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Abstract. Massive parallelism, and energy efficiency of GPUs, along
with advances in their programmability with OpenCL and CUDA pro-
gramming models have made them attractive for general-purpose com-
putations across many application domains. Techniques for testing GPU
kernels have emerged recently to aid the construction of correct GPU
software. However, there exists no means of measuring quality and effec-
tiveness of tests developed for GPU kernels. Traditional coverage criteria
over CPU programs is not adequate over GPU kernels as it uses a com-
pletely different programming model and the faults encountered may be
specific to the GPU architecture.
We address this need in this paper and present a framework, CLTestCheck,
for assessing quality of test suites developed for OpenCL kernels. The
framework has the following capabilities, 1. Measures kernel code cov-
erage using three different coverage metrics that are inspired by faults
found in real kernel code, 2. Seeds different types of faults in kernel
code and measures fault finding capability of test suite, 3. Simulates dif-
ferent work-group schedules to check for potential deadlocks and data
races with a given test suite. We conducted empirical evaluation of
CLTestCheck on a collection of 82 publicly available GPU kernels and
test suites. We found that CLTestCheck is capable of automatically mea-
suring effectiveness of test suites, in terms of kernel code coverage, fault
finding and revealing data races in real OpenCL kernels.

Keywords: Testing · Code Coverage · Fault Finding · Data Race · Mu-
tation Testing · GPU · OpenCL

1 Introduction
Recent advances in the programmability of Graphics Processing Units (GPUs),
accompanied by the advantages of massive parallelism and energy efficiency, have
made them attractive for general-purpose computations across many application
domains [18]. However, writing correct GPU programs is a challenge owing to
many reasons [13]– a program may spawn millions of threads, which are clustered
in multi-level hierarchies, making it difficult to analyse; programmer assumes
responsibility for ensuring concurrently executing threads do not conflict by
checking threads access disjoint parts of memory; complex striding patterns of
memory accesses are hard to reason about; GPU work-group execution model
and thread scheduling vary platform to platform and the assumptions are not
explicit. As a consequence of these factors, GPU programs are difficult to analyse
with existing static or dynamic approaches [13]. Static techniques are thwarted
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by the complexity of the sharing patterns. Dynamic techniques are challenged
by the combinatorial explosion of thread interleavings and space of possible data
inputs. Given these difficulties, it becomes important to understand the extent
to which a GPU program has been analysed and tested, and the code portions
that may need further attention.

In this paper, we focus on GPU program testing and address concerns with re-
spect to quality and adequacy of tests developed for GPU programs. We present
a framework, CLTestCheck, that measures test effectiveness over GPU kernels
written using OpenCL programming model [11]. The framework has three main
capabilities. The first capability is a technique called schedule amplification to
check execution of test inputs over several work-group schedules. Existing GPU
architecture and simulators do not provide a means to control work-group sched-
ules. The OpenCL specification provides no execution model for inter work-
group interactions [20]. As a result, the ordering of work-groups when a kernel
is launched is non-deterministic and there is, presently, no means for checking
the effect of schedules on test execution. We provide this monitoring capability.
For a test case Ti in test suite TS, instead of simply executing it once with
an arbitrary schedule of work-groups, we execute it many times with a differ-
ent work-group schedule in each execution. We build a simulator that can force
work-groups in a kernel execution to execute in a certain order. This is done in
an attempt to reveal test executions that produce different outputs for different
work-group schedules which inevitably point to problems in inter work-group
interactions.

The second capability of CLTestCheck is measuring code coverage for OpenCL
kernels. The structures we chose to cover were motivated by OpenCL bugs found
in public repositories like Github and research papers for GPU testing. We de-
fine and measure coverage over synchronisation statements, loop boundaries and
branches in OpenCL kernels.

The final capability of the framework is creating mutations by seeding differ-
ent classes of faults relevant to GPU kernels. We assess the effectiveness of test
suites in uncovering the seeded faults.

We empirically evaluate CLTestCheck using 82 kernels and associated test
input workloads from industry standard benchmarks. The schedule amplifier in
CLTestCheck was able to detect deadlocks and inter work-group data races in
benchmarks. We were able to detect barrier divergence and kernel code that re-
quires further tests using the coverage measurement capabilities of CLTestCheck.
Finally, the fault seeding capability was able to expose unnecessary barriers and
unsafe accesses in loops.

The CLTestCheck framework aims to help developers assess how well the
OpenCL kernels have been tested, kernel regions that require further testing,
uncover bugs sensitive to work-group schedules. In summary, the main contri-
butions in this paper are:
1. Schedule amplification to evaluate test executions using different work-group

schedules.
2. Definition and measurement of kernel code coverage considering synchroni-

sation statements, loop boundaries and branch conditions.
3. Fault seeder for OpenCL kernels that seeds faults from different classes. The

seeded faults are used to assess the effectiveness of test suites with respect
to fault finding.
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4. Empirical evaluation on a collection of 82 publicly available GPU kernels,
examining coverage, fault finding and inter work-group interactions.

The rest of this paper is organised as follows. We present background on
the OpenCL programming model in Section 2. Related work in GPU program
testing and verification is discussed in Section 3. CLTestCheck capabilities is
discussed in Section 4. Experiment setup and results of our empirical evaluation
is discussed in Sections 5 and 6, respectively.

2 Background

The success of GPUs in the past few years has been due to the ease of pro-
gramming using the CUDA [7] and OpenCL [11] parallel programming models,
which abstract away details of the architecture. In these programming models,
the developer uses a C-like programming language to implement algorithms. The
parallelism in those algorithms has to be exposed explicitly. We now present a
brief overview of the core concepts of OpenCL, the programming model used in
this paper.

OpenCL is a programming framework and standard set from Khronos, for
heterogeneous parallel computing on cross-vendor and cross-platform hardware.
In the OpenCL architecture, CPU-based Host controls multiple Compute Devices
(for instance CPUs and GPUs are different compute devices). Each of these
coarse grained compute devices consists of multiple Compute Units which in
turn contain one or more processing elements (a.k.a streaming processors). The
processing elements execute groups of individual threads, referred to as work-
groups, concurrently. The functions executed by the GPU threads are called
kernels, parameterised by thread and group id variables. OpenCL has four types
of memory regions: global and constant memory shared by all threads in all
work-groups, local memory shared by threads within the same work-group and
private memory for each thread. Kernels cannot write to the constant memory.

GPUs have SIMT (single instruction, multiple thread) execution model that
executes batches of threads (warps) in lock-step, i.e all threads in a work-group
execute the same instruction but on different data. If the control flow of threads
within the same work-group diverges, the different execution paths are scheduled
sequentially until the control flows reconverge and lock-step execution resumes.
Sequential scheduling caused by divergence results in a performance penalty,
slowing down execution of the kernel.

Betts et al. [9] describe two specific classes of bugs that make GPU kernels
harder for verification than sequential code, data races and barrier divergence.
Inter work-group data race is referred to as a global memory location is written
by one or more threads from one work-group and accessed by one or more threads
from another work-group. Intra work-group data race is referred to as a global or
local memory location is written by one thread and accessed by another from the
same work-group. Barrier is a synchronisation mechanism for threads within a
work-group in OpenCL and is used to prevent intra work-group data race errors.
Barrier divergence occurs if threads in the same group reach different barriers,
in which case kernel behaviour is undefined [9] and may lead to intra work-group
data race.
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In this paper, we focus on covering barrier functions to help detect intra
work-group barrier divergence errors and revealing problems with inter work-
group interactions using work-group schedule amplification.

3 Related Work
We discuss related work in the context of work-group synchronisation, verifica-
tion and testing of GPU programs.

Inter Work-group Synchronisation for OpenCL Kernels. Barrier functions in the
OpenCL specification [11] help synchronise threads within the same work-group.
There is no mechanism, however, to synchronise threads belonging to different
work-groups. One solution for this problem is to split a program into multi-
ple kernels with the CPU executing the kernels in sequence providing implicit
synchronisation. The drawback with this method is the overhead incurred in
launching multiple kernels. Xiao et al. [23] proposed an implementation of inter
work-group barrier that relies on information on the number of work-groups.
This method is not portable as the number of launched work-groups depends on
the device. Sorensen et al. [21] extended it to be portable by discovering work-
group occupancy dynamically. Their implementation of inter work-group barrier
synchronisation is useful when the developer knows there is interaction between
work-groups that needs to be synchronised. Our contribution is in detecting
undesired inter work-group interactions, not intended by the developer.

GPU Kernel Verification. Verification of GPU kernels to detect data races and
barrier divergence bugs has been explored in the past. Li et al. [14] introduced a
Satisfiability Modulo Theories (SMT) based approach for analysing GPU kernels
and developed a tool called Prover of User GPU (PUG). The main drawback of
this approach is scalability. With an increasing number of threads, the number of
possible thread interleavings grows exponentially, making the analysis infeasible
for large number of threads. GRace [24] and GMRace [25] were developed for
CUDA programs to detect data races using both static and dynamic analysis.
However, they do not support detection of inter work-group data races.

GKLEE [15] and KLEE-CL [10], based on dynamic symbolic execution, pro-
vides data race checks for CUDA and OpenCL kernels, respectively. Both tools
are restricted by the need to specify a certain number of threads, and the lack
of support for custom synchronisation constructs. Scalability and general appli-
cability is a challenge with these tools.

Leung et al. [13] present a flow-based test amplification technique for verifying
race freedom and determinism of CUDA kernels. For a single test input under a
particular thread interleaving, they log the behaviour of the kernel and check the
property. They then amplify the result of the test to hold over all the inputs that
have the same values for the property integrity-inputs. The test amplification
approach in [13] can check the absence of data-races, not the presence. Addi-
tionally, their approach amplifies across the space of test inputs, not work-group
schedules as done in our schedule amplifier. GPUVerify [9] is a static analy-
sis tool that transforms a parallel GPU kernel into a two-threaded predicated
program with lock-step execution and checks data races over this transformed
model. The drawback of GPUVerify is that it may report false alarms and has
limited support for atomic operations.
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Test Effectiveness Measurement. Measuring effectiveness of tests in terms of
code coverage and fault finding is common for CPU programs [17, ?]. Support for
GPU programs is scarce. GKLEE is the only tool that provides support for code
coverage for CUDA GPU kernels. Given a kernel, it converts it into its sequential
C program version (using Perl scripts) and applies the Gcov utility supplied
with GCC for measuring code coverage. This form of coverage measurement
disregards the GPU programming model. In our approach, we measure coverage
conforming to the OpenCL programming model. With respect to fault seeder
and schedule amplification, we are not aware of any existing work that provides
these capabilities for GPU kernels to help measure effectiveness of test suites.
The CLTestCheck framework is discussed in the next Section 4.

4 Our Approach
In this Section, we present the CLTestCheck framework that provides capa-
bilities for kernel code coverage measurement, mutant generation and schedule
amplification. To understand the kinds of programming bugs1 encountered by
OpenCL developers, we surveyed several publicly available OpenCL kernels and
associated bug fix commits. A summary of our findings is shown in Table 1.
We found bugs most commonly occur in the following OpenCL code constructs:
barriers, loops, branches, global memory accesses and arithmetic computations.
We seek to aid the developer in assessing quality of test suites in revealing these
bug types using CLTestCheck. A detailed discussion of CLTestCheck capabilities
is presented in the following sections.

# Code Structure Bug Type Repository

1
Barrier

Missing barriers
Winograd-OpenCL[6],
histogram [13],
reduction [13],OP2 [10]

2 Removing unnecessary barriers Winograd-OpenCL[6]
3

Loop
Incorrect condition mcxcl[4], particles[1]

4 Incorrect boundary value clSPARSE[2]
5 Missing loop boundary Pannotia [20]
6

Branch
Missing else branch liboi[5]

7 Incorrect condition
mcxcl[4],
ClGaussianPyramid[3]

8 Global memory access Inter work-group data race
Parboil-spmv [16],
lonestar-bfs [20],
lonestar-sssp [20]

9 Arithmetic Computations Incorrect arithmetic operators
mcxcl[4],
ClGaussianPyramid[3]

Table 1: Summary of bug fixing commits we collected

4.1 Kernel Code Coverage

We define coverage over barriers, loops and branches in OpenCL code to check
rigour of test suites in exercising these code structures.

1 These are kernel bugs that violate the specification of the program or are associated
with executions that lead to undefined behaviour.
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Branch Coverage GPU programs are highly parallelised, executed by numer-
ous processing elements, each of them executing groups of threads in lock step,
which is very different from parallelism in CPU programs, where each thread
executes different instructions with no implicit synchronisation, as seen in lock-
step execution. Kernel code for all the threads is the same, however, the threads
may diverge, following different branches based on the input data they process.
As seen in Table 1, uncovered branches and branch conditions are an impor-
tant class of OpenCL bugs. Lidbury et al. [16] report in their work that branch
coverage measurement is crucial for GPU programs but is currently lacking. To
address this need, we define branch coverage for GPU programs as follows,

branch coverage =
#covered branches

total #branches
× 100% (1)

Branch coverage measures adequacy of a test suite by checking if each branch
of each control structure in GPU code has been executed by at least one thread.

Loop Boundary Coverage In our survey of kernel bugs shown in Table 1, we
found bugs related to loop boundary values and loop conditions were fairly
common. For instance, bug #3 found in the mcxcl program allowed the loop
index to access memory locations beyond the end of the array due to an erroneous
loop condition. We assess adequacy of test executions with respect to loops by
considering the following cases,
1. Loop body is not executed,
2. Loop body is executed exactly once,
3. Loop body is executed more than once
4. Loop boundary value is reached

Loop boundary coveragecase i =
#loops satisfying case i

total #loops
× 100% (2)

where casei refers to one of the four loop execution cases listed above.

Barrier Coverage Barrier divergence occurs when the number of threads within a
work-group executing a barrier is not the same as the total number of threads in
that work-group. Kernel behaviour with barrier divergence is undefined. Barrier
related bugs, missing barriers and unnecessary barriers, is a common class of
GPU bugs according to our survey. We define barrier coverage as follows.

barrier coverage =
#covered barriers

total #barriers
× 100% (3)

Barrier coverage measures adequacy of a test suite by checking if each barrier
in GPU code is executed correctly. Correct execution of a barrier without barrier
divergence, covered barrier, is when it is executed by all threads in any given
work-group.

4.2 Fault Seeding

Mutation testing is known to be an effective means of estimating the fault finding
effectiveness of test suites for CPU programs [12]. We generate mutations using
traditional mutant operators, namely, arithmetic, relational, bitwise, logical and
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assignment operator types. In Table 1, bug fixes #3, #7 and #8 show that
traditional arithmetic and relational operator mutations remain applicable to
GPU programs. In addition, we define three mutations specifically for OpenCL
kernels: barrier mutation, image access mutation and loop boundary mutation
inspired by bug fixes #1 to #5.

The barrier mutation operator we define is deletion of an existing barrier
function call, to reproduce bugs similar to #1 and #2 in Table 1. OpenCL
provides 2D and 3D image data structures to facilitate access to images. Multi-
dimensional arrays are not supported in OpenCL. Image structures are accessed
using read and write functions that take the pixel coordinates in the image
as parameter. We perform image access mutations for 2D or 3D coordinates
by increasing or decreasing one of the coordinates or exchanging coordinates.
Finally, we define loop boundary mutations as either (1) skipping the loop, (2)
allowing n-1 iterations of the loop and (3) allowing n+1 iterations of the loop
where n is the number of iterations when the loop boundary is reached. The
mutant operators we use in this paper are summarised in Table 2

Type of Operator Mutants

Arithmetic
Binary +, -, *, /, %
Unary -(negation), ++, --

Relational <, >, ==, <=, >=, !=
Logical &&, ||, !
Bitwise &, |, ˆ, ˜, <<, >>
Assignment =, +=, -=, *=, /=, %=, <<=, >>=, &=, |=, ˆ=
Barrier Delete barrier function call
Image coordinates Change coordinates when accessing images
Loop boundary Change the boundary value in loop condition check

Table 2: Summary of mutation operators

4.3 Schedule Amplification

When a kernel execution is launched the GPU schedules work-groups on com-
pute units in a certain order. Presently, there is no provision for determining
this schedule or setting it in advance. The scheduler makes the decision on the
fly subject to availability of compute units and readiness of work-groups for ex-
ecution. The order in which work-groups are executed with the same test input
can differ every time the kernel is executed. OpenCL specification has no execu-
tion model for inter work-group interactions and provides no guarantees on how
work-groups are mapped to compute units. In our approach, we execute each
test input over a set of schedules. In each schedule, we fix the work-group that
should execute first. All other work-groups wait till it has finished execution.
The work-group going first is picked so that we achieve a uniform distribution
over the entire range of work-groups in the set of schedules. The order of exe-
cution for the remaining work-groups is left to the scheduler. For a test case, T
over a kernel with G work-groups, we will generate N schedules, with N < G,
such that a different work-group is executed first in each of the N schedules.
The number of schedules, N , we generate is much lesser than the total num-
ber of schedules which is typically infeasible to check. The reason we only fix
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the first work-group in the schedule is because, most data races or deadlocks
involve interactions between two work-groups. Fixing one of them and picking a
different work-group each time, significantly reduces the search space of possible
schedules. We cannot provide guarantees with this approach. However, with lit-
tle extra cost we are able to check significantly more number of schedules than is
currently possible. We believe this approach will be effective in revealing issues,
if any, in inter work-group interactions.

To illustrate this, we consider a kernel co running on four work-groups. The
CLTestCheck schedule amplifier will insert code on the host and GPU side,
shown in Listings 1.1 and 1.2, to generate different work-group schedules.

Listing 1.1: Schedule OpenCL kernel (CPU-side)

// Generate a value in the range of [0,4)
int target_group = randint (4);
// Pass the value as a macro to GPU code
sprintf(clOptions ,"-DTARGET_GROUP =%d", target_group);

Listing 1.2: Schedule OpenCL kernel (GPU-side)

if (my_group_id == TARGET_GROUP){
// Original code here executed by target group
A[(1 - buf) * 4 + tid] = A[buf * 4 + (tid + 1) % 4];
atom_increase(num_threads_finishes);

} else {
while (num_threads_finishes != group_size) continue;
// Original code executed by other groups
A[(1 - buf) * 4 + tid] = A[buf * 4 + (tid + 1) % 4];

}

In this example, before the GPU kernel is launched, the host side generates a
random value in the range of available work-group ids. This value is the id of the
selected work-group to be executed first and is passed to the kernel code using a
macro definition. On the kernel side, each thread determines if it belongs to the
selected work-group. Threads in the selected work-group proceed with executing
the kernel code while threads belonging to other work-groups wait. After the
selected work-group completes execution, the remaining work-groups execute
the original kernel in an order based on mapping to available compute units
(occupancy bound execution model [21]). With different work-group schedules
generated by the schedule amplifier, we were able to detect the presence of inter
work-group data races using a single GPU platform. Betts et al. [9], on the other
hand, focus on intra work-group data races on different GPU platforms.

4.4 Implementation

CLTestCheck is implemented using Clang LibTooling [8]. We instrument OpenCL
kernel source code to measure coverage, generate mutations and multiple work-
group schedules automatically.
Coverage Measurement. To record branches, loops and barriers executed
within each kernel when running tests, we instrument the kernel code with data
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structures and statements recording the execution of these code structures. For
each work-group, we introduce three local arrays, whose size is determined by the
number of branches, loops and barriers accessible by threads in that work-group.
To measure branch coverage, we add statements at the beginning of each then-
and else-branch to record whether that branch is enabled. Similarly, statements
to record the number of iterations of loops are added at the beginning of each loop
body. At the end of the kernel, the information contained in the data structures
is processed to compute coverage
Fault Seeder and Mutant Execution. The CLTestCheck fault seeder gen-
erates mutants and executes them with each of the tests in the test suite to
compute mutation score, as the fraction of mutants killed. The CLTestCheck
fault seeder translates the target kernel source code into an intermediate form
where all the applicable operators are replaced by a template string containing
the original operator, its ID and type. The tool then generates mutants from this
intermediate form. Once mutants are generated, the tool executes each of the
mutant files and checks if the test suite kills the mutant. We term the mutant
as killed if one of the following occurs: program crashes, deadlocks or produces
a result different from the original kernel code.
Schedule Amplification. As mentioned earlier, we generate several schedules
for each test execution by requiring a target work-group to execute the kernel
code first and then allowing other work-groups to proceed. The target work-
group is selected uniformly across the input space of work-group ids. To achieve
coverage of this input space, we partition work-group ids into sets of 10 work-
groups. Thus if we have N work-groups, we partition them into N/10 sets. The
first set has work-group ids 0 to 9, the second set has ids 10 to 19 and so on.
We then randomly pick a target work-group, Wt, from each of these sets to go
first and generate a corresponding schedule of work-groups, {Wt, SN−1}, where
SN−1 refers to the schedule of remaining N − 1 work-groups generated by the
GPU execution model which is non-deterministic. For N/10 sets of work-groups,
we will have N/10 schedules of the form {Wt, SN−1} (a Wt first schedule). The
test input is executed using each of these N/10 Wt first schedules. Due to the
non-deterministic nature of SN−1, we repeat the test execution with a chosen
Wt first schedule 20 times. This will enable us to check if the execution model
generates different SN−1 and evaluate executions with 20 such orderings.

5 Experiment
In our experiment, we evaluate the feasibility and effectiveness of the coverage
metrics, fault seeder and work-group schedule amplifier proposed in Section 4
using OpenCL kernels from industry standard benchmark families and their as-
sociated test suites. We investigate the following questions:

Q1. Coverage Achieved: What is the branch, barrier and loop coverage achieved
by test suites over OpenCL kernels in our subject benchmarks?
To answer this question, we use our implementation to instrument and anal-
yse kernel source code to record visited branches, barrier functions, loop
iterations along with information on executing work-group and threads.

Q2. Fault Finding: What is the mutation score of test suites associated with
the subject programs?
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For each benchmark, we generate all possible mutants by analysing the kernel
source code and applying the mutation operators, discussed in Section 4,
to eligible locations. We then assess number of mutants killed by the tests
associated with each benchmark. To check if a mutant is killed, we compared
execution results between the original program and mutant.

Q3. Deadlocks and Data Races: Can the tests in the test suite give rise to
unusual behaviour in the form of deadlocks or data races? Deadlocks occur
when two or more work-groups are waiting on each other for a resource.
Inter work-group data races occur when test executions produce different
outputs for different work-group schedules. For each test execution in each
benchmark, we generate 20 ∗N/10 different work-group schedules, where N
is total number of work-groups for the kernel, and check if the outputs from
the execution change based on work-group schedule.

Subject Programs. We used the following benchmarks for our experiments, 1.
Nine scientific benchmarks with 23 OpenCL kernels from Parboil benchmark
suite [22], 2. scan benchmark [19], with 3 kernels, that computes parallel prefix
sum, 3. Five applications containing 13 kernels from Rodinia benchmark suite
for heterogeneous computing, 4. 20 benchmarks from PolyBench with 43 kernels
spanning linear algebra, data mining and stencil computations.

We ran our experiments on Intel CPU (i5-6500) and GPU (HD Graphics
530) using OpenCL SDK 2.0.

6 Results and Analysis
For each of the subject programs presented in Section 5, we ran the associated
test suites and report results in terms of coverage achieved, fault finding and
overhead incurred with CLTestCheck framework. We executed the test suites
20 times for each measurement. Our results in the context of the questions in
Section 5 is presented below.

6.1 Coverage Achieved

Branch and Loop coverage (with 0, exactly 1 and > 1 iterations) for each of the
subject programs in the three benchmark suites2 is shown in the plots in Figure 1.
The first row shows branch coverage, the second loop coverage. Mutation score
and surviving mutation types shown in the last two rows of Figure 1 is discussed
in the next Section 6.2.
Barrier Coverage is not shown in the plots since for all, except one, applica-
tions with barriers, the associated test suites achieved 100% barrier coverage.
The only subject program with less than 100% barrier coverage was scan, which
had 87.5% barrier coverage. The uncovered barrier is in a loop whose condition
does not allow some threads to enter the loop, resulting in barrier divergence be-
tween threads. We find that less than 100% barrier coverage is a useful indicator
of barrier divergence in code.
Branch Coverage. For most subject programs in Parboil and Scan/Rodinia,
test suites achieve high branch coverage (> 83%). The histo benchmark is an

2 20 applications in Parboil counting different test suites separately, 6 in Scan/Rodinia,
and 20 in PolyBench
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Fig. 1: Coverage achieved - Branch and Loop, mutation score and percentage of
surviving mutations by type for each subject program in the 3 benchmark suites.
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outlier with a low branch coverage of 31.6%. Its kernel function, histo main,
contains 20 branches in a code block handling an exception condition (overflow).
The test suite provided with histo does not raise the overflow exception, and
as a result, these branches are never executed. We found uncovered branches in
other applications, with > 80% coverage, in Parboil and Scan/Rodinia to also
result from exception handing code that is not exercised by the associated test
data.

Branch coverage achieved for 13 of the 20 applications in PolyBench is at
50%. This is very low compared with other benchmark suites. Upon investigat-
ing the kernel code, we found that all the uncovered branches reside within a
condition check for out of range array index. Tests associated with a majority of
the applications did not check out of range array index access, resulting in low
branch coverage.
Loop Coverage. Test suites for nearly all applications (with loops) execute
loops more than once. Thus, coverage for > 1 iterations is 100% for all but one
of the applications, srad in Rodinia suite, that has 80%. The uncovered loop in
srad is in an uncovered then-branch that checks exception conditions. We also
checked if the boundary value in loop conditions is reached when > 1 iterations
is covered by test executions. We found pathfinder in Rodinia to be the only
application to have full coverage for > 1 iterations but not reach the boundary
value. The unusual scenario in pathfinder is because one of the loops is exited
using a break statement.

We find that test suites for most applications are unable to achieve any loop
coverage for 0 and exactly 1 iteration. The boundary condition for most loops
is based on the size of the work-groups which is typically much greater than
1. As a result, test suites have been unable skip the loop or execute it exactly
once. The only exceptions were applications in the Parboil suite - bfs, cutcp,
mri-gridding, spmv, and two applications in Rodinia- lud, srad, that have
boundary values dependent on variables that maybe set to 0 or 1.
Overhead. For each benchmark and associated test suite, we assessed overhead
introduced by our approach. We compared time needed for executing the bench-
mark with instrumentation and additional data structures that we introduced
for coverage measurement against the original unchanged benchmark. Overhead
varied greatly across benchmarks and test suites. Overhead for Parboil and Ro-
dinia benchmarks was in the range of 2% to 118%. Overhead was lower for
benchmarks that took longer to execute as the additional execution time from
instrumentation is a smaller fraction of the overall time. Overhead for most pro-
grams in PolyBench ranges from 2% to 70%, which is similar to Parboil and
Rodinia benchmarks. The overhead for lu, fdtd-2d and jacobi-2d-imper pro-
grams are > 100%. The code for kernel computations in these benchmarks is
small with fast execution. Consequently, the relative increase in code size and
execution time after instrumentation with CLTestCheck is high.

6.2 Fault Finding

Fault finding for the subject programs is assessed using the mutants we generate
with the fault seeder, described in Section 4. The mutation score, percentage of
mutants killed, is used to estimate fault finding capability of test suites associated
with the subject programs. Each test suite associated with a benchmark is run
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20 times to determine the killed mutants. A mutant is considered killed if the
test suite generates different outputs on the mutant than the original program
in all 20 repeated runs of the test suite. In addition to killed mutants, we also
report results on “Undecided Mutants”, that refers to mutants that are killed in
at least one of the executions of the test suite, but not all 20 repeated executions.
Changes in GPU thread scheduling between runs causes this uncertainty. We do
not count the undecided mutants towards killed mutants in the mutation score.
Mutation score for all subject programs in each benchmark suite is shown in the
third row of plots in Figure 1.
Mutation Score. In general, we find that test suites for subject programs
achieving high branch, barrier and loop coverage also have high mutation score.
For instance, for spmv and stencil, their test suites achieving 100% coverage,
also achieved 100% mutation score. An instance of a program that does not
follow this trend is mri-gridding that has 100% branch, barrier, and loop (> 1
iterations) coverage but only 82% mutation score. On analysing the survived
mutants, we found a significant fraction (160 out of 232) were arithmetic operator
mutations within a function named kernel value that contained variables defining
a fourteenth-order polynomial and a cubic polynomial. Effect of mutations on
the polynomials did not propagate to the output of the benchmark with the
given test suite. The histo program with low branch coverage, 100% barrier
and loop coverage has 65.9% mutation score. Nearly two thirds of the branches
in histo cannot be reached by the input data, as a result, all the mutations in
the untouched branches is not killed, resulting in a low mutation score. A few of
the programs in PolyBench have mutation scores that are between 60 – 70%. In
these programs, most surviving mutations are arithmetic operator mutations.

As seen in the last row of Figure 1 showing surviving mutations by operator
type, arithmetic operators are the dominant surviving mutations in all three
benchmark suites. Control flow adequate tests can kill arithmetic operator mu-
tations only if they propagate to a control condition or the output. Data flow
coverage may be better suited for estimating these mutations. Around 20% of
relational operator mutations also survive in our evaluation. Most of the surviv-
ing relational operator mutations made slight changes to operators, such as < to
<=, or > to >= and vice versa. The test suites provided with the benchmarks
missed such boundary mutations.
Undecided mutants occur during executions of 9, out of the 46 subject pro-
grams and test suites across all three benchmark suites. Number of undecided
mutants during the 9 executions is generally small (<= 5). The only excep-
tion is tpacf in the Parboil benchmark suite, that resulted in 18 undecided
mutants when executing one of its test suite. Undecided mutants point to non-
deterministic behaviour in the kernel, that is dependent on GPU thread execu-
tion model. A large number of undecided mutants is alarming and developers
should examine kernel code more closely to ensure that the behaviour observed
is as intended.
Barriers were not used in all benchmarks. Only 5 out of the 9 benchmarks in
Parboil, and 4 of the 6 in Scan/Rodinia had barriers. PolyBench programs did
not use any barriers. Mutations removed barrier function calls in these bench-
marks and we ecorded the number of mutants killed by test suites. Percentage
of killed barrier mutations is generally low across all benchmarks with barriers.
For instance, removing 2 out of 3 barriers in the histo program in Parboil,
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and removing all barriers in the cutcp program had no effect on outputs of the
respective program executions. This may either mean that the test suites are in-
adequate with respect to the barrier mutations or it could be an indication that
these barriers are superfluous with respect to program outputs, and the need for
synchronisation should be further justified. For the programs in our experiment,
we found barriers, whose mutations survived, to be unecessary.
Coverage versus Mutation Score. The plots in Figure 1 illustrate total mu-
tation score over all types of mutations for each subject program and test suite.
We also compute mutation scores specifically for branches, barriers, and loops
using mutations relevant to them. We do this to compare against branch, bar-
rier and loop coverage achieved for each of the subject programs. We found
that mutation score for branches closely follows branch coverage for most sub-
ject programs. Outliers include adi, nn, convolution-2d and convolution-3d.
Mutations that change < to <= are not killed in these kernels; these comprise
one third of all branch mutations.

Mutation score for barriers is quite different from barrier coverage. This is
because test suites are able to execute the barriers and achieve coverage. How-
ever, they are unable to produce different outputs when the barriers are removed.
This may be a problem with the superfluous manner in which barriers are used
in these programs.

Loop coverage with > 1 iterations is 100% for all but one subject program
(srad in Rodinia). Mutation score for loops on the other hand is variable. In
general, tests achieving loop coverage are unable to reveal loop boundary mu-
tations. Histo and srad are worth noting with high loop coverage but low loop
mutation scores. We find that mutations to the loop boundary value in these
two benchmarks survive, which implies that access to loop indices outside the
boundary go unchecked in these programs. These unsafe values of loop indices
should be disallowed in these kernels and loop boundary mutations in our fault
seeder help reveal them.

6.3 Schedule Amplification: Deadlocks and Data Races

Kernel Deadlocks: When we used the CLTestCheck schedule amplifier on our
benchmarks, we found kernel executions deadlock when the work-group ID se-
lected to go first exceeds the number of available compute units. As there are no
guarantees on how work-groups are mapped to compute units, we allow work-
group IDs exceeding number of compute units to go first in some test executions
using our schedule amplifier. However, it appears that the GPU makes unstated
assumptions on what work-group IDs are allowed to go first. As noted by Soren-
son et al. [21], “execution of large number of work-groups is in any occupancy
bound fashion, by delaying the scheduling of some work-groups until others have
executed to completion.” They observed deadlocks in kernel execution due to
inter work-group barriers. However, in the benchmarks in our evaluation, there
is no explicit inter work-group barrier. It may be the case that developers made
implicit assumptions on inter work-group barriers using the occupancy bound
model and our schedule amplification approach violates this assumption. Nev-
ertheless, our finding exposes the need for an inter work-group execution model
that explicitly states the details and assumptions related to mapping of work-
groups to compute units for a given kernel on a given GPU platform.
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Inter Work-group Data Races: We were able to reveal a data race in the
spmv application from the Parboil benchmark suite. We found that when work-
groups 0 or 1 are chosen to go first in our schedules, the kernels execution always
produces the same result. However, when we pick other work-group ids to go first,
the test output is not consistent. Among twenty executions for each schedule,
the frequency of producing correct output varies from 45% to 70%.

We observe similar behaviour in the tpacf application in Parboil when we
delete the last barrier function call in the kernel. The kernel execution produces
consistent outputs when we pick work-group 0 or 1 to go first. When we pick
other work-groups to go first using our schedule amplifier, the kernel execution
results are non-deterministic.

We observe no unusual behaviour in any of the PolyBench programs. These
programs split the computation into multiple kernels and the CPU program
launches GPU kernels one by one. The transfer of control from the GPU to the
CPU between kernels acts like a barrier as the CPU will wait until a kernel
finishes before launching the next kernel. In addition, care has been taken in
the kernel code to ensure threads do not access the same memory location. As
a result, we observe no data races in PolyBench with our schedule amplifier.

7 Conclusion

We have presented the CLTestCheck framework for measuring test effectiveness
over OpenCL kernels with capabilities to measure code coverage, fault seeding
and mutation score measurement, and finally amplify the execution of a test
input with multiple work-group schedules to check inter work-group interactions.
Our empirical evaluation of CLTestCheck capabilities with 82 publicly available
kernels revealed the following,
1. The schedule amplifier was able to detect deadlocks and inter work-group

data races in Parboil benchmarks when higher work-group ids were forced to
execute first. This finding emphasizes the need for transparency and clearly
stated assumptions on how work-groups are mapped to compute units.

2. Barrier coverage served as a useful measure in identifying barrier divergence
in benchmarks (scan).

3. Branch coverage pointed to inadequacies in existing test suites and found
test inputs for exercising error handling code were missing.

4. Across all benchmark suites, we found arithmetic operator and relational
operator mutations that changed < to <=, > to >= or vice versa were hard
to kill. More rigorous test suites to handle these mutations are needed.

5. The use of barrier mutations revealed several instances of unnecessary barrier
use. Barrier usage and its implications is not well understood by developers.
Barrier mutations can help reveal incorrect barrier uses.

6. Loop boundary mutations helped reveal unsafe accesses to loop indices out-
side the loop boundary.

In sum, the CLTestCheck framework is an automated, effective and useful tool
that will help developers assess how well OpenCL kernels have been tested,
kernel regions that require further testing, uncover bugs with respect to work-
group schedules. In the future, we plan to add further metrics, like data flow
coverage with work-group schedule, to strengthen test adequacy measurement.
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