A Crash Course on Complexity Theory

we are going to recall some fundamental notions from complexity theory that will be heavily used in the context of this course – details can be found in the standard textbooks

Deterministic Turing Machine (DTM)

$$M = (S, \Lambda, \Gamma, \delta, s_0, s_{accept}, s_{reject})$$

- S is the set of states
- Λ is the input alphabet, not containing the blank symbol \sqcup
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Lambda \subseteq \Gamma$
- $\delta: S \times \Gamma \rightarrow S \times \Gamma \times \{L,R\}$
- s₀ is the initial state
- s_{accept} is the accept state
- s_{reject} is the reject state, where s_{accept} ≠ s_{reject}

Deterministic Turing Machine (DTM)

$$M = (S, \Lambda, \Gamma, \delta, s_0, s_{accept}, s_{reject})$$

$$\delta(s_1, \alpha) = (s_2, \beta, R)$$

IF at some time instant τ the machine is in sate s_1 , the cursor points to cell κ , and this cell contains α

THEN at instant τ +1 the machine is in state s_2 , cell κ contains β , and the cursor points to cell κ +1

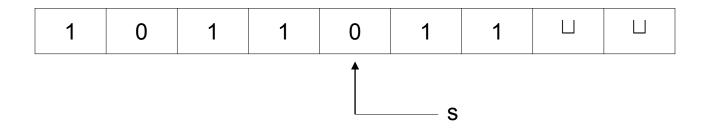
Nondeterministic Turing Machine (NTM)

$$M = (S, \Lambda, \Gamma, \delta, s_0, s_{accept}, s_{reject})$$

- S is the set of states
- ∧ is the input alphabet, not containing the blank symbol
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Lambda \subseteq \Gamma$
- $\delta: S \times \Gamma \rightarrow 2^{S \times \Gamma \times \{L,R\}}$
- s₀ is the initial state
- s_{accept} is the accept state
- s_{reject} is the reject state, where s_{accept} ≠ s_{reject}

Turing Machine Configuration

A perfect description of the machine at a certain point in the computation

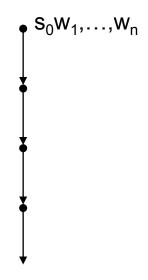


is represented as a string: 1011s011

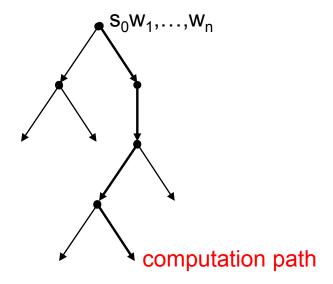
- Initial configuration on input w₁,...,w_n s₀w₁,...,w_n
- Accepting configuration u₁,...,u_ks_{accept}u_{k+1},...,u_{k+m}
- Rejecting configuration $-u_1,...,u_k s_{reject} u_{k+1},...,u_{k+m}$

Turing Machine Computation

Deterministic



Nondeterministic



the next configuration is unique

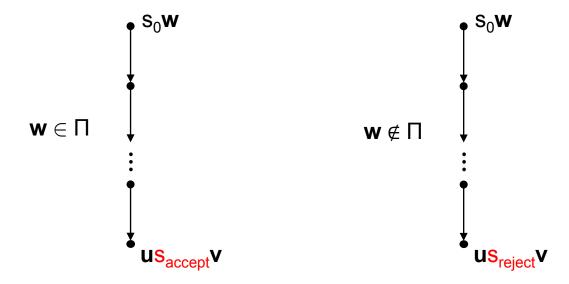
computation tree

Deciding a Problem

(recall that an instance of a decision problem Π is encoded as a word over a certain alphabet Λ – thus, Π is a set of words over Λ , i.e., $\Pi \subseteq \Lambda^*$)

A DTM M = (S, Λ , Γ , δ , s_0 , s_{accept} , s_{reject}) decides a problem Π if, for every $\mathbf{w} \in \Lambda^*$:

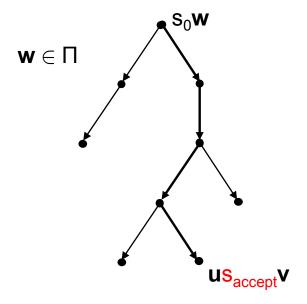
- M on input \mathbf{w} halts in $\mathbf{s}_{\mathsf{accept}}$ if $\mathbf{w} \in \Pi$
- M on input w halts in s_{reject} if w ∉ Π

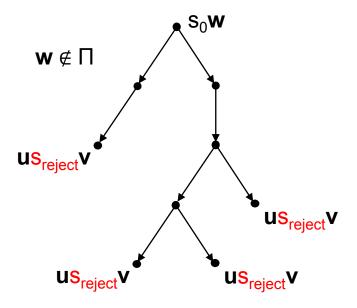


Deciding a Problem

A NTM M = (S, Λ , Γ , δ , s_0 , s_{accept} , s_{reject}) decides a problem Π if, for every $\mathbf{w} \in \Lambda^*$:

- The computation tree of M on input w is finite
- There exists at least one accepting computation path if w ∈ Π
- There is no accepting computation path if w ∉ Π





Complexity Classes

Consider a function $f: N \rightarrow N$

```
TIME(f(n)) = \{\Pi \mid \Pi \text{ is decided by some DTM in time } O(f(n))\}

NTIME(f(n)) = \{\Pi \mid \Pi \text{ is decided by some NTM in time } O(f(n))\}

SPACE(f(n)) = \{\Pi \mid \Pi \text{ is decided by some DTM using space } O(f(n))\}

NSPACE(f(n)) = \{\Pi \mid \Pi \text{ is decided by some NTM using space } O(f(n))\}
```

Complexity Classes

We can now recall the standard time and space complexity classes:

```
\cup_{k>0} TIME(n<sup>k</sup>)
       PTIME
                    = \bigcup_{k>0} NTIME(n^k)
            NP
                    = \bigcup_{k>0} \mathsf{TIME}(2^{n^k})
    EXPTIME
                        \cup_{k>0} NTIME(2<sup>nk</sup>)
  NEXPTIME
 LOGSPACE
                          SPACE(log n)
                                                      these definitions are relying on
                                                      two-tape Turing machines with a
                         NSPACE(log n)
NLOGSPACE
                                                      read-only and a read/write tape
                    = \cup_{k>0} SPACE(n^k)
     PSPACE
                    = \cup_{k>0} SPACE(2^{n^k})
  EXPSPACE
```

For every complexity class C we can define its complementary class

$$coC = \{ \Lambda^* \setminus \Pi \mid \Pi \in C \}$$

An Alternative Definition for NP

Theorem: Consider a problem $\Pi \subseteq \Lambda^*$. The following are equivalent:

- $\Pi \in \mathsf{NP}$
- There is a relation $R \subseteq \Lambda^* \times \Lambda^*$ that is polynomially decidable such that

 $\Pi = \{u \mid \text{there exists } \mathbf{w} \text{ such that } |\mathbf{w}| \leq |\mathbf{u}|^k \text{ and } (\mathbf{u},\mathbf{w}) \in \mathsf{R} \}$ witness or certificate $\{\mathbf{xy} \in \Lambda^* \mid (\mathbf{x},\mathbf{y}) \in \mathsf{R} \} \in \mathsf{PTIME}$

Example:

3SAT = $\{\phi \mid \phi \text{ is a 3CNF formula that is satisfiable}\}$ = $\{\phi \mid \phi \text{ is a 3CNF for which } \exists \text{ assignment } \alpha \text{ such that } |\alpha| \leq |\phi| \text{ and } (\phi,\alpha) \in R\}$

where R = $\{(\phi,\alpha) \mid \alpha \text{ is a satisfying assignment for } \phi\} \in \mathsf{PTIME}$

Relationship Among Complexity Classes

```
\mathsf{LOGSPACE} \subseteq \mathsf{NLOGSPACE} \subseteq \mathsf{PTIME} \subseteq \mathsf{NP}, \mathsf{coNP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME} \subseteq \mathsf{NEXPTIME}, \mathsf{coNEXPTIME} \subseteq ...
```

Some useful notes:

- For a deterministic complexity class C, coC = C
- coNLOGSPACE = NLOGSPACE
- It is generally believed that PTIME ≠ NP, but we don't know
- PTIME ⊂ EXPTIME ⇒ at least one containment between them is strict
- PSPACE = NPSPACE, EXPSPACE = NEXPSPACE, etc.
- But, we don't know whether LOGSPACE = NLOGSPACE

Complete Problems

- These are the hardest problems in a complexity class
- A problem that is complete for a class C, it is unlikely to belong in a lower class
- A problem Π is complete for a complexity class C, or simply C-complete, if:
 - 1. $\Pi \in C$
 - 2. Π is C-hard, i.e., every problem $\Pi' \in C$ can be efficiently reduced to Π

there exists a polynomial time algorithm (resp., logspace algorithm) that computes a function f such that $\mathbf{w} \in \Pi' \Leftrightarrow f(\mathbf{w}) \in \Pi$ – in this case we write $\Pi' \leq_P \Pi$ (resp., $\Pi' \leq_L \Pi$)

To show that Π is C-hard it suffices to reduce some C-hard problem Π' to it

Some Complete Problems

NP-complete

- SAT (satisfiability of propositional formulas)
- Many graph-theoretic problems (e.g., 3-colorability)
- Traveling salesman
- etc.

PSPACE-complete

- Quantified SAT (or simply QSAT)
- Equivalence of two regular expressions
- Many games (e.g., Geography)
- etc.