(|D| \cdot |Q_A|)$

- Observe that $2^{O(|Q| + |\Sigma|)} + O(|D| \cdot |Q|)$ is dominated by $O(|D| \cdot 2^{O(|Q| + |\Sigma|)})$

 \Rightarrow fixed-parameter tractable
Acyclic Approximations Under Constraints

- There are CQs that are not semantically acyclic even in the presence of constraints.
- The small query properties lead to acyclic approximations.

Theorem: Consider a CQ Q and a set Σ of constraints. There exists an acyclic CQ Q' of size at most $2 \cdot |Q|$ that is maximally contained in Q under Σ.

$Q' \subseteq_{\Sigma} Q$ and there is no acyclic CQ Q'' such that $Q'' \subseteq_{\Sigma} Q$ and $Q' \subseteq_{\Sigma} Q''$.

- We know that acyclic approximations of polynomial size always exist.
- However, by exploiting the constraints we obtain more informative approximations.
Semantic Optimization: Recap

• Constraints enrich semantic acyclicity

• We can decide semantic acyclicity in the presence of inclusion dependencies and functional dependencies over unary and binary relations
 – The underlying tool is CQ containment under constraints

• Semantic acyclicity under functional dependencies is an important open problem

• Semantically acyclic CQs can be evaluated “efficiently” (fixed-parameter tractability)

• For CQs that are not semantically acyclic, even in the presence of constraints, we can always compute (more informative) acyclic approximations
Semantic Acyclicity: Wrap-Up

• Semantic acyclicity is an interesting notion that allows us to replace a CQ with an acyclic one – this significantly improves query evaluation.

• But, semantic acyclicity is rather weak:

 – Not many CQs are semantically acyclic
 ⇒ consider *acyclic approximations* of CQs

 – Semantic acyclicity is not an improvement over usual optimization – both approaches are based on the core
 ⇒ exploit *semantic information* in the form of constraints
Associated Papers

- Pablo Barceló, Andreas Pieris, Miguel Romero: Semantic Optimization in Tractable Classes of Conjunctive Queries. SIGMOD Record 46(2): 5-17 (2017)

 A recent survey on semantic acyclicity (and beyond) with and without constraints

 Semantic acyclicity under several classes of constraints

- Diego Figueira: Semantically Acyclic Conjunctive Queries under Functional Dependencies. LICS 2016: 847-856

 Semantic acyclicity under unary functional dependencies
Associated Papers

 Containment of CQ under inclusion dependencies via the chase

 The paper that introduced the chase algorithm