
Model Validation using Automatically Generated Requirements-Based Tests ∗

Ajitha Rajan
Dept. of Comp. Sci. and Eng.

University of Minnesota
arajan@cs.umn.edu

Michael W. Whalen
Advanced Technology Center

Rockwell Collins Inc.
mwwhalen@rockwellcollins.com

Mats P.E. Heimdahl
Dept. of Comp. Sci. and Eng.

University of Minnesota
heimdahl@cs.umn.edu

Abstract

In current model-based development practice, validation
that we are building a correct model is achieved by manu-
ally deriving requirements-based test cases for model test-
ing. Model validation performed this way is time consum-
ing and expensive, particularly in the safety critical systems
domain where high confidence in the model correctness is
required.

In an effort to reduce the validation effort, we propose an
approach that automates the generation of requirements-
based tests for model validation purposes. Our approach
uses requirements formalized as LTL properties as a ba-
sis for test generation. Test cases are generated to pro-
vide rigorous coverage over these formal properties. We
use an abstract model in this paper–called the Require-
ments Model—generated from requirements and environ-
mental constraints for automated test case generation. We
illustrate and evaluate our approach using three realistic or
production examples from the avionics domain. The pro-
posed approach was effective on two of the three examples
used, owing to their extensive and well defined set of re-
quirements.

1 Introduction

In model-based development, the development effort is
centered around a formal model of the proposed software
system. It is thus critical to validate the model to ensure it
satisfies the high-level requirements. Traditionally, model
validation has been largely a manual endeavor wherein de-
velopers manually create requirements-based tests and in-
spect the model to ensure it satisfies the requirements. Fig-
ure 1 illustrates the traditional model validation approach.
In the critical systems domain, the validation and verifica-
tion (V&V) phase can be very costly and consumes a major-

∗This work has been partially supported by NASA Ames Research
Center Cooperative Agreement NNA06CB21A, NASA IV&V Facility
Contract NNG-05CB16C, and the L-3 Titan Group.

Informal
Requirements

Model/ Design
Specification

Domain expert

Requirements-Based
Tests

Validate

Create

Figure 1. Traditional Model Validation Ap-
proach

ity of the development resources. In this paper, we attempt
to reduce the model validation effort by proposing an ap-
proach that automates the generation of requirements-based
tests. In the rest of this paper, we refer to the model being
validated as the Model Under Test (MUT).

Our approach uses a formalized set of requirements,
as illustrated in Figure 2, as the basis for automated
requirements-based test case generation. Generally, re-
quirements are defined informally as, for example, “shall”
statements or use-cases. Recent efforts (e.g., [11]) have
shown that formalizing software requirements using no-
tations such as temporal logics [4] and synchronous ob-
servers [6] is both possible and practical.

Given formal requirements and a system model to test
(MUT), we showed in [17] that it is possible to automati-
cally generate requirements-based tests to provide coverage
over the requirements (as opposed to over the model). We
defined a collection of coverage metrics over the structure
of formal requirements for this purpose. Nevertheless, our
previous approach cannot be used in MUT validation since
it uses the MUT itself when generating requirements-based
tests. In general, when testing to check whether an artifact

Requirements-Based
Tests

Formalized
Requirements

Automatically
generate

Model/ Design
Specification

Validate

Informal
Requirements

Figure 2. Proposed Model Validation Ap-
proach

satisfies a set of requirements, it is highly undesirable to
derive the tests with guidance from the artifact under test.

To overcome this problem, we propose to alter our pre-
vious approach so that it uses an abstract model—we call
it the Requirements Model—different from the MUT for
requirements-based test case generation. This requirements
model must contain only the behaviors required from the
MUT, and not be constrained to the behaviors actually pro-
vided by the MUT. Given formalized requirements, con-
straints on the environment of the system, and informa-
tion about the types of the inputs and outputs of the MUT,
we can create an abstract model—independent from the
MUT—that captures only the required behavior. In our
work we create the requirements model by encoding the
requirements and environmental assumptions as invariants.
By using this requirements model as a basis for test case
generation we can generate truly black-box requirements-
based tests for MUT validation.

We assess the effectiveness of the proposed approach
for model validation on three realistic models from the
avionics domain: the Mode Logic for a Flight Guid-
ance System (FGS), and two models related to the dis-
play window manager for a new airliner (DWM 1, and
DWM 2). For each of these models we automatically
generate requirements-based tests using the requirements
model to provide Unique First Cause (UFC) coverage over
the formal requirements [17]. UFC is a requirements cover-
age metric based on the Modified Condition Decision Cov-
erage (MC/DC) criterion widely used in critical avionics
systems [3]. We then run the generated test suite on the
MUT and measure the model coverage achieved. In partic-
ular, we measure MC/DC achieved over the MUT.

From our experiment we found that the requirements-
based tests did extremely well on the DWM 1 and DWM 2
systems (both production models) achieving more than 95%
and 92% MC/DC coverage over the models. On the other

hand, the requirements based tests for the FGS (a large case
example developed for research) performed poorly provid-
ing only 41% coverage of the FGS model. We hypothesize
that the poor results on the FGS were due to the inadequacy
in the FGS requirements set; the requirements sets for the
DWM 1 and DWM 2 systems, on the other hand, were de-
veloped for production and were extensive, well validated,
and well defined. These experiences indicate that our ap-
proach can be effective in the validation testing of models
in model-based development. In addition, the capability
of measuring coverage of the requirements as well as the
model enables us to assess the adequacy of a set of require-
ments; if we cover the requirements but not the model—as
in the case of the FGS mentioned above—it is an indication
that the we have an incomplete set of requirements.

The remainder of the paper is organized as follows: Sec-
tion 2 describes our proposed approach in further detail. In
Section 3, we describe the experiment conducted to eval-
uate our approach. Results obtained and their analysis is
presented in Section 4. Section 5 discusses the implications
of our experimental results, and Section 6 concludes.

2 Approach

In model-based development it is crucial to ensure that
the model is correct with respect to the user requirements;
we want to perform model testing. Needless to say, using
the model itself as a basis for this testing is not suitable.
Instead, we would like to somehow use the high-level re-
quirements on the system to derive tests for the purpose of
model testing. The main idea in our approach is to automat-
ically generate tests for model validation directly from for-
malized requirements (currently formalized as Linear Tem-
poral Logic–LTL properties).

Previously we developed an approach and tool support to
generate test-cases to provide coverage of the requirements
(as opposed to the model) [17]. This approach, however,
uses the MUT as a basis for the test case generation. In
short, our tool uses the model to find execution traces that
demonstrate that the requirements are met (up to some pre-
defined coverage of the requirements, for example, Unique
First Cause coverage). Although this approach will help us
find test cases, the tests are derived from the model itself
and we are explicitly searching for execution traces of the
model that satisfy the requirements; if there is at least one
execution trace that would satisfy the requirement we will
find that as a test case. Therefore, our earlier approach is
useful to illustrate how a model can satisfy its requirements,
but it is not suitable to investigate whether or not the model
satisfies its requirements. To address the latter issue it is
desirable to somehow generate test cases directly from the
requirements without referring to the behavior of the MUT.

To achieve this goal, we alter our previous approach so

“If the onside FD cues are off, the onside FD cues
shall be displayed when the AP is engaged.” (a)

G((¬Onside FD On ∧ ¬Is AP Engaged) →
X(Is AP Engaged → Onside FD On)) (b)

Table 1. (a) Sample high-level requirement on
the FGS (b) LTL property for the requirement

that it uses an abstract model derived only from the require-
ments without any information about the behavior of the
MUT—we call this abstract model the Requirements Model.
In the next section we provide additional relevant back-
ground. We discuss the methods and tool support to help
create the requirements model in Section 2.2.

2.1 Requirements-Based Testing

There is a close relationship between high-level require-
ments and the properties (or formalized requirements) cap-
tured for verification purposes. As an example, consider the
requirement from a sample Flight Guidance System (FGS)
shown in Table 1 defining how the Flight Director (FD) is
turned on by the Autopilot (AP). The property states that
it is globally true (G) that if the Onside FD is not on and
the AP is not engaged, in the next instance in time (X) if
the AP is engaged, then the Onside FD will also be on. As
can be seen, the Linear Temporal Logic (LTL) property is
very similar in structure to the natural language requirement
and the manual translation of a large set of informal require-
ments was straightforward [11].

The requirements coverage metric used in this paper is
the Unique First Cause (UFC) coverage defined in [17].
The UFC metric is adapted from the Modified Condi-
tion/Decision Coverage (MC/DC) criterion [2, 7] defined
over source code. MC/DC is a structural coverage metric
that is designed to demonstrate the independent effect of ba-
sic Boolean conditions (i.e., subexpressions with no logical
operators) on the Boolean decision (expression) in which
they occur. Since requirements captured as LTL proper-
ties define paths rather than states, we broaden our view of
structural coverage to accommodate satisfying paths rather
than satisfying states. We defined these satisfying test paths
by extending the constraints for state-based MC/DC to in-
clude temporal operators. A test suite is said to satisfy UFC
coverage over a set of LTL formulae if executing the test
cases in the test suite will guarantee that:

• every basic condition in a formula has taken on all pos-
sible outcomes at least once

• each basic condition has been shown to independently
affect the formula’s outcome.

We defined independence in terms of the shortest satis-
fying path for the formula. Thus, if we have a formula A
and a path π, an atom α in A is the unique first cause if, in
the first state along π in which A is satisfied, it is satisfied
because of atom α. The formal definition for UFC and the
obligations for LTL temporal operators is presented in [17].

Several research efforts have developed techniques for
automatic generation of tests from formal models using
model checkers as test case generation tools [13, 14, 5].
Model checkers build a finite state transition system and ex-
haustively explore the reachable state space searching for
violations of the properties under investigation [4]. Should
a property violation be detected, the model checker will pro-
duce a counter-example illustrating how this violation can
take place. In short, a counter-example is a sequence of in-
puts that will take the finite state model from its initial state
to a state where the violation occurs.

Requirements Model

Formal Requirements
(Eg. LTL properties)

Trap Properties
(for Cov. Oblig.)

Model Checker

Reqs. Cov.
Criteria

(eg. UFC)

Counter-examples
(Requirements-based test

cases)

Inputs, Ouputs,
Environmental

constraints

Figure 3. Automated Requirements-Based
Test Case Generation

One way to use a model checker to find test cases is by
formulating a test criterion as a verification condition for
the model checker. Earlier we briefly described UFC over
paths. Using this definition we can derive UFC obligations
that show that a particular atomic condition affects the out-
come of the property. Given these obligations and a formal
model of the software system, we can now challenge the
model checker to find an execution path that would satisfy
one of these obligations by asserting that there is no such
path (i.e., negating the obligation). We call such a formula
a trap formula or trap property [5]. The model checker will

now search for a counterexample demonstrating that this
trap property is, in fact, satisfiable; such a counterexam-
ple constitutes a test case that will show the UFC obligation
of interest over the model. By repeating this process for all
UFC obligations within the set derived from a property, we
can derive UFC coverage of the property over the model.
By performing this process on all requirements properties,
we can derive a test suite that provides UFC coverage of the
set of requirements. This process is illustrated in Figure 3.

When the model checker does not return a counterexam-
ple (or test case) for a trap property (in our case for an UFC
obligation) it means that a test case for that particular test
obligation does not exist. In the case of UFC obligations
it implies that the atomic condition that the obligation was
designed to test does not uniquely affect the outcome of the
property. In each of these cases the original requirements
property is vacuous [1], that is, the atomic condition is not
required to prove the original property.

For reasons mentioned earlier in the section, we need to
create a Requirements Model different from the MUT for
requirements-based test case generation.

2.2 Requirements Model for Test Case
Generation

The requirements model is created using the following
information:
• requirements specified as invariants

• inputs, and the outputs of the MUT

• input constraints or environmental assumptions (if
any)

The formalized requirements and environmental as-
sumptions are specified as invariants in the requirements
model. These invariants restrict the state space of the re-
quirements model so that we only allow behaviors defined
by the requirements. We built the requirements model in
this fashion since tests derived for model validation should
be based solely on the high-level requirements and the envi-
ronmental assumptions, and should not be influenced by the
structure and behavior of the MUT. In addition, the names
of the inputs and outputs of the MUT are needed to con-
struct concrete test cases that can be executed on the MUT.

We hypothesize that with a well defined set of re-
quirements and environmental constraints, requirements-
based tests generated from the requirements model to pro-
vide UFC coverage of the requirements will provide high
MC/DC coverage of the model under test and, thus, be
highly beneficial in the validation testing process. We em-
pirically evaluate this hypothesis in Section 4 using three
realistic examples from the avionics domain.

We developed a tool that allows the requirements model
to be built in an automated fashion. The tool takes as inputs
a formal set of requirements, environmental constraints, and

the MUT. Requirements need to be formalized in the LTL
notation and the environmental constraints specified as in-
variants. The tool starts with the MUT and strips out every-
thing but the declaration for inputs and outputs of the MUT.
To this stripped model (only containing the declarations for
the inputs and outputs of the MUT), the tool automatically
adds the formal LTL requirements and environmental con-
straints as invariants. The resulting model is the require-
ments model. Figure 4 illustrates the approach used in the
tool to create the Requirements Model.

The tool currently supports only requirements expressed
as safety properties; requirements expressed as liveness
properties are not yet supported. In our work we have
not found this to be a limitation since all requirements ex-
pressed over our case-examples can be expressed as safety
properties. Converting safety properties into invariants in
the requirements model is not a trivial task. The tool sup-
ports the SMV notation for the models [12]. Note that in
the SMV notation, the declaration that allows us to specify
a set of invariant states (“INVAR”) only allows boolean ex-
pressions in its syntax. Thus for requirements defined using
temporal operators, SMV will not allow them to be used
directly in the “INVAR” declaration. For requirements con-
taining the next state temporal operator, this issue can be re-
solved easily by defining additional variables in the require-
ments model. To see this, consider the following example
of a naı̈ve informal requirement:

"If Switch is pressed, then in the next
step the Light will turn on."

formalized in LTL as:

LTLSPEC G(Switch -> X Light)

The formalized requirement has the temporal next state op-
erator X in the expression within the global operator G. To
express the above requirement as an invariant in the require-
ments model, we will declare a new variable, req 1 to help
us in the invariant definition.

ASSIGN
init(req_1) := TRUE;
next(req_1) := Switch -> next(Light);

INVAR req_1

As seen in the SMV assignment above, we specify the re-
quirement as an invariant using this new variable. If the re-
quirement does not contain any temporal operators, we do
not need this additional variable. We can simply put the
requirements expression in the invariant declaration (IN-
VAR). This method of specifying invariants will not work
for requirements defined using “Future” and “Until” LTL
operators. Our tool does not currently support such require-
ments. We are investigating this issue and plan to resolve

System Model
(or MUT)

Extract
input/output
declarations

Model with only
declarations

Environmental
Constraints as

Invariants

LTL Safety
Requirements

Requirements
as Invariants

Convert to

Additional variables
for requirements

(if necessary)

Merge

Requirements
Model

Figure 4. Approach used in Tool that Automatically Creates the Requirements Model

it in our future work. (As mentioned above, this restriction
has not been a problem in practice since all requirements we
have encountered in our case examples could be formalized
as safety properties.)

3 Experiment

In this initial experiment we were interested in deter-
mining (1) the feasibility of generating requirements-based
tests from a requirements model, and (2) the effectiveness
of these test sets in validating the system model or MUT.
We evaluated the effectiveness of the generated test cases
using three realistic examples from the avionics domain -
the FGS, and two models related to the Display Window
Manager system (DWM 1, and DWM 2).

Flight Guidance System(FGS): A Flight Guidance Sys-
tem is a component of the overall Flight Control System
(FCS) in a commercial aircraft. It compares the measured
state of an aircraft (position, speed, and altitude) to the de-
sired state and generates pitch and roll-guidance commands
to minimize the difference between the measured and de-
sired state. The FGS consists of the mode logic, which de-
termines which lateral and vertical modes of operation are
active and armed at any given time, and the flight control

laws that accept information about the aircraft’s current and
desired state and compute the pitch and roll guidance com-
mands. In this paper we focus on the mode logic of the
FGS. The requirements and implementation model used in
this paper are described in [10] and are similar to production
systems created by Rockwell Collins Inc.

This system consists of 293 informal requirements for-
malized as LTL properties as well as a formal model cap-
tured in our research notation RSML-e [18].

Display Window Manager Models (DWM 1 and
DWM 2): The Display Window Manager models,
DWM 1 and DWM 2, represent two of the five major
subsystems of the ADGS-2100 Display Window Manager
(DWM), an air transport-level commercial displays system.
The DWM acts as a “switchboard” for the system and has
several responsibilities related to routing information to the
displays and managing the location of two cursors that can
be used to control applications by the pilot and copilot. The
DWM must update which applications are being displayed
in response to user selections of display applications, and
must handle reversion in case of hardware or application
failures, deciding which information is most critical and
moving this information to the remaining display(s). It also
must manage the cursor, ensuring that the cursor does not

appear on a display that contains an application that does
not support the cursor. In the event of reversion, the DWM
must ensure that the cursor is not tasked to a dead display.

The DWM 1 system consists of 43 informal require-
ments formalized as LTL properties. The formal model of
the system was built in the Simulink notation from Math-
works, Inc [9]. The DWM 2 system consists of 85 infor-
mal requirements formalized as LTL properties. The formal
model of the system was built in the Simulink notation.

3.1 Setup

The experiment constituted the following steps:

Create the Requirements Model: The requirements
model as mentioned before was built using the formalized
set of requirements, names of inputs and outputs of the
MUT, and environmental assumptions for the system. We
described the tool to build the requirements model in an au-
tomated fashion in Section 2.2. The modeling notation that
we use in our tool is the SMV language.

Generate Requirements Obligations: We started with
the set of requirements formalized as LTL properties. We
generated obligations (as LTL specifications) to provide re-
quirements UFC coverage over the syntax (or structure) of
the LTL properties. The rules and tool to auto-generate UFC
obligations is from our previous work [17].

Generate Requirements-Based Test Cases: We used the
bounded model checker in NuSMV for automated test case
generation. We generated test cases from the requirements
model to provide UFC coverage over the properties. We
discussed this approach in Section 2.1 previously. We ran
the generated test suite on the MUT to measure the resulting
model coverage achieved.

Measure Model Coverage Achieved: In this experiment
we assessed the effectiveness of the test sets in terms of
coverage achieved over the MUT since this is a major con-
cern in our application domain. (In the future, we plan on
evaluating the quality of these test sets in terms of their
fault finding capability on the MUT.) To measure cover-
age achieved by the requirements-based test suites over the
RSML-e model of the FGS, we leveraged tools built in a
previous project [8] that allowed us to measure different
kinds of coverage of the FGS model expressed in RSML-e.
To measure coverage over the DWM 1 and DWM 2 mod-
els in Simulink, we used the capabilities in our translation
infrastructure [16]. The infrastructure allows us to trans-
late the Simulink model into a synchronous language, Lus-
tre [6]. We then measure coverage over the translated Lustre

model. Using these measurement tools, we ran the test suite
providing requirements UFC coverage and recorded cov-
erage achieved over the MUT. In particular, we measured
MC/DC achieved over the MUT. We chose to measure this
coverage since current practices and standards [15] in the
avionics domain require test suites to achieve MC/DC over
the software.

4 Results and Analysis

Table 2 shows the coverage achieved by the
requirements-based tests over the MUT for the three
systems. The requirements based tests did poorly on the
FGS covering a mere 41% of the model. On the other hand,
the tests did well on the DWM 1 and DWM 2 systems
covering more than 95% and 92% of the MUT respectively.
Our findings and analysis for the systems are summarized
in the remainder of this section.

4.1 FGS

As seen from Table 2, we generated 887 requirements
UFC obligations for the FGS requirements, of which 835
resulted in test cases. The time expended in test generation
was 47 mins using the NuSMV bounded model checker. For
the remaining 52 obligations that did not result in test cases,
the UFC trap property is valid, which means that the con-
dition that it is designed to test does not uniquely affect the
outcome of the property and, thus, no test case demonstrat-
ing this independent effect exists. The inability to find a test
case may be an indication of a poorly written requirement
or an inconsistent set of requirements. In this paper, we did
not attempt to correct these properties, we decided to use the
property set “as-is” as a representative set of requirements
that might be provided before a model is constructed.

Table 2 shows that the test suite generated to provide
UFC over the FGS requirements provides only 41%
MC/DC coverage over the MUT. To explain the poor
coverage, we took a closer look at the requirements set
for the FGS and found that the poor performance of the
generated test suite was due in part to the structure of the
requirements defined for the FGS. Consider the requirement

“When the FGS is in independent mode, it shall be
active”

This was formalized as a property as follows:

G(m Independent Mode Condition.result →
X(Is This Side Active = 1))

Note here that the condition determining if the FGS is to
be in independent mode is abstracted to a macro (Boolean
function) returning a result (the .result on the left hand side

Obligations # Tests Generated Time Expended MC/DC Achieved

FGS 887 835 47 mins 41.7%
DWM 1 129 128 < 1 min 95.3%
DWM 2 335 325 < 2 mins 92.6%

Table 2. Summary of Requirements-Based Tests Generated and Coverage Achieved

of the implication). Many requirements for the FGS were
of that general structure.

G(Macro name.result → X b)

The definition of the macro resides in the MUT and is miss-
ing from the property set. Therefore, when we perform
UFC over this property structure, we do not perform UFC
over the—potentially very complex—condition making up
the definition of the macro.

The macro Independent Mode Condition is defined
in RSML-e as:

MACRO Independent_Mode_Condition():
TABLE

Is_LAPPR_Active : T *;
Is_VAPPR_Active : T *;
Is_Offside_LAPPR_Active : T *;
Is_Offside_VAPPR_Active : T *;
Is_VGA_Active : * T;
Is_Offside_VGA_Active : * T;

END TABLE
END MACRO

(The table in the macro definition is interpreted as a Boolean
expression in disjunctive normal form; each column in
the table represents one disjunction; a * indicates that in
this disjunction the condition on that row is a don’t care.)
Since the structure of Independent Mode Condition is
not captured in the required property, the test cases gener-
ated to cover the property will not be required to exercise the
conditions making up the definition of the macro. We will
thus most likely only cover one of the UFC cases needed to
adequately cover the macro.

Note that this problem is not related to the method we
have presented in this paper; rather, the problem lies with
the original formalization of the FGS requirements as LTL
properties. Properties should not be stated using internal
variables, functions, or macros of the MUT; doing so leads
to a level of circular reasoning (using concepts defined in
the model to state properties of the model). If a property
must be stated using an internal variable (or macro) then ad-
ditional requirements (properties) are needed to define the
behavior of the internal variable in terms of inputs to the
system. For the FGS, a collection of additional require-
ments defining the proper values of all macro definitions
should be captured. These additional requirements would

necessitate the generation of more test cases to achieve re-
quirements UFC coverage and we would presumably get
significantly better coverage of the MUT.

Thus, for the FGS, our approach helped identify inad-
equacies in the requirements set by measuring coverage
achieved on the MUT with the generated requirements-
based tests. Rockwell Collins Inc. was aware of the prob-
lems related to defining requirements using internal vari-
ables from the model, learned from the FGS research
model, and rectified this problem in later modeling efforts.
The DWM models presented in the next section are two
such models with well defined requirements.

4.2 DWM 1 and DWM 2

In contrast to the FGS, in the DWM models all the re-
quirements were defined completely in terms of inputs and
outputs of the system. Internal variables—if any—used
when describing requirements were defined with additional
requirements. The problems seen with the requirements of
the FGS were not present in the DWM examples. As seen
in Table 2, our test case generation approach was feasible
on both the DWM 1 and DWM 2 systems. For the DWM 1
system, we generated 128 requirements-based tests from 43
formalized requirements in less than one minute. The gen-
erated requirements-based tests covered more than 95% of
the MUT. On the DWM 2 system, we generated 325 test
cases from 85 requirements in less than two minutes. The
generated tests covered more than 92% of the MUT. Note
that 10 of the 335 UFC obligations on the DWM 2 system
did not generate test cases. This implies that the atomic
conditions that these obligations were designed to test were
vacuous in the requirement. It is evident from these results
that in both the systems, the requirements-based tests cover
most of the behavior in the MUT and therefore have the po-
tential to be effective in model validation.

In our experiments we observed that for some of the
generated requirements-based tests the outputs predicted by
the requirements model differed from the outputs generated
when the tests were executed on the MUT. This occurs be-
cause the MUT may define constraints not in the require-
ments model, constraints that cause the test cases to lead to
different outputs. To illustrate, consider the naı̈ve example
of a requirement and one of its UFC obligation in Table 3.
Let us suppose a is an input and b an output of the exam-
ple system. The UFC obligation states that (a → Xb) is

“If a is true then in the next step b will be true”
(1)

G(a → Xb)
(2)

(a → Xb) U ((a & Xb) & G(a → Xb))
(3)

Table 3. (1) Example high-level requirement
(2) LTL property for the requirement (3) UFC
obligation for atomic condition b

true until you reach a state where a is true and in the next
state b is true, and the requirement continues to hold there-
after. This obligation would ensure that b is necessary for
the satisfaction of the requirement.

For illustration purposes, let us suppose the MUT is
built in such a way that it imposes an additional con-
straint: "Output b is always true"; this model
would still satisfy the requirement. Table 4 shows a
requirements-based test case predicting a certain behavior
through the requirements model but when executed through
the MUT we get a different (but still correct) behavior. The
test case results in different values for output b between the
requirements model and the MUT because of the the addi-
tional constraint imposed by the MUT.

Requirements Model

Step 1 2 3 4
a 0 0 1 0
b 0 0 0 1

MUT

Step 1 2 3 4
a 0 0 1 0
b 1 1 1 1

Table 4. Sample Test Execution through Re-
quirements Model and MUT

Observing such differences may help developers in vali-
dating the additional constraint imposed by the MUT. Note
again that differences in test results predicted by the require-
ments model and the actual results from the MUT do not
imply that the MUT is incorrect. The MUT may be correct
but simply more restrictive. Our approach does not address
this oracle problem at this time and we currently rely on the
developers to make a decision of whether or not the results
are acceptable. (A more extensive discussion on this issue
is provided in Section 5). In our experience, additional con-
straints in the MUT are usually correct and needed, and they
are missing from the requirements set. Thus in addition to

model validation this exercise may help developers in iden-
tifying these missing requirements.

The requirements-based tests generated using our ap-
proach provides very high coverage over the MUT for the
DWM 1 and DWM 2 systems owing to their well defined
set of requirements. Nevertheless we did not get 100% cov-
erage over these systems. There may be several factors con-
tributing to this result: (1) there may be missing require-
ments, (2) the model is violating some of the requirements,
and (3) there may be a mismatch between our definition of
UFC coverage in the requirements domain and the MC/DC
coverage as measured in the model domain. Presently, we
have been unable to determine which of these was the con-
tributing factor on the two systems, but we plan to investi-
gate it in the future.

5 Discussion

In our experiment, we found that our proposed approach
for automatically generating model validation tests is fea-
sible but the effectiveness of the generated tests is (not un-
expectedly) subject to the quality of the requirements. For
an incomplete set of requirements—such as the one pro-
vided for the FGS—the requirements-based tests provide
low coverage over the MUT. Note that this is a problem
with the requirements and not the proposed approach. Nev-
ertheless, for a mature and extensive set of requirements—
such as those provided for the DWM models—the gener-
ated requirements-based tests provide high coverage over
the MUT. Additionally, our approach has the potential to
help identify missing requirements, like in the case of the
FGS. When requirements-based tests providing coverage
over the requirements provide poor coverage over the model
it is an indication that we have an incomplete set of require-
ments.

When validating and analyzing models using the gener-
ated requirements-based tests, we encourage developers to
carefully consider the following two issues.

First, does every requirements coverage obligation result
in a test case from the requirements model? If it does not it
is an indication that the requirement (property) from which
the obligation is derived is poorly written. For instance, if
requirements UFC coverage is used it means that the condi-
tion that the obligation is designed to test does not uniquely
affect the outcome of the property and is thus not required to
demonstrate that the property holds. Investigating this issue
further would help in getting better quality requirements.

Second, do the predicted outputs match the actual out-
puts? Compare the predicted outputs of the requirements-
based tests from the requirements model with the outputs as
they are executed on the MUT. As seen in our experiment,
for all three systems, the predicted outputs frequently differ
from the output actually produced by the MUT. We found

that this occurred because of the additional constraints that
were in the MUT but not in the requirements model. Inves-
tigating this discrepancy in outputs will help validate these
additional constraints.

The oracle problem, that is, deciding whether the gener-
ated requirements-based tests pass/fail on the MUT is not
handled in this paper. As discussed, this decision cannot
be made by simply comparing the outputs from the MUT
with the ones predicted by the requirements model. We are
currently investigating techniques that will automate the or-
acle problem in the future. One simple solution would be to
discard the expected outputs generated in the requirements-
based test case generation, run the tests through the MUT
and collect the execution traces, and then use the require-
ments and the requirements coverage obligations as moni-
tors over the traces to determine if a violation has occurred.
This would be a simple solution drawing on readily avail-
able techniques from the run-time verification community.

Finally, it is worth noting that the requirements cover-
age metric used plays a key role in the effectiveness of the
generated requirements-based tests. For instance, if we use
decision coverage of the requirements, it would require a
single test case that demonstrates that the requirement is
satisfied (a negative test case that demonstrates that the re-
quirement is not met would presumably not exist). Typi-
cally, a single test case per requirement is too weak of a
coverage since it is possible to derive many rather useless
test cases. If we again consider our sample requirement and
formalization from Table 1. We can, for example, satisfy the
decision coverage metric by creating a test case that leaves
the autopilot disengaged throughout the test and disregards
the behavior of the flight director. Although this test case
technically satisfies the requirements, it does not shed much
light on the correctness of the MUT. It is therefore important
to choose a rigorous requirements coverage metric, like the
UFC coverage, for requirements-based test case generation.

6 Conclusion and Future Work

In this paper, we proposed and evaluated an approach
that automates the generation of requirements-based tests
for model validation. The approach uses requirements for-
malized as LTL properties. Test cases were generated
through an abstract model, that we call the requirements
model, to provide requirements UFC coverage over the
properties. We evaluated our approach using three realis-
tic examples from Rockwell Collins Inc.: the mode logic
from a flight guidance system, and two models related to
the display window manager system. We measured MC/DC
achieved by the generated tests on the MUT. We found our
approach was feasible with regard to time taken and number
of test cases generated for all three systems. The generated
tests achieved high coverage over the MUT for the DWM

models that had a well defined set of requirements. On the
other hand, the tests generated from the FGS requirements
covered the MUT poorly since the FGS had an incomplete
set of requirements. Based on this initial evaluation we
believe our proposed approach to generating requirements-
based tests provides three benefits:

1. Saves time and effort when generating test cases from
requirements.

2. Effective method for generating model validation tests
when the requirements are well defined.

3. Helps in identifying missing requirements and over-
constrained models.

We will assess the fault finding capability of the gener-
ated requirements-based tests in our future work. We also
plan to evaluate other requirements coverage criteria for
requirements-based test case generation.

7 Acknowledgements

We would like to thank Dr. Steven Miller from Rockwell
Collins Inc. for his helpful discussions and insightful com-
ments.

References

[1] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Effi-
cient detection of vacuity in ACTL formulas. In For-
mal Methods in System Design, pages 141–162, 2001.

[2] J. J. Chilenski and S. P. Miller. Applicability of mod-
ified condition/decision coverage to software testing.
Software Engineering Journal, pages 193–200, Sep-
tember 1994.

[3] J.J. Chilenski and S.P. Miller. Applicability of mod-
ified condition/decision coverage to software testing.
Software Engineering Journal, 9:193–200, September
1994.

[4] Edmund M. Clarke, Orna Grumberg, and Doron
Peled. Model Checking. MIT Press, 1999.

[5] Angelo Gargantini and Constance Heitmeyer. Us-
ing model checking to generate tests from require-
ments specifications. Software Engineering Notes,
24(6):146–162, November 1999.

[6] N. Halbwachs, P. Caspi, P. Raymond, and D. Pi-
laud. The synchronous dataflow programming lan-
guage Lustre. Proceedings of the IEEE, 79(9):1305–
1320, September 1991.

[7] K.J. Hayhurst, D.S. Veerhusen, and L.K. Rierson. A
practical tutorial on modified condition/decision cov-
erage. Technical Report TM-2001-210876, NASA,
2001.

[8] Mats P.E. Heimdahl and George Devaraj. Test-suite
reduction for model based tests: Effects on test qual-
ity and implications for testing. In Proceedings of
the 19th IEEE International Conference on Automated
Software Engineering (ASE), Linz, Austria, Septem-
ber 2004.

[9] Mathworks Inc. Simulink product web site. Via the
world-wide-web: http://www.mathworks.com.

[10] S. Miller, A. Tribble, T. Carlson, and E. J. Daniel-
son. Flight guidance system requirements specifica-
tion. Technical Report CR-2003-212426, NASA, June
2003.

[11] S. P. Miller, M. P.E. Heimdahl, and A.C. Tribble.
Proving the shalls. In Proceedings of FM 2003: the
12th International FME Symposium, September 2003.

[12] The NuSMV Toolset, 2005. Available at
http://nusmv.irst.itc.it/.

[13] Sanjai Rayadurgam. Automatic Test-case Generation
from Formal Models of Software. PhD thesis, Univer-
sity of Minnesota, November 2003.

[14] Sanjai Rayadurgam and Mats P.E. Heimdahl. Cov-
erage based test-case generation using model check-
ers. In Proceedings of the 8th Annual IEEE Interna-
tional Conference and Workshop on the Engineering
of Computer Based Systems (ECBS 2001), pages 83–
91. IEEE Computer Society, April 2001.

[15] RTCA. DO-178B: Software Considerations In Air-
borne Systems and Equipment Certification. RTCA,
1992.

[16] Michael Whalen. Autocoding tools interim report. In
NASA Contract NCC-01-001 Project Report, February
2004.

[17] Michael Whalen, Ajitha Rajan, Mats Heimdahl, and
Steven Miller. Coverage metrics for requirements-
based testing. In Proceedings of International Sym-
posium on Software Testing and Analysis, July 2006.

[18] Michael W. Whalen. A formal semantics for
RSML−e. Master’s thesis, University of Minnesota,
May 2000.

