
Query Rewriting in OBDA

Advanced Topics in Foundations of Databases, University of Edinburgh, 2018/19

Forward Chaining Techniques

D

Q

h

chase(D,Σ)

Useful techniques for establishing optimal upper bounds

…but not practical - we need to store instances of very large size

How can we achieve true scalability in OBQA?

Scalability in OBQA

D

Σ

hD, Σi

D

database

ontology

Q

knowledge base

But in the OBQA setting

we have to query a

knowledge base, not just a

relational database

Exploit standard RDBMSs - efficient technology for answering CQs

Query Rewriting

D

ΣQ

evaluation

8D : D ^ Σ ² Q , D ² QΣ

compilation

First-order query

Union of CQs

SQL query

Datalog query

…

QΣ

evaluated and optimized by

exploiting existing technology

Query Rewriting: Formal Definition

Consider a class of existential rules L, and a query language Q.

OBQA(L) is Q-rewritable if, for every Σ 2 L and (Boolean) CQ Q,

we can construct a query QΣ2 Q such that,

for every database D, D ^ Σ ² Q iff D ² QΣ

NOTE: The construction of QΣ is database-independent - the pure approach

to query rewriting

Issues in Query Rewriting

• How do we choose the target query language?

• How the ontology language and the target query language are related?

• How we construct such rewritings?

• What about the size of such rewritings?

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL    

ACYCLIC    

LINEAR    

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL    

ACYCLIC    

LINEAR    

Target Query Language

Σ = {8x (P(x)  T(x)), 8x8y (R(x,y)  S(x))}

Q :- S(x), U(x,y), T(y)

QΣ = {Q :- S(x), U(x,y), T(y),

Q1 :- S(x), U(x,y), P(y),

Q2 :- R(x,z), U(x,y), T(y),

Q3 :- R(x,z), U(x,y), P(y)}

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL    

ACYCLIC    

LINEAR    

Target Query Language

Σ = {8x8y (R(x,y) ^ P(y)  P(x))}

Q :- P(c)

QΣ = {Q :- P(c),

Q1 :- R(c,y1), P(y1),

Q2 :- R(c,y1), R(y1,y2), P(y2),

Q3 :- R(c,y1), R(y1,y2), R(y2,y3), P(y3),

… }

• This cannot be written as a finite UCQ (or even FO query)

• It can be written as Q :- R(c,x), R*(x,y), P(y), but transitive closure is not

FO-expressible

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL    

ACYCLIC    

LINEAR    

UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:

1. Rewriting

2. Minimization

• The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

Normalization Procedure

8x8y (' (x,y)  9z (P1(x,z) ^ … ^ Pn(x,z)))

8x8y (' (x,y)  9z Auxiliary(x,z))

8x8z (Auxiliary(x,z)  P1(x,z))

8x8z (Auxiliary(x,z)  P2(x,z))

…

8x8z (Auxiliary(x,z)  Pn(x,z))

NOTE 1: Acyclicity and Linearity are preserved

NOTE 2: We obtain an equivalent set w.r.t. query answering

UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:

1. Rewriting

2. Minimization

• The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

Rewriting Step

Σ = {8x8y (project(x) ^ inArea(x,y)  9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(u,db,v)

hasCollaborator(u,db,v)

g = {x! v, y! db, z! u}

Thus, we can simulate a chase step by applying a backward resolution step

QΣ = {Q :- hasCollaborator(u,db,v),

Q1 :- project(v), inArea(v,db)}

Unsound Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y)  9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

hasCollaborator(c,db,v)

g = {x! v, y! db, z! c}

After applying the rewriting step we obtain the following UCQ

QΣ = {Q :- hasCollaborator(c,db,v),

Q1 :- project(v), inArea(v,db)}

Unsound Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y)  9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

QΣ = {Q :- hasCollaborator(c,db,v),

Q1 :- project(v), inArea(v,db)}

• Consider the database D = {project(a), inArea(a,db)}

• Clearly, D ² QΣ

• However, D ^ Σ does not entail Q since there is no way to obtain an atom of

the form hasCollaborator(c,db,_) during the chase

Unsound Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y)  9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

QΣ = {Q :- hasCollaborator(c,db,v),

Q1 :- project(v), inArea(v,db)}

the information about the constant c in the original query is lost after the

application of the rewriting step since c is unified with an 9-variable

Unsound Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y)  9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(v,db,v)

hasCollaborator(v,db,v)

g = {x! v, y! db, z! v}

After applying the rewriting step we obtain the following UCQ

QΣ = {Q :- hasCollaborator(v,db,v),

Q1 :- project(v), inArea(v,db)}

Unsound Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y)  9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(v,db,v)

QΣ = {Q :- hasCollaborator(v,db,v),

Q1 :- project(v), inArea(v,db)}

• Consider the database D = {project(a), inArea(a,db)}

• Clearly, D ² QΣ

• However, D ^ Σ does not entail Q since there is no way to obtain an atom of

the form hasCollaborator(t,db,t) during the chase

Unsound Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y)  9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(v,db,v)

QΣ = {Q :- hasCollaborator(v,db,v),

Q1 :- project(v), inArea(v,db)}

the fact that v in the original query participates in a join is lost after the

application of the rewriting step since v is unified with an 9-variable

Applicability Condition

Consider a (Boolean) CQ Q, an atom α in Q, and a (normalized) rule σ.

We say that σ is applicable to α if the following conditions hold:

1. head(σ) and α unify via h

2. For every variable x in head(σ):

1. If h(x) is a constant, then x is a 8-variable

2. If h(x) = h(y), where y is a shared variable of α, then x is a 8-variable

3. If x is an 9-variable of head(σ), and y is a variable in head(σ) such that x ≠ y,

then h(x) ≠ h(y)

...but, although it is crucial for soundness, may destroy completeness

Incomplete Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y)  9z hasCollaborator(z,y,x)),

8x8y8z (hasCollaborator(x,y,z)  collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

• Consider the database D = {project(a), inArea(a,db)}

• Clearly, chase(D,Σ) = D [{hasCollaborator(z,db,a), collaborator(z)} ² Q

• However, D does not entail QΣ

QΣ = {Q :- hasCollaborator(u,v,w), collaborator(u),

Q1 :- hasCollaborator(u,v,w), hasCollaborator(u,v’,w’)

Incomplete Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y)  9z hasCollaborator(z,y,x)),

8x8y8z (hasCollaborator(x,y,z)  collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

QΣ = {Q :- hasCollaborator(u,v,w), collaborator(u),

Q1 :- hasCollaborator(u,v,w), hasCollaborator(u,v’,w’)

Q2 :- project(u), inArea(u,v)

...but, we cannot obtain the last query due to the applicablity condition

Incomplete Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y)  9z hasCollaborator(z,y,x)),

8x8y8z (hasCollaborator(x,y,z)  collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

QΣ = {Q :- hasCollaborator(u,v,w), collaborator(u),

Q1 :- hasCollaborator(u,v,w), hasCollaborator(u,v’,w’)

Q2 :- hasCollaborator(u,v,w) - by minimization

Q3 :- project(w), inArea(w,v) - by rewriting

D = {project(a), inArea(a,db)} ² QΣ

UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:

1. Rewriting

2. Minimization

• The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

The Rewriting Algorithm

QΣ := {Q};

repeat

Qaux := QΣ;

foreach disjunct q of Qaux do

//Rewriting Step

foreach atom α in q do

foreach rule σ in Σ do

if σ is applicable to α then

qrew := rewrite(q,α,σ); //we resolve α using σ

if qrew does not appear in QΣ (modulo variable renaming) then

QΣ := QΣ [{qrew};

//Minimization Step

foreach pair of atoms α,β in q that unify do

qmin := minimize(q,α,β); //we apply the MGU of α and β on q

if qmin does not appear in QΣ (modulo variable renaming) then

QΣ := QΣ [{qmin};

until Qaux = QΣ;

return QΣ;

Termination

Theorem: The rewriting algorithm terminates under ACYCLIC

Proof Idea:

• Key observation: after arranging the disjuncts of the rewriting in a tree T, the

branching of T is finite, and the depth of T is at most the number of predicates

occurring in the rule set

• Therefore, only finitely many partial rewritings can be constructed - in general,

exponentially many

Termination

Theorem: The rewriting algorithm terminates under LINEAR

Proof Idea:

• Key observation: the size of each partial rewriting is at most the size of the

given CQ Q

• Thus, each partial rewriting can be transformed into an equivalent query that

contains at most (|Q| ¢maxarity) variables

• The number of queries that can be constructed using a finite number of

predicates and a finite number of variables is finite

• Therefore, only finitely many partial rewritings can be constructed - in general,

exponentially many

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL    

ACYCLIC    

LINEAR    

Back to Complexity

Data Complexity

FULL PTIME-c
Naïve algorithm

Reduction from Monotone Circuit Value problem

ACYCLIC

in LOGSPACE Via UCQ-rewriting

LINEAR

Combined Complexity

FULL EXPTIME-c
Naïve algorithm

Simulation of a deterministic exponential time TM

ACYCLIC NEXPTIME-c
Small witness property

Reduction from a Tiling problem

LINEAR PSPACE-c
Level-by-level non-deterministic algorithm

Simulation of a deterministic polynomial space TM

Size of the Rewriting

• Ideally, we would like to construct UCQ-rewritings of polynomial size

• But, the standard rewritng algorithm produces rewritings of exponential size

• Can we do better? NO!!!

Σ = {8x (Rk(x)  Pk(x))}k 2 {1,...,n} Q :- P1(x), …, Pn(x)

Q :- P1(X), …, Pn(X)

P1(X) _ R1(X) Pn(X) _ Rn(X)

thus, we need to consider 2n disjuncts

Size of the Rewriting

• Ideally, we would like to construct UCQ-rewritings of polynomial size

• But, the standard rewritng algorithm produces rewritings of exponential size

• Can we do better? NO!!!

• Although the standard rewriting algorithm is worst-case optimal, it can

be significantly improved

• Optimization techniques can be applied in order to compute efficiently

small rewritings - field of intense research

Limitations of UCQ-Rewritability

• What about the size of QΣ? - very large, no rewritings of polynomial size

• What kind of ontology languages can be used for Σ? - below PTIME

) the combined approach to query rewriting

8D : D ^ Σ ² Q , D ² QΣ

evaluated and optimized by

exploiting existing technology

Combined Rewritability

Q

evaluationquery compilation

database query

D

D+

database compilation in poly-time

8D : D ^ Σ ² Q , D+ ² QΣ

Σ

QΣ

Polynomial Combined Rewritability

ΣQ

evaluationquery compilation

in polynomial time

database query

QΣ

D

D+

database compilation

in polynomial time

8D : D ^ Σ ² Q , D+ ² QΣ

