RegsCov: A Tool for Measuring Test-Adequacy Over Requirements *

Matt Staats', Weijia Deng!, Ajitha Rajan', Mats P.E. Heimdahl', Kurt Woodham?
'Department of Computer Science and Engineering, University of Minnesota
2L-3 Enterprise IT Solutions, NASA IV&V Facility

Abstract

When creating test cases for software, a common ap-
proach is to create tests that exercise requirements. De-
termining the adequacy of test cases, however, is generally
done through inspection or indirectly by measuring struc-
tural coverage of an executable artifact (such as source
code or a software model). We present ReqsCov, a tool
to directly measure requirements coverage provided by test
cases. RegsCov allows users to measure Linear Temporal
Logic requirements coverage using three increasingly rig-
orous requirements coverage metrics: naive coverage, an-
tecedent coverage, and Unique First Cause coverage. By
measuring requirements coverage, users are given insight
into the quality of test suites beyond what is available when
solely using structural coverage metrics over an implemen-
tation.

1 Introduction

Currently, testing is the most common method of eval-
uating software correctness with respect to its required be-
havior. One general approach to creating test suites is to cre-
ate tests that exercise the software requirements—black-box
testing—where the system is tested without knowledge of
the system’s internal structure since software requirements
are (generally) defined in an implementation-independent
fashion [2]. When creating test suites to exercise require-
ments, we would ideally determine the adequacy of a test
suite directly over our set of requirements; unfortunately,
this is not currently done in practice.

To support adequacy measurements using requirements,
we have developed RegsCov, a tool to measure the require-
ments coverage provided by a test suite. The use of Reqs-
Cov is similar to other tools measuring structural coverage
over executable artifacts (e.g., tools measuring branch cov-
erage and MC/DC coverage [3]), and allows developers to
measure the adequacy of a test suite based upon how well

*This work has been partially supported by NASA Ames Research
Center Cooperative Agreement NNAO6CB21A, NASA IV&V Facility
Contract NNG-05CB16C, and the L-3 Titan Group.

the test suite exercises requirements, rather than (or in ad-
dition to) the level of structural coverage over the imple-
mentation achieved by the test suite. This paper presents
RegsCov and describes its functionality. Background infor-
mation on the coverage metrics used and concept of require-
ments coverage in general can be found in [1] and [6].

2 Problem Overview

Black-box testing using requirements is a longstanding
and common approach to testing software [2], to the ex-
tent that manual creation of black-box tests is common even
in introductory computer programming courses. In prac-
tice, however, requirements are not used to measure the ad-
equacy of a black-box test suite [6], as the automation to
perform such a measurement is not generally available. In-
stead, the adequacy of a test suite is inferred by measuring
structural coverage of an executable artifact, such as source
code [2, 3] or a software model [1].

This presents a number of problems. First, if the exe-
cutable artifact is incomplete (i.e., missing functionality) a
test suite may provide good structural coverage while fail-
ing to expose the missing functionality. Conversely, if a test
suite provides poor structural coverage, a developer must
determine if (a) requirements are missing, (b) code exists in
the executable artifact unrelated to the requirements, or (c)
the set of tests is simply poorly constructed. Finally, this
approach requires access to the internals of an executable
artifact, thus forcing the executable artifact to be completed
before the adequacy of the test suite can be determined.

A more direct method of evaluating the adequacy of a
test suite is to directly measure its coverage over the soft-
ware requirements themselves. This approach offers the
ability to evaluate the adequacy of a test suite independently
of the software system’s structure and in an manner directly
related the software system’s requirements, thus avoiding
the pitfalls listed above.

3 ReqsCov Description

RegsCov exists in two forms: as a command line tool
(written in Standard ML) and as an Eclipse plugin for
the Eclipse IDE. Both forms offer the ability to measure

978-1-4244-2188-6/08/$25.00 ©2008 IEEE

499

the requirements coverage achieved by a test suite. Cur-
rently, three requirements coverage metrics are supported:
Unique First Cause (UFC) coverage, antecedent coverage,
and naive coverage.

Our tool operates using three inputs: a test suite (given in
a simple comma separated format), a set of requirements ex-
pressed as Linear Temporal Logic (LTL) [4] properties, and
a list of the requirements coverage metrics the user wishes
to measure. Our tool outputs two pieces of information:
the coverage percentage for each coverage metric measured,
and the list of test cases satisfying each test obligation. The
list is expressed as an n X m matrix, with n test cases and m
obligations. The n'” test case satisfies the m" obligation
if {n,m} is 1; if the n'" test case does not satisfy the m?"
obligation,{n, m} is 0.

RegsCov operates as follows. First, for each require-
ment, ReqsCov generates obligations corresponding to dif-
ferent paths satisfying the requirement, where each obliga-
tion corresponds to a different method of satisfying the re-
quirement. The tool then measures how many obligations
are covered by the test suite. The number of covered obliga-
tions versus the number of total obligations is used to gen-
erate the coverage percentage of the test suite. (Note that
each coverage metric is measured separately.) These cover-
age metrics and the obligation generation process are fully
explained in [6].

When using the Eclipse plugin, users can graphically se-
lect a set of LTL requirements, a test suite, and one or more
requirements coverage metrics. The requirements cover-
age(s) achieved by the test suite is (are) then graphically dis-
played as a percentage, while the full list of obligations and
the tests cases which satisfy them can optionally be saved to
afile. The plugin also allows users to edit LTL requirements
in Eclipse with syntax highlighting.

3.1 Linear Temporal Logic

We have chosen to work with requirements formalized
as LTL properties as our primary industrial collaborator
(Rockwell Collins Inc.) has found them to be a good match
with how their natural language requirements are written.
Thus, RegsCov has been developed to measure require-
ments coverage of high-level LTL requirements; neverthe-
less, the tool could easily be extended to support require-
ments captured using other notations, provided a definition
of requirement coverage corresponding to the notation ex-
ists. For example, we have used RegsCov to develop cover-
age measures over a subset of Live Sequence Charts.

3.2 Generation of Obligations

Both UFC coverage and antecedent coverage require that
tests exercise requirements in interesting (i.e., non-trivial)
ways. For example, consider the requirement “G(a — b).”
If @ is never true in the test suite, this property is trivially

satisfied, and thus the test suite does not truly test if this
requirement holds. For UFC and antecedent coverage, we
therefore generate an obligation that states that ¢ must hold
true in some test case. These obligations are generated as
LTL formulas defining the nature of the test cases needed to
satisfy the obligations; RegsCov then uses these LTL obli-
gations to measure the requirements coverage achieved by
a test suite.

3.3 Coverage Over Finite Paths

LTL formulas, such as “G(a — b)”, are formulated
over infinite paths whereas test cases are by definition fi-
nite. Manna and Pneuli [5] examine the use of LTL over
systems which finite (i.e., terminating) paths. They define
two forms of LTL semantics: strong semantics which are
simply standard LTL semantics, and weak semantics corre-
sponding to weaker semantics useful for finite paths. Using
these definitions, the above formula is always false under
strong semantics, as we cannot state that it is true globally.
However, under weak semantics the formula is true if in
each state we are aware of the formula is true.

Intuitively, we can see that strong semantics, being de-
fined over infinite paths, are not useful for our purposes.
We therefore interpret LTL formulas using weak semantics.
The rationale for this is fully explored in [6].

References

[1] Paul E. Ammann and Paul E. Black. A specification-
based coverage metric to evaluate test sets. In Proceed-
ings of the Fourth IEEE International Symposium on
High-Assurance Systems Engineering. IEEE Computer
Society, November 1999.

[2] Boris Beizer. Software testing techniques. Van Nos-
trand Reinhold, New York, 2nd edition, 1990.

[3] J.J. Chilenski and S.P. Miller. Applicability of mod-
ified condition/decision coverage to software testing.
Software Engineering Journal, 9:193-200, September
1994.

[4] Orna Grumberg Edmund M. Clarke and Doron A.
Peled. Model Checking. The MIT Press, 1999.

[5] Z. Manna and A. Pnueli. Temporal verification of reac-
tive systems: Safety. Technical report, Springer-Verlag,
New York, 1995.

[6] M.W Whalen, A. Rajan, and M.P.E. Heimdahl. Cov-
erage metrics for requirements-based testing. In Pro-
ceedings of International Symposium on Software Test-
ing and Analysis, July 2006.

500

