
Assertion-Based Test Oracles for Home Automation
Systems∗

Ajitha Rajan, Lydie du Bousquet, Yves Ledru, German Vega, Jean-Luc Richier
Laboratoire d’Informatique de Grenoble (LIG), Grenoble, France

{ajitha.rajan, lydie.du-bousquet, yves.ledru, german.vega, jean-luc.richier}@imag.fr

ABSTRACT
The Home Automation System (HAS) is a service-oriented
application that facilitates the automation of a private home
to improve the comfort and security of its residents. HAS
is implemented using a service-oriented architecture. Many
of the services in the HAS dynamically change their con-
figuration during run-time. This occurs due to change in
availability and bindings between services. Dynamic recon-
figurations of services in the HAS presents several testing
challenges, one being the specification of test oracles. In
this paper, we give an approach for specifying test oracles
for services in the HAS. We formally specify test oracles
in the JML specification language. To verify service be-
havior in the presence of dynamic reconfigurations, we use
mechanisms in the service architecture that notify dynamic
changes along with run-time evaluation of JML specifica-
tions. We illustrate our approach using an example service
in the H-Omega HAS developed on the OSGiTMand iPOJO
service platform. To evaluate our approach, we developed a
testing framework that allows for generation of tests with dy-
namic service reconfigurations. In addition, we seeded faults
into the example service, and evaluated the effectiveness of
the test oracles in revealing the faults using the generated
tests.

1. INTRODUCTION
Modern day homes are being revolutionized with the ad-

vent of devices and technologies that can network and com-
municate with each other. A Home Automation System
(HAS) facilitates the automation of a private home to im-
prove the comfort and security of its residents. It integrates
different home appliances via a network to provide services
for entertainment, safety, and comfort. For instance, inte-
grating a TV, a DVD player, surround speakers, lights, cur-
tains and an air-conditioner allows to provide an integrated
service, that we call Theater integrated service, where a user
can watch movies in a theater-like atmosphere. HAS is an

∗Partially supported by the iPOTest Project of the Univer-
sité Joseph Fourier, and by the ISLE cluster of the Région
Rhône-Alpes .

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MOMPES ’10, September 20, 2010, Antwerp, Belgium
Copyright 2010 ACM 978-1-4503-0123-7/10/09 ...$10.00.

application in the domain of Service-Oriented Computing
(SOC) and is implemented using service-oriented architec-
ture. The HAS, like any other SOC application, utilizes
services as the basic units to support development of the
distributed application.

Most of the research in SOC has focused on the architec-
ture and framework for developing SOC applications. Re-
search in verification of SOC applications is still in its in-
fancy. The main challenge in verifying SOC applications
like the HAS lies in the dynamic reconfigurations that often
occur in these applications. In the HAS, new services may
appear or existing services may disappear as the application
is running. Not only is there a dynamic change in availabil-
ity of services but the bindings between them also change
during run-time. As a result, the architecture and config-
uration of the HAS and its services evolve dynamically. In
the rest of this paper, we refer to this phenomenon in the
HAS as its dynamic nature/behavior/reconfigurations. To
exemplify, consider the theater integrated service mentioned
earlier. The service may be required to connect to a mobile
video player (like an iPad) if it is available in the room and
play videos from it. Thus, if a mobile video player appears in
(or disappears from) the room when the theater integrated
service is running, the service is required to dynamically
bind to (or unbind from) the player service at run-time.
Such dynamic changes in service configuration may affect
the correctness and quality levels of these applications.

Verification of HAS and other applications with dynamic
reconfigurations can be viewed as two testing problems, (1)
the need for test oracles that observe and check behavior
during dynamic reconfigurations, and (2) the need to gener-
ate tests that involve dynamic service reconfigurations. In
this paper, we primarily focus on addressing the first test-
ing concern–specifying test oracles for HAS. Nevertheless,
to evaluate our approach for test oracles, we also addressed
the second testing concern with regard to test generation,
albeit in a preliminary manner.

Traditional test oracles that examine outputs at the end
of the test execution are not adequate for the HAS since the
configurations and context of the service can change dramat-
ically as the service is running. We need test oracles that are
run-time monitors, continuously monitoring the behavior of
the service, particularly during dynamic reconfigurations.
Test oracles that monitor the run-time behavior of a sys-
tem for consistency with requirements have been proposed
in the past [20, 16, 11]. These approaches, however, cannot
be directly applied to the HAS since they are not tailored
towards monitoring dynamic reconfigurations in the service

45

composition and bindings.
To address this issue, we propose test oracles in the form

of formal specifications that act as run-time monitors of the
services in the HAS. The test oracles monitor whether the
services deliver the functions expected from them in the
presence of dynamic reconfigurations. Our approach relies
on utilizing mechanisms in the service architecture to notify
run-time monitors of dynamic reconfigurations. We use the
Java Modeling Language (JML) [17] specification language
to formally specify test oracles. We illustrate our approach
on an example service in the HAS. The HAS we use in this
paper is simulated using the H-Omega [6, 9] framework im-
plemented on top of OSGi [2].

To evaluate our approach for test oracles, we generated
tests with dynamic service reconfigurations for the HAS.
We adapted our existing combinatorial testing tool, TO-
BIAS [18], to support test generation with dynamic reconfig-
urations that can be executed on a service-oriented platform.
We evaluated the fault revealing capability of our test ora-
cles by seeding faults into the example service and running
the TOBIAS test suite against them. Automatically gen-
erating tests with dynamic reconfigurations for SOC appli-
cations like the HAS has not been explored extensively in
the past. We believe our effort at test generation is a useful,
although preliminary, step in this direction.

2. BACKGROUND

2.1 Framework for Home Automation Sys-
tems

The Adele team at the Laboratoire d’Informatique de
Grenoble (LIG) developed a platform, called H-Omega [6,
9], for building home automation systems. The H-Omega
gateway eases the creation and deployment of new services
by transparently managing service bindings, heterogeneity,
and dynamism. The gateway is implemented on top of
OSGiTM [2] and iPOJO [10]. The OSGi framework is a sys-
tem for Java that implements a dynamic component model
that can be remotely managed. The service-oriented com-
ponent model, iPOJO (injected POJO), aims to simplify
service-oriented programming on OSGi frameworks by trans-
parently managing service dynamics.

The iPOJO framework allows developers to distinctly sep-
arate functional code (i.e., the POJO - acronym for Plain
Old Java Object) from the non-functional code (for depen-
dency management, service provision, configuration, etc.).
All non functional concerns are externalized and managed
by the container through handlers (see Fig. 1). The com-
ponent is the central concept in iPOJO. The description
of the component — information on service dependencies,
provided services, and callbacks — is recorded in the com-
ponent’s metadata. Using the component metadata, the
iPOJO runtime manages the component, i.e., manage its
life cycle, inject required services, publish provided services,
discover needed services.

Handlers

IPOJO Container

POJO

Required service

Provided service

Figure 1: Component in iPOJO

2.2 Example Service in HAS
To help illustrate the principles in iPOJO, consider the

following example of an integrated service, termed Temper-
ature Control, in the HAS. Note that the HAS and tem-
perature control service are simulations using the H-Omega
framework. Real home automation systems and their ser-
vices are not easily available. We chose to use the temper-
ature control service example simply to illustrate dynamic
reconfigurations in services and the need for their continuous
monitoring. Other services like the theater integrated ser-
vice, mentioned in Section 1, may also be used in its place.
Regardless of the example service used, the monitoring chal-
lenges encountered are similar. The temperature control
service controls the temperature of the room, so that the
target temperature desired by the user is reached. The ser-
vice requires heaters, and a display device (termed LCD in
the service) that displays the number of heaters active and
running. At least one heater and LCD are mandatory re-
quirements for the temperature control service, implying the
service will be invalid if either of these devices are unavail-
able. The service also ensures that the heaters are used eco-
nomically. The number of heaters that ought to be running
for economical usage is controlled based on the difference
in temperature between the desired target temperature and
current room temperature. The service uses the following
conditions for economical usage of heaters:

Temperature Difference < 10 Turn on 1 heater
Temperature Difference 10 to 20 Turn on <= 3 heaters
Temperature Difference > 20 Turn on All heaters

The service continuously monitors the temperature differ-
ence, and controls the available heaters in the room (turning
heaters on/off) based on this difference. The dynamic aspect
in the service is introduced by two factors:

1. Heaters may appear/disappear from the room. (As-
suming the heaters are portable heaters)

2. Depending on the temperature difference, the number
of active heaters in the room keeps changing. The LCD
should display the number of active heaters and update
the display as the number of active heaters changes.

public class TempCtrl {
private Heater[] m_heaters;
private LCD m_lcd;
…..
…..

}

TempCtrl Service

POJO Component

<component classname="...TempCtrl">
<requires filter="(location=livingroom)"

field="m_lcd“/>
<requires filter="(location=livingroom)"

field="m_heaters“/>
...

</component>

iPOJO Metadata

Figure 2: Temperature Control Service - POJO
component and metadata

The POJO component of the temperature control service
contains the Java class defining functionality of the service.
The devices (or services) required by temperature control
are simply used as fields in the component class. Figure 2

46

shows a portion of the POJO component for the tempera-
ture control service with field declarations for the required
devices. For instance, m heaters in the POJO component
in Figure 2 is an array of heaters whose length will vary de-
pending on the number of available heaters at run-time. To
enable iPOJO to manage this component, we describe the
component in the metadata file. In the metadata, we ask
iPOJO to create the temperature control component and
an instance, indicate the service provided by temperature
control, and indicate fields in the component that represent
required services. Figure 2 shows a portion of the iPOJO
metadata for the temperature control service with the re-
quired services. As seen in the figure, fields for heaters, and
LCD in the temperature control component are indicated as
required services (using the requires tag) to be injected by
iPOJO at run-time. If required services are unavailable, the
temperature control component instance becomes invalid.
When services fulfilling the requirement appear, the instance
becomes valid.

2.3 JML: Java Modeling Language
JML is an annotation language used to specify Java pro-

grams by expressing formal properties and requirements on
the classes and their methods [17]. Our proposed approach
for test oracles in the HAS uses JML specifications. We
chose to use JML as the formal specification language for
the following reasons, (1) Wide range of tools already ex-
ist for JML, supporting, runtime assertion checking, static
checking, program verification, generation of annotations,
specification browsing [17], and (2) The HAS application
was implemented in the Java programming language. JML
is a natural choice as a formal specification language for
Java.

JML specifications appear within special Java comments,
/*@ and @*/, or starting with //@. The specifications of
each method precede the method declaration. We ask the
reader to refer to [17] for a discussion on syntax and usage
of JML specifications. An example JML postcondition in
the temperature control service is presented below.

//@ ensures
((isrunning && (m_heaters.length >= 3) &&

(tempdiff >= 10) && (tempdiff < 20))
==> (num_running == 3));

The postcondition states that if the service is running and
the number of available heaters is greater than or equal to 3
and the temperature difference between current and desired
room temperature lies between 10 and 20 degrees, then the
number of heaters active in the room should be 3.

Our approach uses JML specifications as run-time moni-
tors. The JML Runtime Assertion Checker (RAC) [7] pro-
vides this capability. It translates JML specifications into
runtime checking bytecode, and verifies that specifications
are satisfied during program execution.

3. TEST ORACLES USING JML SPECIFI-
CATIONS

Test oracles that monitor the run-time behavior of a sys-
tem for consistency with requirements have been proposed
in the past [20, 16, 11]. Additionally, run-time monitoring
of JML specifications for use as test oracles in unit test-
ing of programs has been proposed previously [8]. Never-
theless, these existing approaches for run-time monitoring

have never been used for applications like the HAS where
the architecture is dynamically evolving, i.e., where bindings
among components in the application change dynamically,
and components available for composition also change. To
adopt existing run-time monitoring techniques for the HAS,
we need to enhance them with the capability of monitoring
service behavior during dynamic service reconfigurations. In
this section, we present our approach for doing this using
JML specifications along with capabilities in the service ar-
chitecture.

3.1 Validating Service dynamism using JML
As with any run-time monitoring technique, one of the dif-

ficult and important aspects lies in ensuring the assertions
are placed and checked at the right points in the execution
of the program. This aspect is more challenging in the HAS
due to the presence of dynamic reconfigurations in the ap-
plication and execution context. Broadly, in our approach,
we tackle this issue by first identifying potential sources of
dynamic behavior in the service, i.e. fields in the service that
may change dynamically. We then place probes in the ser-
vice architecture, so that dynamic changes at the identified
sources are communicated to a listener method in the ser-
vice component. The listener method is associated with a
set of JML assertions that check the correctness of the ser-
vice during dynamic reconfigurations. If a JML assertion is
violated, a run-time exception is raised to notify the user.

To better understand our approach, we briefly describe
how dynamic nature in services is managed by the H-Omega
framework. We then discuss the mechanisms we use in the
architecture to alert a listener method. The main source of
dynamic behavior in the HAS lies in the dynamism in service
availability which in turn affects other services depending on
or requiring them. When a service (or component instance
in the vocabulary of iPOJO) requires another service, the
iPOJO framework chooses a suitable service satisfying the
requirements and directly injects the required service ob-
ject inside a field in the component, or invokes a method
when the required service appears (or disappears). The
dependency handler in iPOJO manages service dependen-
cies/requirements. As stated in [1], the handler manages
two types of service injection in the component to handle
dependencies:

1. Field injection: a field in the component contains the
service object. As soon as the field is used, a consis-
tent service object is injected. This injection type fully
hides the dynamism.

2. Method invocation: when a required service appears,
or disappears a method in the component is invoked.
For each dependency, the component can declare bind
and unbind methods that get invoked when the service
appears or disappears, respectively.

In the second injection mechanism, method invocation, the
dynamics can be managed directly by the developer. Each
dependency can declare two callback methods: A bind
method, called when a service appears, and an unbind
method, called when a service disappears. The two injec-
tion mechanisms, field injection and method invocation, can
also be used together. In this combined injection mecha-
nism, the field receives the value before the bind method
invocation. So, if the field is used in the bind method, the
returned value will be up to date. Table 1 presents a portion
of the iPOJO metadata for the Temperature Control service

47

Field Injection Mechanism

<component classname=“...TempCtrl”>
<requires filter=“(location=livingroom)” field=“m heaters”>
</requires>
...

</component>
Method Invocation Mechanism

<component classname=“...TempCtrl”>
<requires>

<callback type=“bind” method=“bindHeater”/>
<callback type=“unbind” method=“unbindHeater”/>

</requires>
...

</component>
Combined Injection Mechanism

<component classname=“...TempCtrl”>
<requires filter=“(location=livingroom)” field=“m heaters”>

<callback type=“bind” method=“bindHeater”/>
<callback type=“unbind” method=“unbindHeater”/>

</requires>
...

</component>

Table 1: Injection Mechanisms in iPOJO Metadata
for TempCtrl Component

component (introduced earlier in Section 2.2) that shows
the dependency of the service on heaters. The three mecha-
nisms for injecting the heater service–field injection, method
invocation, and combined injection–for this dependency are
illustrated in Table 1. In the field injection mechanism, we
simply mention the field name m heaters in the requires
tag for the component, and iPOJO takes care of injecting
and updating the field when heaters appear or disappear
from the living room. In the method invocation mechanism,
we define the callback types bind and unbind along with
their associated methods in the component in the requires
tag. When a heater appears, the bindHeater method de-
fined in the temperature control component is called. In
a similar fashion the unbindHeater method in the compo-
nent gets called when a heater disappears1. The bind and
unbind callback methods are responsible for updating the
m heaters field. Finally, in the combined injection mecha-
nism, we use both the field name and callback types in the
requires tag. When a heater appears or disappears, iPOJO
takes care of injecting and updating the m heaters field. Af-
ter the field update, the callback methods in the component
get called.

Our approach uses the combined service injection mech-
anism, since it allows the component to be notified of the
dynamic event, while taking care of the burden of updat-
ing the field with a consistent service object automatically.
The callback methods in the component that get invoked
when the dynamic change in the field occurs are referred to
as the listener methods. The listener methods usually de-
fine actions or updates to be executed in the service after
the reconfiguration. We attach JML assertions to these lis-
tener methods. Thus, every time the service is dynamically
reconfigured, the listener methods are invoked and conse-
quently, JML assertions associated with the listener method
are evaluated and checked for violations. Our approach thus
validates service behavior during dynamic reconfigurations

1The callback methods, bindHeater and unbindHeater, use
the heater service object appearing or disappearing as a pa-
rameter in the method definition. iPOJO infers the service
object type for the requirement using this parameter.

while the service is running.
Our approach for monitoring services is targeted at help-

ing the creators of integrated services like the temperature
control or theater integrated services with testing and mon-
itoring their behavior. Our approach manually inserts JML
assertions and tags listener methods in the service imple-
mentation. We believe it is reasonable to assume that the
creators and testers of the service have access to its imple-
mentation when testing the service. Note that our approach
views other devices and services used by the service of inter-
est as a black box. We do not intrude into the implementa-
tion of these services. The completeness and correctness of
the JML assertions would have to be manually ensured by
the testers of the service.

3.2 Test oracles for Temperature Control Ser-
vice

In this section, we illustrate our approach for test oracles
using the temperature control service introduced earlier in
Section 2.2. The test oracles monitor the dynamic nature of
the service in the H-Omega architecture. The dynamic as-
pect in the service is introduced by the appearance or disap-
pearance of heaters, or due to temperature change resulting
in heaters being dynamically switched on/off.

We begin by briefly describing the methods implement-
ing the functionality of the temperature control component.
The execute() method in the component is responsible for
the core functionality of the service. When the tempera-
ture control service is activated, the execute() method in
the service component is called. The method computes
and monitors the temperature difference every 2 seconds2.
Based on the temperature difference and the availability of
heaters, the execute() method switches on/off the heaters,
sets the target temperature, and displays the number of ac-
tive heaters on the display device (LCD). The bindHeater()
and unbindHeater() methods serve as the listener methods in
the service component that are notified of dynamic changes
in the heaters. The listener methods are responsible for mak-
ing the necessary updates to the LCD display when dynamic
reconfigurations in heaters occur.

We now proceed to describe the test oracles for this ser-
vice. For ease in understanding, we split the JML specifi-
cations for the service into two: (1) JML specifications that
monitor service behavior during normal (no dynamic recon-
figuration) service operation, (2) JML specifications that
monitor service behavior during dynamic reconfigurations.
The JML specifications in (1) are associated with the exe-
cute() method. The JML specifications in (2) for monitoring
dynamic behavior are associated with the listener methods,
bindHeater() and unbindHeater(). To better understand the
JML specifications for the service, we give a brief description
of the variables used in the specifications.

• num running reflects the number of heaters that ought
to be active and running based on the temperature
difference and number of available heaters.

• isrunning is a boolean variable that reflects whether
the temperature control service is running.

• m heaters is an array of available heaters in the room.

2We found that monitoring every 2 seconds was adequate to
detect change in room temperature. Other values that also
ensure frequent monitoring can be chosen. Choice of this
value is only a service implementation concern, it does not
affect the specification of test oracles.

48

m heaters.length gives the number of available heaters.

• m lcd represents the LCD device available in the room.

• tempdiff represents the temperature difference be-
tween the desired and current room temperature.

iPOJO takes care of injecting the fields, m heaters and
m lcd, at run-time with available heaters and LCD, respec-
tively. Recall that our approach for handling dynamic re-
configurations in services uses the combined service injec-
tion mechanism mentioned in Section 3.1. As a result,
when heaters used in the service get dynamically reconfig-
ured, iPOJO automatically updates the m heaters field with
the change while also notifying the change to the listener
methods. All three methods in the service component, ex-
ecute(), bindHeater(), and unbindHeater() update the vari-
ables num running, the m lcd display, and tempdiff. The
isrunning variable is updated by the execute() method.
The first set of JML specifications, invariants and post
conditions, to check service behavior during normal oper-
ation, are shown in Table 2. The post conditions (using
the ensures clause) in Table 2 are specified on the exe-
cute() method and should hold after the execute() method
call. The invariants (using the invariant clause), on the
other hand, are checked before and after every method
execution in the service component. The post conditions
N1, N2, N3, N4, N5 ensure that the number of heaters ac-
tive in the room correspond to the number of available
heaters and the temperature difference conditions described
earlier in Section 2.2. The post conditions for the heater
(H1, H2, H3) ensure that only num running heaters as
per the economic usage conditions are on. They also en-
sure that all of those heaters are set at the desired target
temperature. The invariants (L1, L2) for the LCD ensure
that when the temperature control service is running, the
LCD is on and displays the number of active heaters. The
invariants L1, L2 should hold at the beginning and end of
the execute(), bindHeater(), unbindHeater() method execu-
tions. Note that since L1, L2 are specified as invariants, they
aid in monitoring service behavior during dynamic reconfig-
urations in addition to normal service operation. It is also
worth noting that properties involving the heaters are speci-
fied as post conditions, rather than invariants, since dynamic
changes in heater availability would cause such invariants to
be violated before calls to bindHeater() and unbindHeater()
that take care of the necessary service updates during dy-
namic reconfigurations.

The second set of JML specifications is to monitor the
dynamic nature of the service. In the service component,
the listener methods bindHeater() or unbindHeater() respec-
tively get called when heaters satisfying the temperature
control service requirements appear or disappear. To moni-
tor dynamic reconfigurations, our approach associates JML
specifications to these listener methods. We present the
bind/unbind methods along with their JML specifications in
Table 3. When a heater appears, the bindHeater() method
in Table 3 is called by the service. Within the method, if
the conditions for economic usage are not violated, then this
newly available heater is switched on and set to the target
temperature. The LCD display is updated to reflect the
change in the number of running heaters. The JML post
conditions associated with the bindHeater() method check
whether the heater is turned on according to the condi-
tions for economic usage. Note that post conditions from
the execute() method N1, N2, N3, N4, N5, H1, H2, H3 are

repeated here since they represent the economic usage con-
ditions for the heaters. The JML invariants, L1 and L2, for
the LCD, mentioned earlier in Table 2, also get evaluated to
ensure the LCD display is updated correctly.

When a heater disappears, the unbindHeater() method
in Table 3 is called by the service. To compensate for the
unbound heater, the method switches on another heater,
if available, in compliance with the economic usage condi-
tions. The number of active heaters in the room and the
LCD display are updated. The JML post conditions check
whether the heater being unbound is switched off and if the
economic usage conditions are obeyed. The JML invariants,
L1 and L2, check whether the LCD display is updated with
the correct number of active heaters.

4. TEST GENERATION AND EVALUA-
TION

We evaluated our proposed approach for test oracles in the
HAS by testing several dynamic reconfigurations in services.
To enable us to evaluate and test our approach thoroughly,
we developed a testing framework that generates tests with
dynamic service reconfigurations for the HAS from a test
pattern. We tailored our existing combinatorial testing tool,
TOBIAS [18], to help achieve this. We monitored the JML
specifications as the test cases were run to check for viola-
tions in service behavior. Additionally, we created several
mutated services by seeding faults into the service so that
service behavior is altered during dynamic changes. Each
mutated service has a single seeded fault. We ran the test
suite generated by TOBIAS against the set of mutated ser-
vices, and checked whether the test oracles in the service
could reveal the mutations. We say that the test oracles
revealed the service mutation for the given test suite if at
least one of the test cases in the test suite violated at least
one of the JML specifications in the mutated service.

The tests generated by TOBIAS are sequences of method
calls with different combinations of input parameter values
for the methods. The input to TOBIAS is a test pattern
(also called test schema) that defines the set of test cases to
be generated. A test pattern is a bounded regular expres-
sion involving the Java methods in the service. TOBIAS
unfolds the test pattern into a set of sequences, and then
computes all combinations of the input parameters for all
the methods in the pattern. The resulting test suite is con-
verted into a JUnit ([14, 4]) file for testing services on the
OSGi platform. Note that TOBIAS was previously used as
a combinatorial test generation tool for traditional JAVA
applications rather than service-oriented applications such
as the HAS. We adapted TOBIAS to generate test suites
that are executable on the OSGi service-oriented platform.
Additionally, we created test patterns that exercised differ-
ent dynamic reconfigurations and behavior changes in the
service by placing calls to methods that made required ser-
vices appear/disappear or by changing the configuration of
the environment during service run-time.

4.1 Temperature Control Service: Test Ora-
cle Evaluation

Due to space limitations, we only briefly illustrate test
generation and oracle evaluation using the temperature con-
trol service in this Section. The test pattern we used to
automatically generate test cases using TOBIAS for the tem-
perature control service is described in Table 4. In the test

49

// Properties for number of active heaters in the room
// (labeled N1, N2, N3, N4, N5)
N1: //@ ensures (isrunning ==> (num_running <= m_heaters.length));
N2: //@ ensures ((isrunning && (m_heaters.length > 0) && (tempdiff < 10))

==> (num_running == 1));
N3: //@ ensures ((isrunning && (m_heaters.length >= 3) && (tempdiff >= 10) && (tempdiff < 20))

==> (num_running == 3));
N4: //@ ensures ((isrunning && (m_heaters.length < 3) && (tempdiff >= 10) && (tempdiff < 20))

==> (num_running == m_heaters.length));
N5: //@ ensures ((isrunning && (tempdiff >= 20)) ==> (num_running == m_heaters.length));

// Heater Properties (labeled H1, H2, H3)
H1: //@ ensures isrunning ==> (\forall int i; 0<=i && i<num_running; m_heaters[i].isOn());
H2: //@ ensures isrunning ==> (\forall int i; num_running<=i && i<m_heaters.length;

!(m_heaters[i].isOn()));
H3: //@ ensures isrunning ==> (\forall int i; 0<=i && i<num_running;

m_heaters[i].getTargetedTemperature() == targetTemp);

// LCD properties (labeled L1, L2)
L1: //@ invariant (isrunning ==> m_lcd.isOn());
L2: //@ invariant (isrunning ==> m_lcd.getDisplay().equals("Number of heaters active is " +

Integer.toString(num_running)));

Table 2: JML assertions to monitor temperature control service behavior

// BIND method and specifications
/*@ ensures ((isrunning && (((tempdiff < 10) && (\old(num_running) < 1))

||((tempdiff >= 10) && (tempdiff < 20) && (\old(num_running) < 3))
||(tempdiff > 20))) <==> (h.isOn() && (num_running == \old(num_running) + 1)));

@*/
//@ Repeat post conditions N1, N2, N3, N4, N5 given earlier
//@ Repeat post conditions H1, H2, H3 given earlier

private synchronized void bindHeater(Heater h) {
if (isrunning) {

tempdiff = tempDiff();
if (((tempdiff < 10) && (num_running < 1))

||((tempdiff >= 10) && (tempdiff < 20) && (num_running < 3)) || (tempdiff > 20)){
System.out.println("Binding Heater: " + h.getFriendlyName());
h.turnOn();
h.setTargetedTemperature(targetTemp);
num_running++ ;
m_lcd.display("Number of heaters active is " + Integer.toString(num_running));

}
}

// if isrunning is false it means the execute method is not running,
// so no updates necessary

}

// UNBIND method and specifications
//@ ensures (isrunning ==> (h.isOn() == false));
//@ Repeat post conditions N1, N2, N3, N4, N5 given earlier
//@ Repeat post conditions H1, H2, H3 given earlier

private void unbindHeater(Heater h){
if (isrunning && h.isOn()) {

System.out.println("Unbinding Heater: " + h.getFriendlyName());
h.turnOff();
num_running--;
// Turn on another heater, if available, according to
// temp diff and economic usage conditions
if ((num_running < m_heaters.length) && !m_heaters[num_running].isOn() &&

(((tempdiff < 10) && (num_running < 1))
||((tempdiff >= 10) && (tempdiff < 20) && (num_running < 3)) || (tempdiff > 20))){

m_heaters[num_running].turnOn();
m_heaters[num_running].setTargetedTemperature(targetTemp);
num_running++ ;

}
m_lcd.display("Number of heaters active is " + Integer.toString(num_running));

}
}

Table 3: Listener methods and JML assertions to monitor dynamic reconfigurations in temperature control
service

50

Initial Configuration

Introduce 3 to 5 heaters
Set environment temperature to 5, 20, or 80
Set desired room target temperature to 20, 40 or 100
Activate Temperature Control Service
Wait for a fixed time

Dynamic Changes

Add/Remove heater
Change environment temperature
Wait for a fixed time
Deactivate Temperature Control Service

Table 4: Informal description of the TOBIAS test
pattern for Temperature Control service

pattern in Table 4, the wait times were configured to allow
the service to run for a sufficiently long time so that changes
in service behavior could be observed. The test pattern il-
lustrated was unfolded into 135 test cases by TOBIAS with
different combinations of input parameters. Note that it is
possible to create many other test patterns, different from
the one in Table 4, for the temperature control service; with
different sequences of method calls, different input parame-
ters for heater configurations and temperature settings, dif-
ferent numbers and combinations of dynamic changes. We
chose the test pattern in Table 4 to simply illustrate our test
generation and evaluation approach. We do not place any
claims on the thoroughness and effectiveness of the gener-
ated test suite.

We evaluated the effectiveness of our oracles by seeding
faults into the service and checking if the oracles were capa-
ble of revealing the faults. We created 25 mutated services,
by manually seeding faults to alter behavior of the service
during dynamic reconfigurations. Each mutated service had
a single seeded fault. We ran the test suite generated for
the test pattern in Table 4 over each of the 25 mutated ser-
vices and checked if any of the JML specifications in the
mutated service were violated. We found that for 23 of the
25 mutated services, JML specifications were violated re-
vealing the mutations in the service. Thus, for the given
test suite of 135 test cases, our approach for test oracles
was effective in revealing 23 of the 25 seeded faults. On
closer examination of the two undetected faulty scenarios,
we found that the test suite did not exercise the scenarios
involving the two seeded faults. To overcome this weak-
ness in the test suite, we manually created test cases that
exercised the two faulty scenarios. The newly created test
cases violated the JML specifications for the bindHeater()
listener method. We could thus reveal all 25 mutations with
our test oracles and the test suite augmented with the newly
created test cases. The evaluation clearly showed that the
JML specifications associated with the bind/unbind listener
methods were effective in revealing erroneous behaviors dur-
ing reconfigurations.In our future work, we plan to explore
test generation for SOC applications like the HAS in more
depth.

4.2 Threats to Validity
We face two threats to the validity of our evaluation.

The first one is with regard to the properties that can be
expressed with JML. In our example, the reconfiguration
properties specified with JML were either static properties
expressed as invariants, or properties only valid in the initial
or final states expressed as pre or postconditions. We also

specified dynamic properties involving current and previous
states in the example (using the \old clause). Nevertheless,
we did not explore properties where the current behavior
is dependent on behavior that occurred past the previous
state, i.e. the system has some memory of the behavior
history and reacts differently to an event based on the his-
tory. For example in the temperature control service, when
a heater appears, the service may be required to react differ-
ently based on whether that heater was already seen before
or not. The JML specification language does not support
operators to express such temporal properties. This issue,
however, can be overcome by using the approach proposed
by Bellegarde et al. [5] that translates such temporal proper-
ties into an equivalent set of JML annotations. The second
external threat is that the example service, test suite, and
number of mutations used in our evaluation are relatively
small when compared to an evaluation over an industrial
system. Nevertheless, this is only a preliminary evaluation
that helped show that our approach for test oracles holds
promise. We plan to pursue a more extensive evaluation on
real world examples in the future.

5. RELATED WORK
The run-time monitoring challenges encountered in sys-

tems composed of web services are closely related to the
monitoring challenges in the HAS since both applications
encounter dynamic reconfigurations in services. Run-time
monitoring of properties in web services has been explored
in the past.

Spanoudakis et al. [21] proposed a framework for run-time
monitoring of requirements, expressed in event calculus, for
web-service compositions. Baresi et al. [3] also proposed an
approach for run-time monitoring web service compositions.
They monitor whether the external service selected by the
composition process conforms to the behavior expected from
it. Ghezzi et al. [12] proposed an approach, Dynamo, to
specify constraints and monitor collaborations with external
services. Dynamo monitors whether the external services
that it collaborates with deliver what is expected of them.

The related work in the web services domain primarily fo-
cuses on monitoring web service compositions. Web service
compositions are managed by a composition process speci-
fied in languages like BPEL [13] or WSCDL [15] (depending
on the collaboration model chosen). A composition process,
as defined by Mahbub et al. [19], is one that coordinates
external web services that get deployed in a service-oriented
system. The composition process provides the required sys-
tem functionality by calling operations in the external web
services, receiving and processing the results that these ser-
vices return, and accepting and/or responding to requests
from them. All the proposed monitoring approaches in the
web services domain rely heavily on the composition pro-
cess, and monitor whether the external web service selected
by the composition process adheres to the behavior expected
from it. Our proposed approach for monitoring the HAS
differs from these existing approaches in two fundamental
ways. One, our approach aims at monitoring the behav-
ior of the integrated service that uses other external ser-
vices. Unlike existing approaches, our monitoring approach
is not concerned with the selection mechanism and behavior
of external services. For instance in the temperature control
service, we monitored behavior of the service in the pres-
ence of changes to the external heater services. We do not

51

monitor whether the heater and LCD services that it uses
are selected according to requirements and function as ex-
pected. Two, the H-Omega gateway that we use to deploy
and provide services, transparently manages interaction be-
tween services. There is no explicit composition process. As
a result, our approach for run-time monitoring is indepen-
dent of a composition process, and instead employs listener
methods interacting with the service architecture to help
verify dynamic service behavior.

6. CONCLUSION
In this paper, we proposed an approach to address one

of the challenges in testing home automation systems—
specifying test oracles that monitor service behavior in the
presence of dynamic service reconfigurations. We formally
specify test oracles for the HAS using the JML specification
language. We use JML specifications as run-time monitors
of the service behavior. The main challenge in run-time
monitoring is in identifying “visible” states for evaluating
the specifications during program execution. We provide
the visible states for specification evaluation using listener
methods that are associated to dynamic events in the service
architecture. We combine this capability with JML run-time
assertion evaluation to monitor service behavior during dy-
namic reconfigurations. We illustrated our approach with
an example service in the HAS.

We conducted an initial evaluation of our proposed ap-
proach for test oracles by testing several dynamic service
reconfigurations in the example service. We adapted our
existing combinatorial testing tool, TOBIAS, over JAVA
applications to generate tests with dynamic service recon-
figurations for the HAS. We ran the test suite from TO-
BIAS against 25 mutated versions of the example service to
evaluate the fault finding capability of the test oracles. We
found that the test oracles could reveal all 25 mutations.
From our preliminary evaluation, we believe our proposed
approach provides a useful and effective means for defining
test oracles that monitor service behavior in the presence of
dynamic reconfigurations for the HAS. We plan to conduct
a more extensive evaluation of our test oracle approach on
real world example systems in our future work.

In this paper, we have only explored the applicability of
our approach to the HAS implemented using the H-Omega
service architecture. Nevertheless, it is straightforward to
see that our approach can be used in a like manner for
other service-oriented applications implemented using the H-
Omega service architecture. To apply our approach to other
service architectures, we would need to utilize the appropri-
ate mechanisms in the underlying architecture for notifica-
tion of dynamic changes. We plan to extend our approach
to include other architectures in our future work.

7. REFERENCES
[1] Apache felix iPOJO website.

http://felix.apache.org/site/apache-felix-ipojo.html.
[2] OSGi Alliance. OSGi Service Platform: Release 3,

March 2003. IOS Press, 2003.
[3] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors

for composed services. In ICSOCŠ04, pages 193–202,
2004.

[4] K. Beck and E. Gamma. Test infected: Programmers
love writing tests. Java Report 3(7), July 1998.

[5] F. Bellegarde, J. Groslambert, M. Huisman,
J. Julliand, and O. Kouchnarenko. Verification of

liveness properties with JML. Technical report,
INRIA.

[6] J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier,
and C. Marin. A dynamic-soa home control gateway.
In IEEE International Conference on Services
Computing (SCC 2006), 2006.

[7] Y. Cheon and G. T. Leavens. A Runtime Assertion
Checker for the Java Modeling Language (JML). In
Hamid R. Arabnia and Youngsong Mun, editors,
International Conference on Software Engineering
Research and Practice (SERP ’02), pages 322–328,
Las Vegas, Nevada, June 2002. CSREA Press.

[8] Y. Cheon and G.T. Leavens. A simple and practical
approach to unit testing: The JML and JUnit way. In
16th European Conference on Object-Oriented
Programming (ECOOP’02), number 2374 in LNCS,
pages 231–255. Springer, June 2002.

[9] C. Escoffier, J. Bourcier, P. Lalanda, and Jianqi Yu.
Towards a home application server. In 5th IEEE
Consumer Communications and Networking
Conference, pages 321–325, January 2008.

[10] C. Escoffier, R.S. Hall, and P. Lalanda. iPOJO: an
extensible service-oriented component framework. In
IEEE International Conference on Services
Computing (SCC 2007), pages 474–481, July 2007.

[11] S. Fickas and M.S. Feather. Requirements monitoring
in dynamic environments. In Proc. of the Second IEEE
International Symposium on Requirements
Engineering, pages 140–147, March 1995.

[12] C. Ghezzi and S. Guinea. Run-time monitoring in
service-oriented architectures. Test and Analysis of
Web Services, 2007.

[13] IBM, BEA Systems, Microsoft, SAP AG, and Siebel
Systems. Business Process Execution Language for
Web Services 1.1, 2005.

[14] JUnit. http://www.junit.org.
[15] N. Kavantzas, D. Burdett, and G. Ritzinger. Web

Services Choreography Description Language version
1.0, 2004.

[16] M. Kim, S. Kannan, I.Lee, O. Sokolosky, and
M. Viswanathan. JAVA-MAC: a runtime assurance
tool for java programs. Electronic Notes in Theoretical
Computer Science, 55, 2001.

[17] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D. R. Cok, P. Muller, J. R. Kiniry, and P. Chalin. JML
Reference Manual. Iowa State University, Jan 2006.

[18] Y. Ledru, L. du Bousquet, O. Maury, and P. Bontron.
Filtering TOBIAS combinatorial test suites. In 7th
Int. Conf. FASE, Held as Part of ETAPS, volume
2984 of LNCS, pages 281–294, Barcelona, Spain, 2004.

[19] K. Mahbub and G. Spanoudakis. Monitoring
WS-Agreements: An Event Calculus-Based Approach.
Test and Analysis of Web Services, 2007.

[20] D.K. Peters and D.L. Parnas. Requirements-based
monitors for real-time systems. IEEE Trans. Softw.
Eng., 28(2):146–158, 2002.

[21] G. Spanoudakis and K. Mahbub. Requirements
monitoring for service-based systems:towards a
framework based on event calculus. In Proceedings of
the 19th International Conference on Automated
Software Engineering, 2004.

52

