
ON MC/DC AND IMPLEMENTATION STRUCTURE: 
AN EMPIRICAL STUDY 

Mats P.E. Heimdahl, University of Minnesota, Minneapolis, Minnesota 

Michael W. Whalen, Rockwell Collins Inc., Cedar Rapids, Iowa 

Ajitha Rajan, Matt Staats, University of Minnesota, Minneapolis, Minnesota 
 

 

Abstract 
In civil avionics, obtaining D0-178B certifica-

tion for highly critical airborne software requires 
that the adequacy of the code testing effort be 
measured using a structural coverage criterion 
known as Modified Condition and Decision Cover-
age (MC/DC).  We hypothesized that the effective-
ness of the MC/DC metric is highly sensitive to the 
structure of the implementation and can therefore 
be problematic as a test adequacy criterion.  We 
tested this hypothesis by evaluating the fault-
finding ability of MC/DC-adequate test suites on 
five industrial systems (flight guidance and display 
management).  For each system, we created two 
versions of the implementations—implementations 
with and without expression folding (i.e., inlining). 

We found that for all five examples, the effec-
tiveness of the test suites was highly sensitive to the 
structure of the implementation they were designed 
to cover.  MC/DC test suites adequate on an inlined 
implementation have greater fault finding ability 
than test suites generated to be MC/DC adequate on 
the non-inlined version of the same implementation 
at the 5% significance level.   (The inlined test 
suites outperformed the non-inlined test suites in 
the range of 10% to 5940%.) 

This observation confirms our suspicion that 
MC/DC used as a test adequacy metric is highly 
sensitive to structural changes in the implementa-
tion, and that test suite adequacy measurement us-
ing the MC/DC metric will be better served if done 
over the inlined implementation.  

Introduction 
Test adequacy metrics defined over the struc-

ture of a program, such as statement coverage, 
branch coverage, and decision coverage, have been 
used for decades to assess the adequacy of test 

suites.  Nevertheless, it is well known that these 
criteria can easily be ‘cheated’ by restructuring a 
program to make it easier to achieve the desired 
coverage.  For several years, we have been particu-
larly interested in the Modified Condition and Deci-
sion Coverage (MC/DC) criterion [1] since it is 
used when testing highly critical software in the 
avionics industry [2].  Of particular interest is the 
possible use of MC/DC in conjunction with model-
based development using tools such as Simulink [3] 
and SCADE [4].  Such tool adoption has led to a 
discussion on what coverage criteria to use when 
testing such models; MC/DC has been a natural 
candidate for adoption for the most critical models. 

Our concern regarding MC/DC is its sensitivi-
ty to the structure of the program or model under 
test.  A test suite provides MC/DC over the struc-
ture of a program or model if every condition with-
in a decision has taken on all possible values at least 
once, and every condition has been shown to inde-
pendently affect the decision’s outcome (note here 
that when discussing MC/DC coverage, a decision 
is defined to be an expression involving any Boo-
lean operator).  Consider the trivial program frag-
ments in Table 11.  The program fragments have 
different structures but are functionally equivalent.  
Version 1 is non-inlined with intermediate variable 
expr_1, Version 2 is inlined with no intermediate 
variables.  Based on the definition of MC/DC, 
TestSet1 in Table 1 provides MC/DC over pro-
gram Version 1 but not over Version 2;  the test 
cases with in_3 = false (bold faced) contri-
bute towards MC/DC of in_1 or in_2 in Ver-
sion 1 but not over Version 2 since the masking 
effect of in_3 = false is revealed in Version 2. 

                                                      
1 Note that the example discussed in the next few paragraphs 
has been adopted from our pilot study [5]. 



In contrast, MC/DC over the inlined version 
requires a test suite to take the masking effect of 
in_3 into consideration as seen in TestSet2.  
This disparity in MC/DC coverage over the two 
versions can have significant ramifications with 
respect to fault finding of test-suites.  Suppose the 
code fragment in Table 1 is faulty and should have 
been in_1 and in_2 (which was erroneously 
coded as in_1 or in_2).  TestSet1 would be 
incapable of revealing this fault, since there would 
be no change in the observable output—out_1.  
On the other hand, any test set providing MC/DC of 
the inlined implementation would be able to reveal 
this fault. 

 

Version 1: Non-Inlined Implementation 

expr_1 = in_1 or in_2;      //stmt1 
out_1 = expr_1 and in_3; //stmt2 
 

Version 2: Inlined Implementation 

out_1 = (in_1 or in_2) and in_3; 

 

Sample Test Sets for (in_1, in_2, in_3): 

TestSet1 = {(TFF),(FTF),(FFT),(TTT)} 
TestSet2 = {(TFT),(FTT),(FFT),(TFF)} 

Table 1: Example of behaviorally equivalent 
implementations with different structures. 

 

Programs may be structured with significant 
numbers of intermediate variables for many rea-
sons, for example, for clarity (nice program struc-
ture), efficiency (no need to recompute commonly 
used values), or to make it easer to achieve the de-
sired MC/DC coverage (it is significantly easier to 
find the MC/DC tests if the decisions are simple).  
Either way, we hypothesize the efficacy of the 
MC/DC coverage criterion will be reduced over 
such programs. 

In a previous study, we examined the effect of 
program structure by comparing test suites neces-
sary to cover programs consisting of simple deci-
sions (at most one logical operator) versus pro-
grams in which such intermediate variables are re-
moved [5].  We refer to these versions as the non-
inlined and inlined implementations, respectively.  

We found the effect of such transformations to be 
dramatic: our analysis revealed that the transforma-
tions yield an average reduction of 29% in MC/DC 
coverage measured over inlined implementations 
(which was statistically significant for a null hypo-
thesis of no difference at the 5% significance level).  
Given that the inlined and non-inlined implementa-
tions are semantically equivalent, the discrepancy in 
coverage under this simple transformation was a 
cause for serious concern. 

Of course, the real concern is not the reduction 
in coverage itself, but whether this reduction cor-
responds to a drop in the fault finding capability of 
the test suite.  In this paper, we conduct an experi-
ment to investigate whether or not the structure of 
the implementation used for test case generation to 
MC/DC has any effect on the fault finding potential 
of the test suites. 

For our fault finding experiment we used five 
industrial systems from the civil avionics domain.  
These systems were modeled using the Simulink 
language.  From the models we created implemen-
tations that we used as a basis for the generation of 
large sets of mutants with randomly seeded faults.  
We generated numerous test suites providing 100% 
achievable MC/DC coverage over non-inlined ver-
sions of the models (we call them non-inlined test 
suites) as well as test suites providing coverage of 
inlined versions of the models (inlined test suites).  
We assessed the fault finding capability of the non-
inlined and inlined test suites by running them over 
the sets of mutants and measuring how many faults 
were found.  We generated enough test suites and 
mutants to achieve statistical significance at the 5% 
significance level. 

Our experiment revealed that the structure of 
the implementation used for test case generation has 
a profound effect on the fault finding of the resul-
tant test suites; the inlined test suites performed sig-
nificantly better for all five examples in our case 
study.  The relative improvement in fault finding 
from non-inlined to inlined test suites ranged from 
10% to 5940% on these examples.  Statistical anal-
ysis of these results revealed that for all systems, 
our hypothesis that the MC/DC metric is sensitive 
to the structure of the implementation is supported. 

Note here that the potential problems with de-
cision structure are not confined only to code; the 
move towards model-based development in the 



avionics community makes test-adequacy mea-
surement a crucial issue in the modeling domain.  
Coverage criteria, in particular MC/DC, are being 
used in conjunction with modeling tools such as 
Simulink [3] and SCADE [4] for testing models.  
Currently, MC/DC measurement over models in 
these tools is being done in the weakest possible 
manner. For example, Figure 1 is a Simulink model 
equivalent to the example in Table 1.  MC/DC cov-
erage of such models is currently defined on a ‘gate 
level’ (analogous to the MC/DC measurement over 
Version 1 in Table 1).  Since there are no complex 
decisions in this definition of MC/DC, MC/DC 
measured this way is susceptible to the masking 
problem discussed above, and test-suites designed 
to provide MC/DC coverage over the models may 
therefore provide poor fault-finding capability.  
Thus, the current approach to measuring MC/DC 
over such models is a serious cause for concern.   
For simplicity, in the remainder of this paper, we 
refer to a ‘model’ or ‘program’ as the ‘implementa-
tion’ since the concerns discussed here are the same 
regardless of whether we are discussing a model or 
a program. 

1

Out1

AND

Logical

Operator1
OR

Logical

Operator

3

In3

2

In2

1

In1

 

Figure 1: Simulink model of example in Table 1. 

We find the effect of program or model struc-
ture on the fault finding of test suites providing 
MC/DC disconcerting.  In particular, we are con-
cerned about the efficacy of test suites automatical-
ly generated from models where MC/DC is meas-
ured at a ‘gate level’.  Engineers and certifiers must 
be aware and cautious of this issue when using 
MC/DC to assess the adequacy of test suites for 
safety-critical applications; our results show that 
MC/DC applied to implementations with inappro-
priate structure can be ineffective. 

Additionally, we also observed that the oracle 
used to assess test suite effectiveness can make a 

significant difference in the evaluation.  We used 
two different oracles in our experiment; one that 
compares only the outputs of the mutated models to 
that of a reference model (output only oracle), and a 
second that compares both the outputs and internal 
state of the mutated and correct models (internal 
variable oracle).  We found that the internal varia-
ble oracle revealed significantly more faults than 
the output only for all case examples.  Thus, test 
suites are more effective when a stronger oracle 
such as the internal variable one is used.  The oracle 
selection problem and its implication in fault find-
ing merits more attention and we hope to take a 
closer look at this issue in our future work.  

In the remainder of the paper we first introduce 
our experimental setup and case examples.  We 
then in detail discuss the techniques used to gener-
ate the faulty implementations, the test oracles, and 
the test suites.  Finally we provide a detailed discus-
sion of our results and cover the implications of our 
results, and point to future directions.  

Experiment 
To investigate the effect of program structure 

on MC/DC coverage, we designed our experiment 
to test the following hypothesis: 

Hypothesis: A test-suite generated to provide 
MC/DC over an inlined implementation will reveal 
more faults than a test-suite generated to provide 
MC/DC over a non-inlined implementation. 

As mentioned in the introduction, we previous-
ly found that the structure of an implementation can 
have a significant impact on the MC/DC coverage 
achieved by a test suite; a test suite providing high 
coverage of a non-inlined implementation may pro-
vide significantly lower coverage of the same im-
plementation if it were inlined.  Based on this re-
sult, we believe that the structure of the implemen-
tation used as the basis for adequacy measures or 
test suite generation (manual or automated) can sig-
nificantly impact the quality of the test suites. 

Experimental Setup Overview 
The goal in our experiments was to determine 

whether inlining the implementation had a signifi-
cant effect in the fault finding capability of test 
suites generated to provide MC/DC over the im-



plementation.  To perform this assessment we first 
generate a test-suite to provide MC/DC over a non-
inlined version of the implementation (referred to as 
non-inlined test suite from hereon); we also gener-
ate a test-suite to provide MC/DC over a inlined 
version of the same implementation (referred to as 
inlined test suite from hereon).  We then reduce the 
inlined and non-inlined suites using a greedy algo-
rithm to smaller test suites that maintain 100% 
achievable MC/DC coverage of the respective im-
plementations.  We then seed faults to create mu-
tants (a single fault per mutant) and run the reduced 
inlined and non-inlined test suites against the cor-
rect and mutated implementations to compute their 
fault finding capability (defined to be the number of 
mutants caught over the total number of mutants 
seeded).  It is now possible to determine whether a 
program in which complex decisions have been 
split into simple decisions reduces the fault finding 
effectiveness of the MC/DC coverage criterion.  
Below we provide an overview of the experimental 
setup, subsequent sections provide detailed infor-
mation on the experimental procedure. 

We conducted experiments on five industrial 
examples: three models from a display window 
manager for an air-transport class aircraft DWM_1, 
DWM_2, and DWM_3), and two models 
representing flight guidance mode logic for a busi-
ness and regional jets class aircraft (Vertmax_Batch 
and Latctl_Batch).  (A description of the case ex-
amples follow in the next section).  For each of the 
case examples, given the inlined and non-inlined 
test suites we varied the following parameters: 

Mutant Set: We randomly generated three sets of 
200 mutants for each model. 

Test Suites: We used test suites of two types: ‘in-
lined’ and ‘non-inlined.’ For each type, we random-
ly created three reduced test suites that maintain 
MC/DC over the respective implementation (non-
inlined implementation for non-inlined test suite 
and inlined implementation for inlined test suite.) 

Oracle: For reasons that will be described in detail 
shortly, we conducted our experiment using two 
different oracles.  One oracle only considers values 
of ‘system level’ outputs in the comparison between 
a mutant and a correct implementation, and one 
oracle considers both values of internal variables 
(also referred to as intermediate variables) and out-
puts in the comparison. 

Thus, for each case example, we had 3 sets of 
mutants, 3 randomly reduced inlined test suites, 3 
randomly reduced non-inlined test suites and two 
oracles.  For each of the two oracles, we have 9 ob-
servations each for the inlined and non-inlined test 
suites.  We designed our experiment using multiple 
sets of mutants and multiple sets of test suites to 
reduce the influence of outliers on our results. 

We conducted the experiment using the fol-
lowing steps.  

Step 1: From the specification of a case example, 
we generated two artifacts: 

An implementation with no inlining.  The structure 
of this implementation closely reflects the structure 
of a typical Simulink model (very simple conditions 
and many intermediate variables carrying tempo-
rary values).  We will refer to this version of the 
implementation as the ‘non-inlined’ version. 

An implementation that is inlined.  The implementa-
tion is inlined in the sense that multiple levels of 
hierarchy in the specification are flattened to a sin-
gle level (functions calls are inlined) and interme-
diate variables in complex conditions are inlined.  
This level of inlining is similar to the standard op-
tions for the Simulink RTW [3] system, and is de-
scribed in more detail below.  We will refer to the 
implementation generated in this manner as the ‘in-
lined’ version.  In our experiment we use the ‘in-
lined’ version of the implementation as the ‘oracle 
implementation’ that is used in the test runs to 
compare against mutants. 

Step 2: We generated test suites from both the non-
inlined and inlined implementations to provide 
maximal MC/DC coverage on each.  The test suites 
were naively generated (one test case per MC/DC 
test obligation) which led to much larger test suites 
than needed to provide maximal coverage. 

Step 3: For each of the test suites in Step 2, we 
generated three randomly reduced test suites that 
maintained MC/DC coverage.  We used a simple 
greedy approach for the reduction. 

Step 4: We randomly generated three sets of 200 
mutants from the oracle implementation using the 
method outlined in the next section. 

Step 5: We ran each of the reduced test suites for 
both inlined and non-inlined against each set of mu-



tants using both test oracles, and recorded the per-
centage of mutants caught. 

Case Examples 
In our experiment, we used five close to pro-

duction or production.  All systems used in our ex-
periment were modeled using the Simulink notation 
from Mathworks Inc. 

Flight Guidance System 
A Flight Guidance System is a component of 

the overall Flight Control System (FCS) in a com-
mercial aircraft.  It compares the measured state of 
an aircraft (position, speed, and altitude) to the de-
sired state and generates pitch and roll-guidance 
commands to minimize the difference between the 
measured and desired state.  The FGS consists of 
the mode logic, which determines which lateral and 
vertical modes of operation are active and armed at 
any given time, and the flight control laws that ac-
cept information about the aircraft’s current and 
desired state and compute the pitch and roll guid-
ance commands.  The two FGS models in this paper 
focus on the mode logic of the FGS.  The Vert-
max_Batch and Latctl_Batch models describe the 
vertical and lateral mode logic for the Rockwell 
Collins FCS 5000 flight guidance system family. 

Display Window Manager Models (DWM_1, 
DWM_2 and DWM_3)  

The Display Window Manager models, 
DWM_1, DWM_2 and DWM_3, represent 3 of the 
5 major subsystems of the Display Window Man-
ager (DWM) of the Rockwell Collins ADGS-2100, 
an air transport-level commercial displays system.  
The DWM acts as a ‘switchboard’ for the system 
and has several responsibilities related to routing 
information to the displays and managing the loca-
tion of two cursors that can be used to control ap-
plications by the pilot and copilot.  The DWM must 
update which applications are being displayed in 
response to user selections of display applications, 
and must handle reversion in case of hardware or 
application failures, deciding which information is 
most critical and moving this information to the 
remaining display(s).   

Inlined and Non-Inlined Implementations 
The case examples were modeled in Simulink 

and we will refer to these models as the specifica-

tion of the system.  As part of a previous project, 
we developed a translation framework with the abil-
ity to translate Simulink Models into the synchron-
ous programming language Lustre [6].  Lustre is a 
synchronous dataflow language and is the underly-
ing notation for the SCADE Suite from Esterel 
Technologies [4].  We translated each of the case 
examples modeled in Simulink to Lustre.  We will 
refer to the translated case examples in Lustre as the 
implementation of the specification.  This is ana-
logous to automated code generation (with default 
compilation options) from Simulink models using 
Real Time Workshop from Mathworks [3], where 
the generated C code is the implementation of the 
Simulink specification.  Using the options in our 
translation infrastructure, we generated two differ-
ent implementations in Lustre—with and without 
inlining, as described below. 

No Inlining  
The structure of the generated non-inlined im-

plementation in Lustre closely follows the structure 
of the specification in Simulink in terms of the hie-
rarchies (or subsystems) and intermediate variables 
needed to propagate signals in the Simulink model. 
A sample implementation with no inlining is pre-
sented in Table 2.  Note that the example is pre-
sented in a C-like language rather than Lustre for 
clarity; the structure (but not syntax) of the corres-
ponding Lustre code would look similar.  The ex-
ample implementation computes the result of X 
and Y or Z for the three inputs X, Y, Z if the 
danger condition (temp > thresh) is not vi-
olated. 

With Inlining 
Here we flatten the multiple levels of hierarchy 

in the Simulink model of the system so that the im-
plementation in Lustre has only a single level of 
hierarchy.  In addition we also inline intermediate 
variables in the model into their original definition. 
Note however that we do not inline all the interme-
diate variable definitions.  MC/DC was defined for 
constructs in a traditional imperative language such 
as C.  We therefore made an attempt to make inlin-
ing in Lustre resemble that of an imperative lan-
guage.  For instance, although ‘if-then-else’ con-
structs are expressions in Lustre and can thus be 
inlined, such inlining would not be possible in C 
where ‘if-then-else’ is a statement.  Thus, we did 
not inline variables defined through an ‘if-then-else’ 



expression.  Table 2 presents the inlined version of 
the previously mentioned example. 

 

Non-Inlined Implementation: 

bool Compute(bool x, bool y, bool z, 
int temp, int thresh) 

{ 
bool run, no_danger, no_alarm; 
run = AndOr(x,y,z); 
no_danger = (temp<=thresh); 
if (no_danger) then {no_alarm=true;} 
else {no_alarm=false;} 
return (run && no_alarm); 

} 
 

bool AndOr(bool a, bool b, bool c) 
{ 

bool local; 
local = b || c; 
return (a && local); 

} 

 

Inlined Implementation: 

bool Compute(bool x, bool y, bool z, 
int temp, int thresh) 

{ 
bool no_alarm; 
if (temp<=thresh) then {no_alarm=true;} 
else { no_alarm = false; } 
return ((x && (y || z)) && no_alarm); 

} 

Table 2: Example implementation with and 
without inlining. 

Note that the terms ‘Inlined Implementation’ 
and ‘Non-Inlined Implementation’ used in the rest 
of this paper refers to the implementation in Lustre 
with and without inlining (as described above) re-
spectively. 

Mutant Generation 
To create mutants or faulty implementations, 

we built a fault seeding tool that can randomly in-
ject faults into the implementation.  Each mutant is 
created by introducing a single fault into a correct 
implementation by mutating an operator or variable. 
The fault seeding tool is capable of seeding faults 
from different classes.  We seeded the following 
classes of faults: 

Arithmetic: Changes an arithmetic operator (+, -, /, 
*, mod, exp). 

Relational: Changes a relational operator (=, !=, <, 
>, <=, >=). 

Boolean: Changes a boolean operator (Or, And, 
XOR). 

Negation: Introduces the boolean NOT operator. 

Delay: Introduces the delay operator on a variable 
reference (that is, use the stored value of the varia-
ble from the previous computational cycle rather 
than the newly computed value). 

Constant: Changes a constant expression by adding 
or subtracting 1 from integer and real constants, or 
by negating boolean constants. 

Variable Replacement: Substitutes a variable oc-
curring in an equation with another variable of the 
same type.  

To seed a fault from a certain class, the tool 
first randomly picks one expression among all poss-
ible expressions of that kind in the implementation. 
It then randomly determines how to change the op-
erator.  For instance to seed an arithmetic mutation, 
we first randomly pick one expression from all 
possible arithmetic expressions to mutate, say we 
pick the expression ‘a + b’; we then randomly de-
termine if the arithmetic operator ‘+’ should be re-
placed with ‘-‘ or ‘*’ or ‘/’ and create the arithmetic 
mutant accordingly.  Our fault seeding tool ensures 
that no duplicate faults are seeded. 

In our experiment, we generated mutants so 
that the ‘fault ratio’ for each fault class is uniform. 
The term fault ratio refers to the number of mutants 
generated for a specific fault class versus the total 
number of mutants possible for that fault class.  For 
example, assume an implementation consists of 30 
Relational operators and 275 Boolean operators. 
Thus there are 30 possible Relational faults and 275 
possible Boolean faults.  If we wish to generate 200 
mutants from this implementation, our fault seeding 
tool using the uniform fault ratio distribution as-
sumption would generate 66% each of the possible 
Relational and Boolean faults, which in this case 
translates to 19 Relational and 181 Boolean faults. 

We generated three sets of 200 mutants for 
each case example.  We generated three mutant sets 
for each example to reduce potential bias in our re-
sults from a mutant set that may have very hard (or 
easy) faults to detect. 



The fault finding effectiveness of a test suite is 
measured as the number of mutants detected (or 
‘killed’) to the total number of mutants created.  We 
say that a mutant is detected by a test suite when the 
test suite results in different observed values be-
tween the mutant and the oracle implementation. 

Our mutant generator does not guarantee that a 
mutant will be semantically different from the orig-
inal implementation.  Nevertheless, this weakness 
in mutant generation does not affect our results, 
since we are investigating the relative fault finding 
of test suites, not the absolute fault finding. 

Mutation testing using fault seeding approach-
es similar to the one described above have been 
shown to be an effective metric of a test suite’s fault 
finding ability when realistic mutation operators are 
used [7]. 

Test Oracles 
Given a test case, we need to determine if the 

system executed correctly for the test case.  To do 
this, we use a test oracle that gives the expected 
outcome of the test.  For this experiment, we choose 
two different oracles.  The first compares only the 
outputs of the correct and mutated implementations. 
The second compares both the outputs and the in-
ternal state.  In general, internal state information of 
the system under test may not be available and it is 
therefore preferable to perform the comparison with 
only output values.  Initially in our experiment, we 
only set out to compare ‘outputs’ between the mu-
tants and the correct reference implementation. 
Nevertheless, such an oracle is incapable of reveal-
ing seeded faults that result in a corrupted state but 
does not propagate to outputs (because of masking). 
Therefore, we decided to additionally use a stronger 
oracle that compares internal state information in 
addition to outputs.  To assess the impact of oracle 
selection on fault finding, we use both oracles (only 
outputs as well as outputs + intermediate variables) 
in our assessment of inlined versus non-inlined test 
suites on all case examples.  Note that similar oracle 
issues have been explored previously [8], but not in 
the context of this domain. 

When the oracle comparison is done using on-
ly outputs, we term it as an ‘output oracle’, and 
when we compare both internal state and outputs, 

we term it as an ‘intermediate variable oracle’ or 
‘IV oracle’. 

Test Suite Generation and Reduction 
The full inlined and non-inlined test suites 

used in the experiments were the same ones used in 
previous work [5].  The test suites were automati-
cally generated using the NuSMV model checker 
[9] to provide MC/DC over the implementation. 
These full test suites were generated in a naive 
manner, with a separate test case for every construct 
we need to cover in the implementation.  This 
straightforward way of generation will result in 
highly redundant test suites.  In many cases, a sin-
gle test case may satisfy more than one test obliga-
tion.  Thus, the size of the complete test suite can 
typically be reduced while preserving coverage. 

We use a greedy algorithm to generate reduced 
test suites.  The algorithm operates by randomly 
picking a test case from the complete test suite, 
running the test and determining if it improved the 
overall MC/DC coverage.  Any test case that im-
proves the coverage is added to the reduced test set 
and those that do not are discarded.  This is done 
until we have exhausted all the test cases in the 
complete test suite.  We now—presumably—have a 
much smaller test suite that achieves the same 
MC/DC coverage over the implementation.  In our 
experiments we were able to achieve reductions in 
test suite size of up to 99% while maintaining 
MC/DC over the implementation.  The greedy ap-
proach is not guaranteed to be optimal since the 
order of picking the test cases will affect the size of 
the reduced set.  Nevertheless, creating minimal test 
suites is not the focus of this paper.  We generate 
three such separate reduced test suites for each full 
test-suite to decrease the chances of skewing our 
results with an outlier (very good or very bad re-
duced test suite). 

Experimental Results 
For each case example, we generated three re-

duced non-inlined test suites, three reduced inlined 
test suites, and three sets of mutants.  We ran every 
test suite against every set of mutants, and recorded 
the percentage of mutants caught using both the 
output oracle and the IV oracle.  This produced 36 
observations for each case example (18 each for the 



inlined and non-inlined test suites) for use in deter-
mining the relative effectiveness of test suites gen-
erated from inlined and non-inlined implementa-
tions.  For each case example, we average the per-
centage of mutants caught across the different re-
duced test suites and mutant sets for each {inline 
level, oracle} pair.  This gives us four averages (one 
each for {Inlined, IV}, {Non-Inlined, IV}, {Inlined, 
Outputs}, {Non-Inlined, Outputs} pairs) for each 
case example as summarized in Table 3.  Addition-
ally, the table also gives the relative improvement 
in fault finding of inlined test suites over non-
inlined test suites.  For example, for the DWM_1 
model and IV oracle, the non-inlined test suites kill 
79.9% of mutants as compared to 87.9% killed by 
the inlined test suites, giving a relative improve-
ment of 10.0%.  When we use the output oracle 
with the same test suites and mutants, the non-
inlined test suites kill 69.1% of the mutants on av-
erage, while the inlined test suites kill 82.5% of the 
mutants, a relative improvement of 19.4%. 

It is evident from Table 3 that the improve-
ment in mutants caught by inlined test suits over 
non-inlined test suites is substantial (ranging from 
10% to a staggering 5940%).   

Since our experimental observations are drawn 
from an unknown distribution—and we therefore 
cannot reasonably fit our data to a theoretical prob-
ability distribution—we used the permutation test (a 
test with no distribution assumptions [10]) for our 
statistical analysis.  Through this analysis (the de-
tails omitted because of space constraints) we can 
support our hypothesis across all examples at the 
5% significance level (or lower). 

This difference in fault finding is worrisome 
since it strongly indicates that the fault finding 
ability of an MC/DC test suite is highly correlated 
with the structure of the implementation from 
which it is generated.  

Table 3 highlights another observation: even 
under the best of circumstances investigated in this 
experiment (i.e., IV oracle, inlined test suite) no 
more than 90.6% of mutants are caught by an 
MC/DC adequate test suite.  There are several rea-
sons for this poor showing (for example, semanti-
cally equivalent mutants and fault masking) that 
will be covered in the Discussion section.  Note 
again, however, that the poor absolute fault finding 
does not affect our conclusion, as we are judging 
relative fault finding, rather than absolute fault find-
ing. 

Finally, it is worth noting that the oracle used 
often has a significant effect on the percentage of 
mutants caught.  The most noticeable effect is on 
the WBS, the percent of mutants killed increases by 
more than 20 percentage points when the IV oracle 
is used in place of the outputs only oracle for both 
inlined and non-inlined test suites.  The difference 
observed came as a surprise to us and emphasizes 
the importance of oracle selection when assessing 
effectiveness of test suites.  

Threats to Validity 
While our results are statistically significant, 

they are derived from a small set of examples, 
which poses a threat to the generalization of the 
results.  Nevertheless, we believe that the examples 
in our experiment are highly representative and our 
results are generalizable to systems within the same 
domain 

Another issue is the use of Lustre as an imple-
mentation language rather than a more common 
language such as Java or C.  Nevertheless, Lustre’s 
decisions are structured identically to those in im-
perative languages (such as C or Java), we thus do 
not view this as a serious threat. 

Oracle IV Outputs Only 
Inline Level Noninlined Inlined Improvement Noninlined Inlined Improvement 

DWM_1 79.9% 87.9% 10.0% 69.1% 82.5% 19.4% 
DWM_2 63.7% 86.1% 35.2% 56% 84.6% 51.8% 
DWM_3 5.7% 90.6% 1489% 1.6% 90.6% 5940% 

Latctl_Batch 69.3% 86.5% 24.8% 60.1% 79.2% 32.9% 
Vertmax_Batch 76.7% 85.5% 11.5% 75.9% 84.7% 11.6% 

Table 3: Percentage of mutants caught by reduced inlined and non-inlined test suites. 



Our fault seeding method seeds one fault per 
mutant.  In practice, implementations are likely to 
have more than one fault.  However, previous stu-
dies have shown that mutation testing in which one 
fault is seeded per mutant draws valid conclusions 
of fault finding ability [7]. 

Additionally, all fault seeding methods have an 
inherent weakness.  It is difficult to determine the 
exact fault classes and ensure that seeded faults are 
representative of faults that occur in practical situa-
tions.  In our experiment, we assume a uniform ra-
tio of faults across fault classes.  This may not re-
flect the fault distribution in practice.  Additionally, 
our fault seeding method does not ensure that 
seeded faults result in mutants that are semantically 
different from the oracle implementation.  Ideally, 
we would eliminate mutants that are semantically 
equivalent; however, identifying such mutants is 
infeasible in practice. 

Discussion 
In all of our case examples, the inlined test 

suites revealed significantly more faults than the 
non-inlined test suites.  Statistical analysis of the 
data revealed that inlined test suites had better fault-
finding than non-inlined test suites with better than 
95% confidence on all the case studies.  The rela-
tive improvement in fault finding of the inlined over 
the non-inlined test suites for the different case ex-
amples ranged from 10% to 1489% when using the 
IV oracle and between 11% to 5940% when using 
the output oracle.  

The results in this experiment are not wholly 
unexpected but confirm suspicions raised in a pre-
vious study [5].  Previously, we compared the effec-
tiveness of inlined versus non-inlined test suites by 
measuring MC/DC achieved over the inlined im-
plementation.  We found that the inlined test suites 
yielded a significant improvement over non-inlined 
test suites in coverage achieved over all examples.  
Table 4 shows the relative improvement in MC/DC 
achieved (from our previous study) versus the rela-
tive improvement in fault finding of inlined over 
non-inlined test suites for all the case examples.  As 
seen, the relative improvements in fault finding 
closely follow the relative improvements in cover-
age achieved.  The intuition behind this is covered 
portions of the implementation represent locations 
where faults can be detected; since inlined test 

suites achieve significantly better coverage of the 
implementation, more faults can be detected than 
with non-inlined test suites.  In the following para-
graphs, we discuss the observations and/or concerns 
raised from these results. 

 

 MC/DC 
Improvement 

Fault Finding Improvement 
IV Oracle Out. Oracle 

DWM_1 13.7% 10.0% 19.4 % 
DWM_2 49.4% 35.2% 51.8% 
DWM_3 635.3% 1489% 5940% 

Latctl_Batch 13.3% 24.8% 32.9% 
Vertmax_Batch 15.7% 11.5% 11.6% 

Table 4: Comparison in Relative Improvement 
of inlined over non-inlined test suites in MC/DC 

achieved and Fault Finding. 

First, we explored why the inlined test suites 
outperform the non-inlined test suites.  As described 
in [5], non-inlined test suites do not take the effect 
of intermediate variable masking into account.  In 
other words, the non-inlined test suites do not en-
sure that values at intermediate variables affect the 
output.  The inlined test suites on the other hand 
take masking into account since the test suites are 
generated from an implementation where interme-
diate variables are inlined.  These test suites are 
therefore more rigorous, both in terms of test suite 
size and in accounting for masking, and are thus 
more effective in fault finding. 

The wide range in relative fault finding differ-
ence over the different case examples can be attri-
buted to the varied nature and implementation of 
each system.  The DWM_3 system, for instance, 
consists almost entirely of complex Boolean mode 
logic.  Inlining the implementation thus resulted in 
very complex Boolean expressions in contrast to the 
simple Boolean expressions in the non-inlined ver-
sion, a situation the MC/DC coverage criterion was 
specifically designed to handle well.  This accounts 
for the abnormally high improvements of 1489% 
and 5940% that were observed over this system. 

Second, none of the test suites (neither inlined 
nor non-inlined) over the different case examples 
gave us 100% fault finding—in fact, the fault find-
ing was significantly lower than 100% over all the 
case examples except the DWM_3 system (the in-
lined test suites provide over 90% fault finding for 
this example).  This was initially puzzling.  We ex-
pected to fail to detect the semantically equivalent 



mutants, but we did not expect this many.  Never-
theless, as we studied the models closely we identi-
fied several possible reasons for the poor absolute 
fault finding. 

Semantically equivalent mutants: As mentioned 
previously, we do not determine if a seeded fault 
results in a mutant that is semantically equivalent to 
the correct implementation (i.e., a fault that cannot 
result in any observable failure).  Thus, in each of 
our case examples, although we seed 200 faults giv-
ing 200 mutated implementations, it may be the 
case that only 180 of the mutations are semantically 
different from the correct implementation and can 
therefore be detected.  This is a common problem in 
fault seeding experiments [7, 11]. 

In industrial size examples it is extraordinarily 
expensive, time consuming, and—in most cases—
infeasible to identify mutations that are semantical-
ly equivalent to the correct implementation and ex-
clude them from consideration.  Therefore, the fault 
finding percentage that we give in our experiment 
results is a conservative estimate, and we expect the 
actual fault finding for the test suites to be higher if 
we were to exclude the semantically equivalent mu-
tations. 

Faults in uncovered portions of the model: As 
seen from our results in [5], in all the case examples 
except DWM_3 and Latctl_Batch, the maximum 
achievable MC/DC over the implementation is less 
than 100%.  This implies that there are portions of 
the implementation for which there exist no test 
case that can provide MC/DC.  We term these as 
the ‘uncovered’ portion in the implementation.  
Note here that the test suites we use in our experi-
ment provide maximum achievable MC/DC over 
their respective implementation.  When seeding 
faults in an implementation, we may seed faults in 
the uncovered portion.  Since no MC/DC test case 
could be constructed to cover this portion, the test 
suite will likely miss such faults.  In our experi-
ment, we did not attempt to identify the faults that 
are seeded in the uncovered portion of the imple-
mentation.  Such a task would be time consuming 
and difficult since it would require manually ex-
amining the implementation, test suites, and muta-
tions. 

Delay expressions: All the case examples we used 
execute on some form of execution cycle; they 
sample the environment, execute to completion, and 

then wait until it is time for a new execution cycle. 
A delay expression is one that uses the value of a 
variable from a previous execution cycle.  MC/DC 
is not defined over such expressions, and a test suite 
designed to provide MC/DC will not take these ex-
pressions into account.  This can severely affect the 
fault finding capability of such test suites since the 
test obligations generated for MC/DC will not in-
clude the delay operator, and this will in turn affect 
the length of the generated test cases causing them 
to be shorter than what is needed to have an effect 
on outputs.  Note that this problem is different from 
semantically equivalent mutants since it is possible 
to reveal the mutation, but with a test case longer 
than what is necessary to achieve MC/DC. 

To illustrate this problem in a C-like imple-
mentation language, consider the program fragment 
in Table 5.   

 

bool Delay_Expr(bool in1,in2) 
{ 

bool pre_var; 
bool var_a = false; 
while(1) 
{ 

pre_var = var_a; 
var_a = in1 or in2; 
return pre_var_a; 

} 
} 
 
MCDC Test Set for (in1, in2): 
TestSet1 = {(TF),(FT),(FF)} 

Table 5 : Sample program fragment that uses 
variable values from previous step. 

In this code, execution steps are represented as loop 
iterations.  Variables that get used in future execu-
tion steps are stored away as intermediate variables 
for use in later loop iterations.  These intermediate 
variables cannot be inlined for the same reason dis-
cussed above.  TestSet1 with one step test cases 
will provide MC/DC of this program fragment, 
since we only need to exercise the or Boolean ex-
pression up to MC/DC.  If we were to erroneously 
replace the or operator with and, or any other Boo-
lean operator, TestSet1 providing MC/DC would 
not be able to reveal the fault.  This is because the 
test cases are too short to affect the output (test cas-



es need to be at least 2 steps long to reach the out-
put).  Most systems in the domains of vehicle or 
plant control (such as the avionics domain) are de-
signed to use variable values from previous steps.  
Thus, generated test cases to provide MC/DC over 
such systems will often be shorter than needed to 
allow erroneous state information to propagate to 
the outputs and will, therefore, have a detrimental 
effect on their fault finding capability.  Based on 
this observation and our results in Table 3, we be-
lieve that delay expressions not being addressed in 
the definition of the MC/DC metric is a serious 
concern and can severely affect the effectiveness of 
the test suites. 

Intermediate variable masking: As mentioned 
previously, generated test suites do not ensure that 
intermediate variables affect the output.  While we 
expect such masking to occur with non-inlined im-
plementations, masking is also possible with inlined 
versions of implementations as they are not com-
pletely inlined.  We may therefore still have some 
intermediate variables in the inlined implementa-
tions that present opportunities for masking.  This 
may reduce fault finding in inlined implementa-
tions, albeit to a much lesser degree than in the non-
inlined implementations.  Table 5 shows a sample C 
like program with an intermediate variable 
no_alarm that cannot be inlined and can therefore 
potentially be masked out in a test case. 

 

bool Compute(bool in1,in2,in3) 
{ 

bool no_alarm; 
if (in1 or in2) 

no_alarm = true 
else 

no_alarm = false;  
return (in3 and no_alarm); 

} 
 
MCDC Test Set for (in1, in2, in3): 
TestSet1={(TFF),(FTF),(FFT),TTT)} 

Table 6: Sample C like inlined program 
fragment. 

TestSet1 in Table 6 provides MC/DC over 
the function; the test cases with in3 = false 
(bold faced) contribute towards MC/DC of the in1 
or in2 condition in the if-then-else statement.  

However, these test cases mask out the effect of the 
intermediate variable no_alarm since in3 = 
false.  Suppose the code fragment in Table 6 was 
faulty, the correct expression should have been in1 
and in2 (which was erroneously coded as in1 
or in2).  TestSet1 providing MC/DC would 
be incapable of revealing this fault, since there 
would be no change in the observable output.  Thus, 
seeded faults like the one mentioned here cannot be 
revealed by a test suite achieving MC/DC because 
of intermediate variable masking.  This observation 
serves as a reminder of our conclusion in the pre-
vious experiment that masking is a crucial consid-
eration for generating test suites that are effective in 
fault finding. 

A work around for this problem in our experi-
ment was to use intermediate variables in addition 
to outputs as part of our oracle comparison (IV 
oracle).  The use of the IV oracle significantly im-
proved the fault finding capability of both the in-
lined and non-inlined test suites.  For the non-
inlined test suite, the improvement in fault finding 
ranged from 0.8% points on the Vertmax_Batch 
system (75.9% to 76.7%) to a maximum improve-
ment of about 10% points on the DWM_1 system 
(69.1% to 79.8%).  For the inlined test suite, the 
improvement in fault finding ranged from 0% on 
the DWM_3 system (constant at 90.6%) to a maxi-
mum improvement of about 7% points on the 
Latctl_Batch system (79.2% to 86.5%).  Thus, we 
find that the oracle selected can have a significant 
impact on the fault finding effectiveness of test 
suites.  The oracle issue merits further discussion 
and study, but it is not the focus of this paper and 
we hope to look at it in more detail in our future 
work. 

Conclusion 
Our empirical investigation in this paper re-

vealed that test suites generated to provide MC/DC 
are highly to the structure of the implementation 
they are designed to cover.  Our data revealed that 
our hypothesis stating that test suites generated to 
be MC/DC adequate on an inlined implementation 
have greater fault finding ability than test suites 
generated to be MC/DC adequate on the non-
inlined version of the same implementation.  This 
observation confirms our suspicion that MC/DC 
used as a test adequacy metric is highly sensitive to 



structural changes in the implementation, and that 
test suite adequacy measurement using the MC/DC 
metric will be better served if done over the inlined 
implementation.   Unfortunately, as far as we are 
aware, there is no discussion of this issue in current 
and evolving standards, and we strongly encourage 
the organizations contemplating using structural 
coverage criteria to assess the adequacy of a testing 
effort to consider our findings. 

Delay expressions (expressions that refer to 
variable values in previous execution steps) are cur-
rently not considered in the definition of MC/DC, 
and we believe that test cases generated to provide 
MC/DC that do not take these expressions into ac-
count will be less effective in fault finding since the 
generated test cases may be shorter than needed to 
affect the outputs.  We recommend considering de-
lay expressions in future definitions of MC/DC. 

Finally, the oracle used can have a substantial 
effect on the fault finding ability.  We found that 
using internal variables in addition to outputs in our 
oracle provided significantly better fault finding 
than using only outputs.  This oracle issue has se-
rious implications regarding the adequacy of testing 
efforts based on structural coverage.  A statement 
such as “We have completed testing up to Masking 
MC/DC and revealed no critical faults” has little 
meaning unless there is a discussion about the na-
ture of the oracle used.  If the output variables only 
are used in the oracle, it is—from our observations 
in this paper—highly likely that you may have en-
countered faults but failed to reveal them.  The 
oracle selection problem and its implication in fault 
finding merits more attention and we hope to take a 
closer look at this issue it in our future work. 

References 
 [1] J. J. Chilenski and S. P. Miller. Applicability of 
modified condition/decision coverage to software 
testing. Software Engineering Journal, pages 193–
200, September 1994. 

[2] RTCA. DO-178B: Software Considerations In 
Airborne Systems and Equipment Certification. 
RTCA, 1992. 

[3] Mathworks Inc. Simulink product web site. Via 
the world-wide-web: www.mathworks.com 
/products /simulink. 

[4] Esterel-Technologies. SCADE Suite product 
description. http://www.esterel-technologies.com 
/v2/scadeSuiteForSafetyCriticalSoftwareDevelopm
ent/index.html, 2004. 

[5] Ajitha Rajan, Michael Whalen, and Mats Heim-
dahl. The Effect of Program and Model Structure 
on MC/DC Test Adequacy Coverage. In Proceed-
ings of 30th International Conference on Software 
Engineering (ICSE), May 2008.  

[6] N. Halbwachs, P. Caspi, P. Raymond, and D. 
Pilaud. The synchronous dataflow programming 
language Lustre. Proceedings of the IEEE, 
79(9):1305–1320, September 1991. 

[7] J.H. Andrews, LC Briand, and Y. Labiche. Is 
Mutation an Appropriate Tool for Testing Experi-
ments? Proceedings of the 27th international confe-
rence on Software engineering, pages 402–411, 
2005. 

[8] A. Memon, I. Banerjee, and A. Nagarajan. What 
test oracle should I use for effective GUI testing? 
Automated Software Engineering, 2003. Proceed-
ings. 18th IEEE International Conference on, pages 
164–173, 2003. 

[9] The NuSMV Toolset, 2005. Available at 
http://nusmv.irst.itc.it/ 

[10] J.P. Shaffer. Multiple Hypothesis Testing. An-
nual Review of Psychology, 46(1):561–584, 1995. 

[11] A.J. Offutt and J. Pan. Automatically detecting 
equivalent mutants and infeasible paths. Software 
Testing, Verification & Reliability, 7(3):165–192, 
1997. 

Acknowledgements 
We would like to thank Dr. Elizabeth Whalen 

from Boeing Co. for her help with the statistical 
analysis of the results, and John Chilenski from 
Boeing Co. for his insights and discussions regard-
ing the pitfalls of structural coverage metrics.  

This work has been partially supported by 
NASA Ames Research Center Cooperative Agree-
ment NNA06CB21A, NASA IV&V Facility Con-
tract NNG-05CB16C, and the L-3 Titan Group. 

 

27th Digital Avionics Systems Conference 

October 26-30, 2008 


