A Crash Course on Complexity Theory

we recall some fundamental notions from complexity theory that will be heavily used in

the context of this course - further details can be found in the standard textbooks



Deterministic Turing Machine (DTM)

M = (S,A\T,6,sy S S

accept’ reject)

* Sisthe set of states

 Aisthe input alphabet, not containing the blank symbol LI
 T[isthe tapealphabet, whered Eland A ST

e 0:SXTI - SXTIX{LR}

* sgyis the initial state

*  S,ccept IS the accept state

*  SrejectiS the reject state, where s,ccept # Sreject



Deterministic Turing Machine (DTM)

M = (S,A\T,6,sy S S

accept’ reject)

6(Slr a) = (SZI Br R)

IF at some time instant T the machine is in sate s;, the cursor points to
cell k, and this cell contains a
THEN at instant t+1 the machine is in state s,, cell kK contains B,

and the cursor points to cell k+1



Nondeterministic Turing Machine (NTM)

M = (S,A\T,6,sy S S

accept’ reject)

* Sisthe set of states

 Aisthe input alphabet, not containing the blank symbol LI
 T[isthe tapealphabet, whered Eland A ST

e 0:SXTI — powersetof S XTI X {L,R}

* sgyis the initial state

*  S,ccept IS the accept state

*  SrejectiS the reject state, where s,ccept # Sreject



Turing Machine Configuration

A perfect description of the machine at a certain point in the computation

1 0 1 1 0 1 1 L L

-

is represented as a string: 1011s011

e Initial configuration on input wy,...,.w, - SoWq,...,W,
* Accepting configuration - U,...,UiSacceptUies---Ukem

* Rejecting configuration - Ug,...,USrejectUkstse- Ukem



Turing Machine Computation

Deterministic Nondeterministic

¢ SoWy,...,Wy, SoW1,...,Whp,

A
<«

v computation path

the next configuration is unique computation tree



Deciding a Problem

(recall that aninstance of a decision problem I is encoded as a word over a certain

alphabet A - thus, N is a set of words over A, i.e., M € A*)

ADTM M= (S, A\, T, 8, So, Saccepts Sreject) decides a problem I if, for everyw € A*:
* Mon input w haltsin s,y if wE Tl

* Mon input w haltsin s.je. if W&

® SOW ® SOW
v \ 4
® ®

w €[] 4 w & 1 v

I-‘S‘accept" usrejectv



Deciding a Problem

ANTM M = (S, A, T, 6, So, Saccepts Sreject) decides a problem [T if, for every w 2 A*:
* The computation tree of M on input w is finite
* There exists at least one accepting computation pathifw €1

* Thereis no accepting computation pathif w & I

SgW SogW

w E I w & 1

u Srejectv
u Srejectv

usacceptv usrejectv usrejectv



Complexity Classes

Consider a functionf: N - N

TIME(f(n)) {N| Nis decided by some DTMin time O(f(n))}

NTIME(f(n))

{N | Nis decided by some NTM in time O(f(n))}

SPACE(f(n)) {N | Nis decided by some DTM using space O(f(n))}

NSPACE(f(n)) {N | Nis decided by some NTM using space O(f(n))}



Complexity Classes

* We cannow recall the standard time and space complexity classes:

PTIME = Uiso TIME(nk)
NP = Uiso NTIME(nk)
EXPTIME = Uy TIME(2™)
NEXPTIME = Uiso NTIME(Z”k)
LOGSPACE _ SPACE(log n) these definitions are relying on two-
tape Turing machines with a read-
NLOGSPACE = NSPACE(log n) _
only and a read/write tape
PSPACE = Uiso SPACE(nk)
EXPSPACE = U, SPACE(2™)

* For every complexity class C we can define its complementary class coC

coC = {A*\ N | NeC}



An Alternative Definition for NP

Theorem: Consider a problem N € A*. The following are equivalent:
e MENP
 Thereis a relation R € A* X A* thatis polynomially decidable such that

M ={u | there exists w such that |w| < |u|¥and (u,w) € R}

witness or certificate {xy e A* | (x,y) ER } € PTIME

Example:
3SAT = {¢p | ¢ is a 3CNFformula thatis satisfiable}
={¢ | dis a 3CNF for which there is an assighment a such that |a| < |$| and (d,a) € R}

where R={(d,a) | ais a satisfying assignment for ¢} € PTIME



Relationship Among Complexity Classes

LOGSPACE © NLOGSPACE € PTIME & NP, coNP <

PSPACE © EXPTIME €S NEXPTIME, coNEXPTIME < ---

Some useful notes:
* For a deterministic complexity class C, coC=C
* coNLOGSPACE = NLOGSPACE
* Itis generally believed that PTIME # NP, but we don’t know
* PTIME C EXPTIME = atleastone containment between them is strict
* PSPACE = NPSPACE, EXPSPACE = NEXPSPACE, etc.
* But, we don’t know whether LOGSPACE = NLOGSPACE




Complete Problems

* These are the hardest problems in a complexity class

* A problem that is complete for a class C, it is unlikely to belong in a lower class

* A problem Nis complete for a complexity class C, or simply C-complete, if:
1. NecC

2. Nis C-hard,i.e., every problem IN" € C can be efficiently reduced to I

/

there exists a logspace algorithm that computes a function f such that

w E [T iff flw) €M - inthis case we write 1" <, 11

* Toshow thatis C-hardit suffices to reduce some C-hard problem I’ to it



Some Complete Problems

e NP-complete
— SAT (satisfiability of propositional formulas)
— Many graph-theoretic problems (e.g., 3-colorability)
— Travelingsalesman

— etc.

 PSPACE-complete
— Quantified SAT (or simply QSAT)
— Equivalence of two regular expressions
— Many games (e.g., Geography)

— etc.



