Requirements Coverage as an Adequacy
Measure for Conformance Testing*

Ajitha Rajan!, Michael Whalen?, Matt Staats', and Mats P.E. Heimdahl!

! University of Minnesota
2 Rockwell Collins Inc.

arajan@cs.umn.edu
mwwhalen@rockwellcollins.com
staats@cs.umn.edu
heimdahl@cs.umn.edu

Abstract. Conformance testing in model-based development refers to
the testing activity that verifies whether the code generated (manually or
automatically) from the model is behaviorally equivalent to the model.
Presently the adequacy of conformance testing is inferred by measuring
structural coverage achieved over the model. We hypothesize that ade-
quacy metrics for conformance testing should consider structural coverage
over the requirements either in place of or in addition to structural cover-
age over the model. Measuring structural coverage over the requirements
gives a notion of how well the conformance tests exercise the required
behavior of the system.

We conducted an experiment to investigate the hypothesis stating struc-
tural coverage over formal requirements is more effective than structural
coverage over the model as an adequacy measure for conformance testing.
We found that the hypothesis was rejected at 5% statistical significance
on three of the four case examples in our experiment. Nevertheless, we
found that the tests providing requirements coverage found several faults
that remained undetected by tests providing model coverage. We thus
formed a second hypothesis stating that complementing model cover-
age with requirements coverage will prove more effective as an adequacy
measure than solely using model coverage for conformance testing. In our
experiment, we found test suites providing both requirements coverage
and model coverage to be more effective at finding faults than test suites
providing model coverage alone, at 5% statistical significance. Based on
our results, we believe existing adequacy measures for conformance test-
ing that only consider model coverage can be strengthened by combining
them with rigorous requirements coverage metrics.

* This work has been partially supported by NASA Ames Research Center Cooperative
Agreement NNAO6CB21A, NASA IV&V Facility Contract NNG-05CB16C, and the
L-3 Titan Group.

1 Introduction

In critical avionics applications, the validation and verification phase (V&V) is
particularly costly and consumes a disproportionably large share of the devel-
opment resources. Thus, if the process of deriving test cases for V&V can be
automated to provide test suites that satisfy the most stringent standards (such
as DO-178B in civil avionics [20]), dramatic time and cost savings can be re-
alized. The current trend towards model-based development is one attempt to
address this problem. In model-based software development, the traditional test-
ing process is split into two distinct activities: one activity that tests the model
to walidate that it accurately captures the customers’ high-level requirements,
and another testing activity that verifies whether the code generated (manually
or automatically) from the model is behaviorally equivalent to (or conforms to)
the model. (Note that by “model”, we are referring specifically to a high level
formal model written in a language such as Simulink or Lustre. Throughout
this paper, we refer to this simply as a “model”.) In this paper, we focus on
the second testing activity—verification through conformance testing. There are
currently several tools, such as model checkers, that provide the capability to
automatically generate conformance tests [19, 7] from formal models. In this pa-
per, we examine the effectiveness of metrics used in measuring the adequacy of
the generated conformance tests.

For critical avionics software, DO-178B necessitates test cases used in verifi-
cation to achieve requirements coverage in addition to structural coverage over
the code. However, there is no direct and objective measure of requirements
coverage, and adequacy of tests is instead inferred by examining structural cov-
erage achieved over the model. The Modified Condition and Decision Coverage
(MC/DC) used when testing highly critical software [20] in the avionics industry
has been a natural choice to measure structural coverage for the most critical
models. In our work [21], however, we have defined coverage metrics that pro-
vide direct and objective measures of how well a test suite exercises a set of
high-level formal software requirements. We examined using requirements cov-
erage metrics, in particular the Unique First Cause (UFC) coverage metric, to
measure adequacy of tests used in model validation (or black-box testing) and
found them to be useful. To save time and effort, we would like to re-use val-
idation tests providing requirements coverage for verification of code through
conformance testing as well. This paper examines the suitability of using tests
providing requirements UFC coverage for conformance testing as opposed to
tests providing MC/DC over the model.

We believe requirements coverage will be useful as an adequacy measure for
conformance testing for several reasons. First, measuring structural coverage
over the requirements gives a direct assessment of how well the conformance
tests exercise the required behavior of the system. Second, if a model is miss-
ing functionality, measuring structural coverage over the model will not expose
such defects of omission. Third, obligations for requirements coverage describe
satisfying scenarios (paths) in the model as opposed to satisfying states defined
by common model coverage obligations (such as MC/DC). We believe coverage

obligations that define satisfying paths will necessitate longer and more effective
test cases than those defining satisfying states in the model. Finally, we found
in [16] that structural coverage metrics over the model, in particular MC/DC, are
sensitive to the structure of the model used in coverage measurement. Therefore,
these metrics can be easily rendered inefficient by (purposely or inadvertently)
restructuring the model to make it easier to achieve the desired coverage.

For these reasons, we believe that requirements coverage will serve as a
stronger adequacy measure than model coverage in measuring adequacy of con-
formance test suites. More specifically, we investigate the following hypothesis
in this paper:

Hypothesis 1 (H;): Conformance tests providing requirements UFC coverage
are more effective at fault finding than conformance tests providing MC/DC
over the model.

We evaluated this hypothesis on four industrial examples from the civil avion-
ics domain. The requirements for these systems are formalized as Linear Tem-
poral Logic (LTL) [5] properties. The systems were modeled in the Simulink
notation [12]. Using the Simulink models, we created implementations that we
used as the basis for the generation of large sets of mutants by randomly seed-
ing faults. We generate numerous test suites to provide 100% achievable UFC
coverage over the LTL properties (the formal requirements), and numerous test
suites to provide 100% achievable MC/DC over the model. We assessed the ef-
fectiveness of the different test suites by measuring their fault finding capability,
i.e., running them over the sets of mutants and measuring the number of faults
detected.

In our experiment we found that Hypothesis 1 was rejected on three of the
four examples at the 5% statistical significance level. This result was somewhat
disappointing since we believed that the requirements coverage would be effec-
tive as a conformance testing measure. The astute reader might point out that
the result might not be surprising since the effectiveness of the requirements-
based tests providing UFC coverage heavily depends on the ‘goodness’ of the
requirements set; in other words, a poor set of requirements leads to poor tests.
In this case, however, we worked with case examples with very good sets of re-
quirements and we had expected better results. Nevertheless, we found that the
tests providing requirements UFC coverage found several faults that remained
undetected by tests providing MC/DC over the model. We thus formed a second
hypothesis stating that complementing model coverage with requirements cov-
erage will prove more effective as an adequacy measure than solely using model
coverage for conformance testing. To investigate this, we formulated and tested
the following hypothesis:

Hypothesis 2 (Hs): Conformance tests providing requirements UFC' coverage
in addition to MC/DC' over the model are more effective at fault finding than
conformance tests providing only MC/DC over the model.

In our second set of experiments, the combined test suites were significantly
more effective than MC/DC test suites on three of the four case examples (at the

5% statistical significance level). For these examples, UFC suites found several
faults not revealed by the MC/DC suites making the combination of UFC and
MC/DC more effective than MC/DC alone. The relative improvement was in
the range of 4.3% — 10.8% on these examples. We strongly believe that for
the case example that did not support Hypothesis 2, the MC/DC suite found
all possible faults, making improvement with the combined suites impossible.
Based on our results, we believe that existing adequacy measures for conformance
testing based solely on structural coverage over the model (such as MC/DC) can
be strengthened by combining them with requirements coverage metrics such as
UFC. Tt is worth noting that Briand et.al. found similar results in their study [3],
though in the context of state-based testing for complex component models in
object-oriented software. Combining a state-based testing technique for classes
or class clusters modeled with statecharts [8], with a black-box testing technique,
category partition testing, proved significantly more effective in fault detection.
We recommend future measures of conformance testing adequacy to consider
both requirements and model coverage either by combining existing metrics,
such as MC/DC and UFC, or by defining new metrics that account for both.
The remainder of the paper is organized as follows. Section 2 introduces our
experimental setup and the case examples used in our investigation. Results and
statistical analysis are presented in Section 3. Finally in Sections 4 and 5, we an-
alyze and discuss the implications of our results, and point to future directions.

2 Experiment

We use four industrial systems in our experiment: two models from a display
window manager for an air-transport class aircraft (DWM_1, DWM_2), and two
models representing flight guidance mode logic for business and regional jet
class aircrafts (Vertmax_Batch and Latctl_Batch). All four systems were viewed
to have good sets of requirements as judged by the developer of the system. We
conducted the experiments for each case example using the steps outlined below
(elaborated in later sections):

1. Generate and reduce test suites to provide requirements UFC cov-
erage: We generated a test suite to provide UFC coverage over the formalized
LTL requirements. This test suite was naively generated, one test case for every
UFC obligation, and thus highly redundant. We reduced the test suite randomly
while maintaining UFC coverage over the requirements. We generated three such
randomly reduced test suites.

2. Generate and reduce test suites to provide MC/DC over the model:
We naively generated a test suite to provide MC/DC over the model. We then
randomly reduced the test suite to maintain MC/DC over the model. We gen-
erated three such reduced test suites.

3. Combined test suites that provide MC/DC + requirements UFC:
Among the reduced MC/DC suites from the previous step, we selected the most
effective MC/DC test suite based on their fault finding ability. We merge this
test suite with each of the reduced UFC test suites from the first step. The

combined suites thus provide both MC/DC over the model and UFC coverage
over the requirements.

4. Generate mutants: We randomly seeded faults in the correct implemen-
tation and generated three sets of 200 mutants using the method outlined in
Section 2.3.

5. Assess and compare fault finding: We run each of the test suites from
steps 1, 2 and 3 (that provide requirements UFC coverage, MC/DC over the
model, and MC/DC + requirements UFC coverage respectively) against each
set of mutants and the model. Note that the model serves as the oracle imple-
mentation in conformance testing. We say that a mutant is killed (or detected)
by a test suite if any of the test cases in the suite results in different output
values between the model and the mutant. We recorded the number of mutants
killed by each test suite and computed the fault finding ability as the percentage
of mutants killed to the total number of mutants seeded.

2.1 Case Examples

In our experiment, we use four industrial systems. All four systems were modeled
using the Simulink notation from Mathworks Inc.

Display Window Manager Models (DWM_1 and DWM _2): The Display
Window Manager models, DWM_1, and DWM_2, represent 2 of the 5 major
subsystems of the Display Window Manager (DWM) of an air transport-level
commercial displays system. The DWM acts as a ‘switchboard’ for the system
and has several responsibilities related to routing information to the displays
and manages the location of two cursors that can be used to control applications
by the pilot and copilot.

Flight Guidance System: A Flight Guidance System is a component of
the overall Flight Control System (FCS) in a commercial aircraft. It compares
the measured state of an aircraft (position, speed, and altitude) to the desired
state and generates pitch and roll-guidance commands to minimize the difference
between the measured and desired state. The FGS consists of the mode logic,
which determines which lateral and vertical modes of operation are active and
armed at any given time, and the flight control laws that accept information
about the aircraft’s current and desired state and compute the pitch and roll
guidance commands. The two FGS models in this paper focus on the mode logic
of the FGS. The Vertmax_Batch and Latctl_Batch models describe the vertical
and lateral mode logic for the flight guidance system.

2.2 Test Suite Generation and Reduction

We generated test suites to provide UFC coverage over formal LTL requirements
and to provide MC/DC over the model. The approach to generate and reduce

the test suites for the two different coverage measures is detailed below. Ad-
ditionally, we merge the reduced test suites for the two coverage measures to
create combined test suites that provide UFC coverage over the requirements in
addition to MC/DC over the model.

UFC Coverage over Requirements: The requirements coverage metric used
in this paper is the Unique First Cause (UFC) coverage defined in [21].

The UFC metric is adapted from the Modified Condition/Decision Coverage
(MC/DQC) criterion [4, 9] defined over source code that defines satisfying states in
the implementation. Since requirements captured as LTL properties define paths
rather than states, we broadened our view of structural coverage to accommodate
satisfying paths rather than satisfying states. We defined these satisfying test
paths by extending the constraints for state-based MC/DC to include temporal
operators. A test suite is said to satisfy UFC coverage over a set of LTL formulae
if executing the test cases in the test suite will guarantee that:

— every basic condition in a formula has taken on all possible outcomes at least
once

— each basic condition has been shown to independently affect the formula’s
outcome.

We defined independence in terms of the shortest satisfying path for the
formula. Thus, if we have a formula A and a path 7, an atomic condition « in
A is the unique first cause if, in the first state along 7 in which A is satisfied,
it is satisfied because of atomic condition «. The formal definition for UFC and
the obligations for LTL temporal operators was presented in [21].

The notion of requirements UFC coverage used in this paper is related to
work assessing the completeness and correctness of formulae in temporal logics,
in particular, vacuity checking of temporal logic formulas [2,10,15]. The focus
of this paper, however, is on the application and usefulness of requirements cov-
erage to measure adequacy of conformance testing, and not on the completeness
of requirements. We are not aware of studies that investigated applicability of
requirements coverage in this context.

Several research efforts have developed techniques for automatic generation
of tests from formal models using model checkers as test case generation tools [17,
18,7]. One such technique operates by formulating a test criterion as a verifi-
cation condition for the model checker. The obligations for requirements UFC
coverage are given as trap properties (by negating the obligations) to the model
checker along with the formal model of the system, and the model checker re-
turns counter examples that constitute a test suite for UFC coverage over the
LTL requirements.

A test suite thus generated will be highly redundant, as a single test case will
often satisfy several UFC obligations. We therefore reduce this test suite using a
greedy approach. We randomly select a test case from the test suite, check how
many UFC obligations are satisfied and add it to a reduced test set. Next, we
randomly pick another test case from the suite and check whether any additional

UFC obligations were satisfied. If so, we add the test case to the reduced test
set. This process continues till we have exhausted all the test cases in the test
suite. We now have a randomly reduced test suite that maintains UFC coverage
over the LTL requirements. We generate three such reduced UFC test suites for
each case example in our experiment to eliminate the possibility of skewing our
results with an outlier (an extremely good or bad reduced test suite).

MC/DC over model: The full test suite to provide MC/DC used in this
experiment is the same one used in previous work [16]. We used the test suite
that provides MC/DC over the inlined model rather than the non-inlined model
as it is more rigorous and effective. We thus compare the requirements UFC
coverage against a rigorous notion of MC/DC. The test suite was automatically
generated using the NuSMV [13] model checker to provide MC/DC over the
model. The full test suite was naively generated, with a separate test case for
every construct we need to cover in the model. This straightforward method
of generation results in highly redundant test suites, as with UFC test suite
generation. Thus, the size of the complete test suite can typically be reduced
while preserving coverage.

The approach to reduce the test suite is similar to that used for UFC coverage.
As before, we generate three such reduced test suites to decrease the chances of
skewing our results with an outlier (very good or very bad reduced test suite).

Requirements UFC Coverage + MC/DC over model: To generate test
suites providing both requirements UFC coverage and MC/DC over the model,
we simply merge the test suite providing UFC with the test suite providing
MC/DC. As mentioned previously, we generated three reduced MC/DC suites
and three reduced UFC suites. It is thus possible to create nine different com-
bined suites, by merging each of the three reduced MC/DC suites with each of
the three reduced UFC suites. Using all nine suites in our experiment, however,
would have been very time consuming. To reduce the combinations, we instead
elected to use only the best reduced MC/DC suite (with respect to fault finding
among the reduced MC/DC suites) for creating the combined test suites. We
thus merge the best MC/DC suite with each of the three reduced UFC suites to
create only three combined suites. Note that choosing the best MC/DC implies
that the combined suites must improve the fault finding of the best MC/DC
suite to support Hypothesis 2.

2.3 Mutant Generation

To create mutants or faulty implementations, we built a fault seeding tool that
can randomly inject faults into the implementation. Each mutant is created by
introducing a single fault into a correct implementation by mutating an operator
or variable.

The fault seeding tool is capable of seeding faults from different classes. We
seeded the following classes of faults:

*

Arithmetic: Changes an arithmetic operator (+, -, /, *, mod, exp).

Relational: Changes a relational operator (=, #, <, >, <, >).

Boolean: Changes a boolean operator (V, A, XOR).

Negation: Introduces the boolean — operator.

Delay: Introduces the delay operator on a variable reference (that is, use the
stored value of the variable from the previous computational cycle rather
than the newly computed value).

Constant: Changes a constant expression by adding or subtracting 1 from int
and real constants, or by negating boolean constants.

Variable Replacement: Substitutes a variable occurring in an equation with
another variable of the same type.

To seed a fault from a certain class, the tool first randomly picks one ex-
pression among all possible expressions of that kind in the implementation. It
then randomly determines how to change the operator. For instance to seed an
arithmetic mutation, we first randomly pick one expression from all possible
arithmetic expressions to mutate, say we pick the expression ‘a + b’; we then
randomly determine if the arithmetic operator ‘+’ should be replaced with ‘-’ or
¥ or ‘/7 and create the arithmetic mutant accordingly. Our fault seeding tool
ensures that no duplicate faults are seeded.

In our experiment, we generated mutants so that the ‘fault ratio’ for each
fault class is uniform. The term fault ratio refers to the number of mutants
generated for a specific fault class versus the total number of mutants possible for
that fault class. For example, assume an implementation consists of R Relational
operators and B Boolean operators. Thus there are R possible Relational faults
and B possible Boolean faults. For uniform fault ratio, we would seed x relational
faults and y boolean faults in the implementation so that z/R = y/B.

We generated three sets of 200 mutants for each case example. We generated
multiple mutant sets for each example to reduce potential bias in our results from
a mutant set that may have very hard (or easy) faults to detect. Our mutant
generator does not guarantee that a mutant will be semantically different from
the original implementation. Nevertheless, this weakness in mutant generation
does not affect our results, since we are investigating the relative fault finding
of test suites rather than the absolute fault finding.

The fault finding effectiveness of a test suite is measured as the number
of mutants detected (or ‘killed’) to the total number of mutants created. We
say that a mutant is detected by a test suite when the test suite results in
different observed values between the mutant and the oracle implementation.
The system model serves as the oracle implementation in conformance testing.
We only observe the output values of the model and mutants for comparison.
We do not use internal state information, as internal state information between
the model and implementation may differ and can therefore not be compared
directly. Additionally, internal state information of the system under test may
not be available during real-world tests and it is therefore preferable to perform
the comparison with only output values.

3 Experimental Results

For each case example described in Section 2.1, we generated three reduced UFC
test suites, three reduced MC/DC test suites, three combined UFC + MC/DC
test suites and three sets of mutants. As mentioned earlier the combined suites
are created by merging the best reduced MC/DC suite with each of the three
reduced UFC suites. For this reason we compare the fault finding ability of the
combined suites only against the best MC/DC suite rather than all the reduced
MC/DC suites. We ran every test suite against every set of mutants, and recorded
the percentage of mutants caught. For each case example, this yielded nine ob-
servations each for MC/DC, UFC and the combined test suites. We average the
percentage of mutants caught across the mutant sets for each case example and
each kind of test suite. This yields three averages, one each for MC/DC, UFC,
and combined test suites as summarized in Table 1. Also, for each case example
we identify the most effective MC/DC suite (among the generated three reduced
MC/DC suites) and calculate average fault finding across the mutant sets. The
‘Best MC/DC’ column in the table represents these averaged observations. Ta-
ble 1 also gives the relative improvement in average fault finding of UFC suites
over MC/DC test suites, and combined suites over the best MC/DC suite. Note
that some of the numbers in the relative improvement column in Table 1 are
negative. This implies that the test suite did not yield an improvement, and
instead did worse than the MC/DC test suite at fault finding. For instance, for
the DWM_1 model the MC/DC test suites provide an average fault finding of
84.6% and the UFC suites provide an average fault finding of 82.7%, and thus
the relative improvement in fault finding for UFC suites is negative (= -2.2%)
with respect to MC/DC suites. Conversely, for the DWM_1 system, the com-
bined suites provide better fault finding (an average of 91.5%) than the best
MC/DC suite (85.8%), giving a positive relative improvement of 6.6%.

The complete set of 27 fault finding observations for each case example is
presented in Table 2. Note that in the table, M1, M2, M3 denote the three mu-
tant sets; MCDC_1, MCDC_2, MCDC 3 refer to the reduced MC/DC suites;
UFC_1,UFC2,UFC_3 toreduced UFC suites; and C'_1, C_2, C'_3 to the com-
bined UFC and MC/DC suites. The best MC/DC suite (used to create combined
suites) can be identified by comparing the fault finding of MCDC_1, MCDC 2,
and M CDC'_3 across the mutant sets. Thus from the results in Table 2 we find for

Avg. |Avg.|Relative|| Best Avg. Relative

MC/DC|UFC |Improv.||MC/DC|Combined|Improv.
DWM_1 84.6% |82.7%| -2.2% 85.8% 91.5% 6.6 %
DWM._2 90.6% [16.7%| -81.6% 90.6% 90.6% 0.0%
Latctl_Batch 85.1% [88.7%| 4.2% 85.4% 94.6% 10.8%
Vertmax_Batch|| 86.0% [68.6%| -20.2% 86.0% 89.7% 4.3%

Table 1. Average percentage of mutants caught by test suites and relative improvement
over MC/DC.

DWM_1

MCDC_1]MCDC_2[MCDC_3[[UFC_1[UFC_2[UFC3[[C.1 | C2 [C3

M1 82.7% 81.2% 84.3% 79.2% | 79.7% | 76.1% ||88.3%89.3%88.8%

M2 83.8% 83.8% 86.3% 83.8% | 82.7% | 81.2% ||91.4%(91.9%|91.4%

M3 86.3% 86.3% 86.8% 87.3% | 87.8% | 86.8% ||93.9%(94.4%|94.4%

TS Size 73 76 7 463 469 468 540 | 546 | 545

DWM_2

MCDC_1]MCDC_2[MCDC_3[[UFC_1[UFC_2[UFC3[[C.1 | C2 [C3

M1 91.4% 91.4% 91.4% 17.2% | 15.2% | 16.7% {|91.4%|91.4%|91.4%

M2 91.4% 91.4% 91.4% 16.7% | 14.6% | 16.7% ||91.4%|91.4%|91.4%

M3 88.9% 88.9% 88.9% 18.7% | 16.2% | 18.7% ||88.9%|88.9%|88.9%

TS Size 452 452 448 33 32 31 485 | 484 | 483

Latctl_Batch
MCDC_1]MCDC_2[MCDC_3[[UFC_1[UFC_2[UFC3[[C.1 | C2 [C3

M1 85.2% 84.2% 84.7% 89.3% | 87.8% | 89.8% ||94.4%(92.9%(91.8%

M2 85.7% 85.7% 85.2% 89.3% | 89.3% | 89.8% ||96.4%95.9%(95.9%

M3 85.2% 84.7% 85.2% 88.8% | 85.2% | 88.8% ||94.9%(93.9%(94.9%

TS Size 73 71 73 50 49 53 123 | 122 | 126

Vertmax_Batch

MCDC_1]MCDC_2]MCDC_3][UFC_1[UFC_2[UFC3[C.1 | C.2 | C_3

M1 83.8% 83.8% 83.8% 67.5% | 69.5% | 66.0% ||88.8%88.8%88.8%

M2 81.3% 81.3% 81.3% 71.1% | 71.1% | 71.6% {|91.9%90.4%|90.4%

M3 88.9% 88.9% 88.9% 64.5% | 66.0% | 70.1% ||87.3%86.3%|88.3%

TS Size 301 299 297 89 79 88 386 | 376 | 385

Table 2. Complete results for all case examples.

the DWM_1 system, the best MC/DC test suite is MCDC_3. For DWM_2 and
Vertmax_Batch systems, all three reduced MC/DC suites are equally effective so
any of them can be used for creating the combined suites. We randomly selected
MCDC_1 for DWM_2 and M CDC'_3 for Vertmax_Batch system. Finally, for the
Latctl_Batch system, MCDC_1 is the most effective.

From the results in Tables 1 and 2, it is evident that for all case examples,
except the Latctl_Batch system, MC/DC test suites outperform the UFC suites
in fault finding. The degree to which MC/DC suites are better, however, varies
by a vast range. The maximum difference is on DWM_2, where MC/DC suites
provide an average fault finding of 90.6% in contrast to 16.7% provided by UFC
suites. The minimum difference is on DWM_1 where MC/DC provides an average
fault finding of 84.6% versus 82.7% provided by UFC suites. The combined suites
on the other hand outperform the MC/DC suites. The relative improvement
provided by the combined suites however spans a much smaller range (0 - 10.8%).
In other words, the number of different faults revealed by the UFC suites as
compared to the best MC/DC suite is in the range of 0 — 10.8% of the mutants
seeded. The combined suites provide better fault finding than the best MC/DC
suite on three of the four case examples. On the DWM_2 system the combined
suites yield no improvement. A detailed discussion of the implication of these
results is presented in Section 4.

3.1 Statistical Analyses

In this section, we statistically analyze the results in Tables 1 and 2 to determine
if the hypotheses H; and Hs, stated previously in Section 1, are supported.

To evaluate H; and H,, we formulate our respective null hypotheses H0,
and HO, as follows:

HOp: A test suite generated to provide requirements UFC coverage will find the
same number of faults as a test suite generated to provide MC/DC coverage
over the model.

HOy: A test suite generated to provide both requirements UFC coverage and
MC/DC over the model will reveal the same number of faults as a test suite
generated to provide only MC/DC over the model.

To accept Hs, we must reject HOy. Rejecting HO, implies that the data for
the combined test suite and MC/DC suite come from different populations. In
other words, this implies that either the combined suites have more fault finding
than the MC/DC suites or vice versa. However, the combined suite includes the
MC/DC suite and can therefore never have lesser fault finding than the MC/DC
suite. This implies that Hs is supported when HOy is rejected. On the other
hand, rejecting H0; does not necessarily imply H; is supported, as this implies
that the UFC suites have different fault finding ability than the MC/DC suites,
not necessarily better fault finding ability. To accept H; after rejecting H0q, we
examine the data in the table and determine if the UFC suites have greater fault

finding than the MC/DC suite. If so, we accept H;. If the data indicates that
UFC suites instead have lesser fault finding than the MC/DC suites, we reject
H;.

Our experimental observations are drawn from an unknown distribution, and
we therefore cannot reasonably fit our data to a theoretical probability distribu-
tion. To evaluate H0; and HO, without any assumptions on the distribution of
our data, we use the permutation test, a non-parametric test with no distribu-
tion assumptions. When performing a permutation test, a reference distribution
is obtained by calculating all possible permutations of the observations [6,11].
To perform the permutation test, we restate our null hypotheses as:

HO;: The data points for percentage of mutants caught using the UFC and
MC/DC test suites come from the same population.

HO05: The data points for percentage of mutants caught using the MC/DC and
combined UFC + MC/DC test suites come from the same population.

We evaluate the two hypotheses for each of the case examples. The procedure
for permutation test of each hypothesis is as follows. Data is partitioned into two
groups: A and B. Null hypothesis states that data in groups A and B come from
the same population. We calculate the test statistic S as the absolute value of
the difference in the means of group A and B:

S— |A-B|

We calculate Number of Permutations as the number of ways of grouping
all the observations in A and B into two sets. We then let COUNT equal the
number of permutations of A and B in which the test statistic is greater than
S. Finally, P — Value is calculated as:

P —Value = COUNT | Number of Permutations

For each case example, if P — Value is less than the a value of 0.05 then we
reject the null hypothesis with significance level a.

The null hypotheses H0; and HO, are evaluated using different groups of
data. For HOp, data for each case example in Table 2 is partitioned into two
groups with nine observations each: % of faults caught by UFC test suites (group
A — columns UFC_1, UFC_2, UFC_3 in the table), and % of faults caught by
MC/DC test suites (group B — columns MCDC_1, MCDC_2, MCDC 3). We
calculate the Number of Permutations as:

Number of Permutations = (198> = 48620

For HO,, data for each case example in Table 2 is partitioned into two groups,
one with nine observations and the other with three observations: % of faults
caught by combined UFC+MC/DC test suites (group A — columns C_1, C_2,
C-3), and % of faults caught by the best MC/DC suite (group B — MCDC'_1 col-
umn for DWM_2 and Latctl_Batch systems, and M CDC_3 column for DWM_1
and Vertmax Batch systems). We calculate the Number of Permutations as:

12
Number of Permutations = (9) =220

We then determine the p-value for each hypothesis using the procedure de-
scribed previously. Table 3 lists the p-values for both null hypotheses (H0; and
HO02) and states if the corresponding original hypotheses (H; and Hj) are sup-
ported for each case example. As mentioned earlier, for each case example, H;
is supported if HO; is rejected with significance level a = 0.05 and all the UFC
suites (columns UFC_1, UFC_2, UFC_3 in Table 2) have better fault finding
than the MCDC suites (columns MCDC_1, MCDC 2, MCDC 3), and Hs is
supported if we reject HOs.

P-Value Result
HO; [HO, H, | H
DWM_1 0.24 |0.004|Unsupported| Supported

DWM_2 0.00004| 1.0 |Unsupported|Unsupported
Latctl_Batch || 0.0002 |0.004| Supported | Supported
Vertmax_Batch||0.00004|0.027|Unsupported| Supported

Table 3. Hypotheses Evaluation for different case examples

Given the p-values in Table 3 and the fault finding data in Table 2 we examine
why the original hypotheses (H; and Hs) are supported/rejected for each case
example. For the DWM_1 system, H0; is accepted (since p-value is greater than
a value), and we therefore reject Hy. For the other three systems, H0; is rejected
but the UFC suites outperform the MC/DC suites only on the Latctl Batch
system. For the DWM_2 and Vertmax Batch systems, MC/DC suites always
outperform the UFC test suites. Thus, H; is supported on the Latctl Batch
system and rejected on the DWM_2 and Vertmax_Batch systems. On the other
hand, HOs is rejected (p-value less than the a value) on all but the DWM_2
system. This implies that Hy is supported on all except the DWM_2 system.
Thus, we find that with statistical significance level & = 0.05 hypothesis H; is
supported only on one case example, and hypothesis H is supported on three
of the four case examples.

3.2 Threats to Validity

While our results are statistically significant, they are derived from a small set of
examples, which poses a threat to the generalization of the results. Nevertheless,
we believe that the examples in our experiment are highly representative and
our results are generalizable to systems within the same domain.

Our fault seeding method seeds one fault per mutant. In practice, implemen-
tations are likely to have more than one fault. However, previous studies have

shown that mutation testing in which one fault is seeded per mutant draws valid
conclusions of fault finding ability [1].

Additionally, all fault seeding methods have an inherent weakness. It is dif-
ficult to determine the exact fault classes and ensure that seeded faults are
representative of faults that occur in practical situations. In our experiment, we
assume a uniform ratio of faults across fault classes. This may not reflect the
fault distribution in practice. Finally, our fault seeding method does not ensure
that seeded faults result in mutants that are semantically different from the or-
acle implementation. Ideally, we would eliminate mutants that are semantically
equivalent, however, identifying such mutants is infeasible in practice.

4 Discussion

In this section we analyze and discuss the implications of the results in Tables 1
and 2. We present the discussion in the context of Hypotheses 1 and 2 stated in
Section 1.

4.1 Analysis - Hypothesis 1

As seen from Table 1, on all but one of the industrial systems, test suites gen-
erated for requirements UFC coverage have lower fault finding than test suites
providing MC/DC over the system model. Statistical analysis revealed that hy-
pothesis 1 stating “test suites providing requirements UFC coverage have better
fault finding than test suites providing MC/DC over the model” was supported
only on the Latctl_Batch system and rejected on all the other systems at the 5%
significance level. We believe this may be because of one or both of the following
reasons, (1) The UFC metric used for requirements coverage is not sufficiently
rigorous and we thus have an inadequate set of requirements-based tests, and
(2) Requirements are not sufficiently defined with respect to the system model.
Thus, test suites providing requirements coverage will be ineffective at revealing
faults in the model since there are behaviors in the model not specified in the
requirements.

To assess the rigor of the UFC metric and the quality of the requirements
with regard to behaviors covered in the system model, we measured MC/DC
achieved by the reduced UFC suites over the system model. The results are
summarized in Table 4. We found that for all the case examples, UFC test suites

Avg. MC/DC Achieved|Achievable|Rel. Diff.
by UFC suites MC/DC
DWM_1 78.2% 92.5% 15.5%
DWM_2 25.8% 100% 74.2%
Latctl_Batch 88.6% 98.0% 9.6%
Vertmax_Batch 80.9% 99.8% 18.9%

Table 4. MC/DC achieved by the reduced UFC suites over the system model

provide less than Achievable MC/DC over the system model. Thus, faults seeded
in these uncovered portions of the model cannot be revealed by the UFC suites.
The extent to which the model is covered is an indicator of the effectiveness
of the UFC metric and the quality of the requirements set. On the DWM_1,
Vertmax_Batch, and Latctl_Batch systems the UFC suites do reasonably well,
achieving an average MC/DC of 78.2%, 88.6%, and 80.9% respectively as com-
pared to 92.5%, 98% and 99.8% achievable MC/DC. Note, however, that relative
differences in MC/DC need not correspond exactly to relative differences in fault
finding between the UFC and MC/DC suites (as seen in our examples). In addi-
tion to coverage, fault finding is also highly influenced by the nature and number
of faults seeded in covered and uncovered portions of the model. The relation
between coverage and fault finding is not the focus of this paper and we hope to
investigate this in our future work.

On the DWM_2 system, the UFC suites do poorly in both fault finding and
MC/DC achieved. The UFC suites only achieve an average of 25.8% MC/DC over
the model when compared to an achievable MC/DC of 100%. Correspondingly,
the UFC suites have very poor fault finding (average of 16.7%) when compared
to the MC/DC suites (average of 90.6%), since faults seeded in the uncovered
portions of the model cannot be revealed by the UFC suites. The terrible fault
finding and MC/DC achieved by the UFC suites on the DWM_2 system was
surprising since we knew the system had a good set of requirements. To gain
better understanding we took a closer look at the requirements set and the UFC
obligations generated from them. We found that many of the requirements were
structured similar to the sample requirement (formalized as an LTL property in
the SMV [13] language) below,

LTLSPEC G(var_a > (

case
foo : 0 ;
bar : 1 ;
esac +
case
baz : 2 ;
bpr : 3 ;
esac

));

Informally, the sample requirement states that var_a is always greater than
the sum of the outcomes of the two case expressions. When we perform UFC for
the above requirement, it would result in obligations for the following expres-
sions:

1. Relational expression within the globally operator (G)
Atomic condition foo within the first case expression
Atomic condition bar within the first case expression
Atomic condition baz within the second case expression
Atomic condition bpr within the second case expression

Gt o

The above requirement may be restructured (to express the same behavior)
so that the sum of two case expressions is expressed as a single case expression
as shown:

LTLSPEC G(var_a > (
case

foo & baz :

foo & bpr :

bar & baz :

bar & bpr :
esac

));

= = O O
+ + + +
W N wWwN

Achieving UFC coverage over this restructured requirement will involve more
obligations than before since the boolean conditions in the case expression are
more complex. UFC would result in obligations for the following expressions in
this restructured requirement:

1. Relational expression within the globally operator (G)

. Complex condition foo & baz within the case expression
. Complex condition foo & bpr within the case expression
. Complex condition bar & baz within the case expression
. Complex condition bar & bpr within the case expression

T W N

Thus, the structure of the requirements has a significant impact on the num-
ber and rigor of UFC obligations and hence the size of the test suite providing
UFC coverage. In our experiment, we did not restructure requirements similar
to the sample requirement discussed and instead retained the original structure.
Therefore, the UFC obligations generated were fewer and far less rigorous. We
believe this is the primary reason for the poor performance (both fault finding
and MC/DC achieved) of the UFC suites for the DWM_2 system. The experi-
ence with the DWM_2 system suggests that even with a good set of requirements,
rigorous requirements coverage metrics, such as the UFC metric, can be easily
cheated since they are highly sensitive to the structure of the requirements. The
issue here is similar to the sensitivity of the MC/DC metric to structure of the
implementation observed in [16]. MC/DC was found to be significantly less ef-
fective when used over an implementation structure with intermediate variables
and non inlined function calls as opposed to an implementation with inline ex-
panded intermediate variables and function calls. Thus, as with all structural
coverage metrics, we must be aware that the structure of the object used in
measurement plays an important role in the effectiveness of the metrics.

To summarize, we find that the fault finding effectiveness of test suites pro-
viding requirements UFC coverage is heavily dependent on the nature and com-
pleteness of the requirements. Additionally, the rigor and robustness (with re-
spect to requirements structure) of the requirements coverage metric used plays
an important role in the effectiveness of the generated test suites. Thus, even
with a good set of requirements, test suites providing requirements structural

coverage may be ineffective if the coverage metric can be cheated. In our exper-
iment, the UFC metric gets cheated when requirements are structured to hide
the complexity of conditions on the DWM_2 system. Based on these observations
and our results, we do not recommend using requirements coverage in place of
model coverage as a measure of adequacy for conformance test suites.

4.2 Analysis - Hypothesis 2

As seen in Tables 1 and 2, for three of the four industrial case examples the
combined UFC and MC/DC suites outperform the MC/DC suite in fault finding.
For the DWM_2 system, however, the combined suites yield no improvement in
fault finding over the MC/DC suite. Statistical analysis on the data in Table 2
revealed that Hypothesis 2 is supported with a significance level of 5% for the
DWM_1, Vertmax_Batch, Latctl_Batch systems, and rejected for the DWM_2
system since the combined suites yield no improvement.

For the the DWM_1, Vertmax_Batch, Latctl_Batch systems, the combined
UFC and MC/DC suites yielded an average fault finding improvement in the
range of (4.3% - 10.8%) over the best MC/DC suite. The relative improvement
implies that the UFC suites find a considerable number of faults not revealed by
the best MC/DC suite.

To confirm that the improvement seen in DWM_1, Vertmax_Batch,
Latctl Batch systems is a result of combining the MC/DC metric with the
UFC metric and not solely because of the increased number of test cases in
the combined suites, we decided to measure the UFC coverage achieved over
the requirements by the MC/DC suite. The results are summarized in Table 5.
To understand the implications of the results in the table, consider the follow-
ing two situations. If the MC/DC suite provides 100% achievable UFC over the
requirements, it implies that the combined MC/DC 4 UFC coverage is satis-
fied by simply using the MC/DC suite instead of the combined suites. Under
such circumstances, the fault finding improvement observed on combining the
test suites would be solely due to the increased number of test cases. On the
other hand, if the MC/DC suite provides less than achievable UFC over the
requirements, it implies that there are scenarios/behaviors specified by the re-
quirements that are not covered by the MC/DC suite but covered by the UFC
suite. Thus, the combination may have proved more effective because of these

Avg. UFC Achieved|Achievable|Rel. Diff.
by MC/DC suites UFC

DWM_1 28.3% 96.9% 70.8%
DWM_2 59.7% 64.0% 6.7%
Latctl_Batch 94.7% 99.5% 4.8%
Vertmax_Batch 97.4% 99.0% 1.6%

Table 5. UFC achieved by the reduced MC/DC suites over the system model

additional covered scenarios and not simply because of increased test cases. We
now take a closer look at the results in Table 5 to see which of these situations
occurred. We found that in all three systems (Latctl Batch, Vertmax_Batch, and
DWM_1), the MC/DC suites provided less than achievable UFC coverage over
the requirements. This indicates that the UFC suites cover several behaviors
specified in the requirements that are not covered by the MC/DC suite. We pos-
tulate that these additional covered behaviors contribute to the improved fault
finding observed with the combined suites on these systems.

For the DWM_2 system, the combined suites yield no improvement in fault
finding over the MC/DC suite, implying that the faults revealed by the UFC
suites are a subset of the faults revealed by the MC/DC suite. The DWM_2 sys-
tem consists almost entirely of complex Boolean mode logic, and the MC/DC
metric is extremely effective for these type of systems. There is thus a distinct
possibility that the MC/DC suite reveals all the seeded faults (excluding seman-
tically equivalent faults that can never be revealed). This belief was strengthened
when we ran the full rather than reduced MC/DC and UFC suites and measured
fault finding. We found that even with the full test suites, which have a dramati-
cally larger number of test cases, the combination did not yield any improvement
in the number of faults revealed. Therefore, we believe that there is a strong pos-
sibility the MC/DC suites revealed all but the semantically equivalent faults on
the DWM_2 system. Under such circumstances, no test suite complementing the
MC/DC suite can improve the fault finding, thus forcing us to always reject
Hypothesis 2. Such occurrences are anomalous and we discount them from our
analysis.

To summarize, we found that for three of the four case examples, the com-
bined test suite providing both requirements UFC coverage and MC/DC over the
model is significantly more effective than a test suite solely providing MC/DC
over the model. For the DWM_2 system that did not support this, we strongly
believe that the MC/DC suites revealed all possible faults making improvement
in fault finding on combining with UFC suites impossible. We disregard this ab-
normal occurrence to conclude that combined test suites have better fault finding
than the MC/DC suites for all the systems. Given our results, we believe using
requirements coverage metrics, such as UFC, in combination with model cover-
age metrics, such as MC/DC, yields a significantly stronger adequacy measure
than simply covering the model.

Note that for all the case examples, all three kinds of test suites—MC/DC,
UFC, and combined—never yield 100% fault finding. This is because some of
the seeded faults may result in mutant implementations that are semantically
equivalent to the correct implementation (i.e., faults that cannot result in any
observable failure). This is a common problem in fault seeding experiments [1,
14]. In industrial size examples it is extraordinarily expensive and time consum-
ing, or—in most cases—infeasible to identify mutations that are semantically
equivalent to the correct implementation and exclude them from consideration.
Therefore, the fault finding percentage that we give in our experiment results
is a conservative estimate, and we expect the actual fault finding for the test

suites to be higher if we were to exclude the semantically equivalent mutations.
However, this issue will not affect our conclusions since we only judge based on
relative fault finding rather than absolute fault finding.

5 Conclusions

Presently in model-based development, adequacy of conformance test suites is
inferred by measuring structural coverage achieved over the model. In this pa-
per we investigated the use of requirements coverage as an adequacy measure
for conformance testing. Our empirical study revealed that on three of the four
industrial case examples, our hypothesis stating “Requirements coverage (UFC)
is more effective than model coverage (MC/DC) when used as an adequacy mea-
sure for conformance test suites” was rejected at 5% statistical significance level.
Nevertheless, we found that requirements coverage is useful when used in combi-
nation with model coverage to measure adequacy of conformance test suites. Our
hypothesis stating that “test suites providing both requirements UFC coverage
and MC/DC over the model are more effective than test suites providing only
MC/DC over the model” was supported at 5% significance level on three of the
four case examples. The relative improvement yielded by the combined suites
over the MC/DC suites was in the range of 4.3% — 10.8%. The system that did
not support the hypothesis was an outlier where we firmly believe the MC/DC
suite found all possible faults, making improvement with the combined suites
impossible. Based on our results, we believe that the effectiveness of adequacy
measures based solely on model coverage can certainly be improved. Combining
existing metrics for model coverage and requirements coverage investigated in
this paper may be one possible way of accomplishing this. There may be other
approaches, for instance, defining a new metric that accounts for both require-
ments and model coverage. We hope to investigate this further in our future
work.

Another observation gained in our experiment relates to the sensitivity of re-
quirements coverage metrics such as UFC to the structure of the requirements.
Test suites providing requirements coverage may be ineffective even with an
excellent set of requirements. This can occur when structure of the formalized
requirements effectively “cheats” the requirements coverage metric. The UFC
metric in our experiment was cheated when requirements were structured to
hide the complexity of conditions in them. In our future work, we hope to de-
fine requirements coverage metrics that are more robust to the structure of the
requirements.

References

1. J.H. Andrews, L.C. Briand, and Y. Labiche. Is Mutation an Appropriate Tool
for Testing Experiments? Proceedings of the 27th International Conference on
Software Engineering (ICSE), pages 402—411, 2005.

2. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in
ACTL formulas. In Formal Methods in System Design, pages 141-162, 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

L.C Briand, M. Di Penta, and Y. Labiche. Assessing and Improving State-Based
Class Testing: A Series of Experiments. IEEE Transactions on Software Engineer-
ing, 30 (11), 2004.

J. J. Chilenski and S. P. Miller. Applicability of Modified Condition/Decision Cov-
erage to Software Testing. Software Engineering Journal, pages 193—200, Septem-
ber 1994.

Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, 1999.

R.A. Fisher. The Design of Experiment. New York: Hafner, 1935.

Angelo Gargantini and Constance Heitmeyer. Using model checking to generate
tests from requirements specifications. Software Engineering Notes, 24(6):146-162,
November 1999.

David Harel and Rami Marelly. Come Let’s Play: Scenario-Based Programming
Using LSC’s and the Play-Engine. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2003.

K.J. Hayhurst, D.S. Veerhusen, and L.K. Rierson. A practical tutorial on modified
condition/decision coverage. Technical Report TM-2001-210876, NASA, 2001.

O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model checking.
Journal on Software Tools for Technology Transfer, 4(2), February 2003.

P.H. Kvam and B. Vidakovic. Nonparametric Statistics with Applications to Sci-
ence and Engineering. 2007.

Mathworks Inc. Simulink product web site. Via the world-wide-web:
http://www.mathworks.com/products/simulink.

The NuSMYV Toolset, 2005. Available at

http://nusmv.irst.itc.it/.

A.J. Offutt and J. Pan. Automatically detecting equivalent mutants and infeasible
paths. Software Testing, Verification € Reliability, 7(3):165-192, 1997.

M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. In Proceedings of
the 14th Conference on Computer Aided Design, pages 485—-499. Springer-Verlag,
2002.

A. Rajan, M.W. Whalen, and M.P.E. Heimdahl. The Effect of Program and Model
Structure on MC/DC Test Adequacy Coverage. In Proceedings of 30th Interna-
tional Conference on Software Engineering (ICSE), To appear in May 2008. Avail-
able at http://crisys.cs.umn.edu/ICSE08.pdf.

Sanjai Rayadurgam. Automatic Test-case Generation from Formal Models of Soft-
ware. PhD thesis, University of Minnesota, November 2003.

Sanjai Rayadurgam and Mats P.E. Heimdahl. Coverage based test-case genera-
tion using model checkers. In Proceedings of the 8th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems (ECBS
2001), pages 83-91. IEEE Computer Society, April 2001.

Sanjai Rayadurgam and Mats P.E. Heimdahl. Generating MC/DC adequate test
sequences through model checking. In Proceedings of the 28th Annual IEEE/NASA
Software Engineering Workshop — SEW-03, Greenbelt, Maryland, December 2003.
RTCA. DO-178B: Software Considerations In Airborne Systems and Equipment
Certification. RTCA, 1992.

M.W Whalen, A. Rajan, and M.P.E. Heimdahl. Coverage metrics for requirements-
based testing. In Proceedings of International Symposium on Software Testing and
Analysis, July 2006.

