
Sensitivity of Application Performance to
Resource Availability

Boris Penev and Ajitha Rajan

School of Informatics, University of Edinburgh
s1249355@sms.ed.ac.uk, arajan@staffmail.ed.ac.uk,

Abstract. Existing literature has extensively explored and analysed the
effects of shared resource contention to improve system throughput and
resource utilisation. Nevertheless, a systematic study varying different
resource availabilities and examining their combined effect on the per-
formance of an individual application has not been conducted earlier.
In this paper, we perform global sensitivity analysis using Monte Carlo
simulations of three resource parameters – CPU availability, RAM avail-
ability and number of cores, and examine their effect on execution time
of industry standard benchmark programs. In addition to understanding
application performance sensitivity, our study also lends itself to identify-
ing threshold levels of required resources, below which severe application
performance degradation occurs.

1 Introduction
Users, whether on a desktop, laptop or mobile devices, tend to have several appli-
cations running concurrently. The performance of any one of these applications,
given a hardware platform, is heavily dependent on the resources available, which
in turn relies on the resource demands of applications and processes running at
that time, shared resource contention and the operating system’s resource allo-
cation priorities and decisions. It is common knowledge that resource contention
directly impacts application performance [6]. Mars et al. show more than 30%
degradation in application performance (from running alone) when run alongside
with another application on a multicore chip due to contention for the last level
cache. However, varying levels of resource contention and, therefore, resource
availability and its resulting impact on application performance is not well un-
derstood. Additionally, the user receives little to no feedback on the extent of
expected performance degradation of an application due to resource contention
and reduced availability.

Previous work has extensively explored and analysed the effects of shared
resource contention [6],[10],[5]. The aim in all these studies has been to use the
understanding of resource contention to improve system throughput, resource
usage, and to enforce QoS and fairness across all running applications. System,
rather than an individual application, performance has been the optimisation
goal. Bhadauria et al. performed Parsec Benchmark characterisation for cache
performance, DRAM speed and bandwidth, thread scaliability for solo bench-
mark execution (no other running applications) [1]. Dey et al. and Zhuravlev et
al. study L1, L2 cache and front side bus contentions for multi-threaded applica-
tions individually and with one other co-running application [2],[11]. They show
performance degradation occurs in the presence of certain co-running applica-
tions but not others. The effect of reduced resource availability as a result of one
other co-running application was studied, however the effect of systematically
varying different resource availabilities across the whole range (from 0 to 100%)
has not been studied. The experiments presented in this paper attempts to fill



this gap. The goal in understanding this effect with respect to an application
is to inform the user dynamically of when the performance of the application
is expected to fall below acceptable levels due to lack of availability in required
resources. The user can use this feedback to guide their actions, which might
be to kill other running applications, or to have the operating system prioritise
resources to the application of interest, or to simply accept the below par per-
formance. Techniques in existing literature have never actively involved the user
in the decision for resource allocation. This work is an attempt to give the user,
if they choose, information and ultimately control in managing the performance
of an application dynamically.

In this paper, we examine the effect on the execution or completion time of
an application when the percentage of available CPU, RAM and number of cores
simultaneously change. Other resources, such as cache, memory bus, network,
I/O decives will also potentially impact the performance of an application. How-
ever, in this initial study we do not examine the effect of these other resources.
We plan to consider them in the future.

We use global sensitivity analysis [9] to assess the impact of resource avail-
ability on application performance since parameter sensitivity is dependent on
the interactions and influences of all parameters considered together on appli-
cation performance rather than one parameter at a time. Sensitivity analysis
can be achieved through Monte Carlo sampling [3] – repeated random sampling
of input parameters from given distributions. In our setting, in each iteration,
we randomly sample values for the three hardware parameters, set the resource
availability to the respective values and record execution time of the application
for each such setting. The input and output distributions are useful in assessing
influence of input parameters on the overall output performance.

We used industry standard benchmarks in our experiments. For 5 of the 6
benchmarks, we found CPU availability was the most influential of the three
resource parameters on execution time. For one of the benchmarks, number of
cores was the most influential parameter. Our experiment results revealed that it
is possible to set and monitor for threshold levels of required resources to avoid
performance degradation of an application below user expectations.

2 Experiment
In our experiment, we use applications from EEMBC [8] benchmark suite, SPEC
CPU 2006 [4] and a Linux kernel compilation program to study performance
degradation from limited resource availability. In actual settings, limited re-
source availability arises from shared resource contentions with other running
applications. We artificially set limits to availability of different resources in our
experiments so we can systematically explore a large sample of values in the
range of resource availabilities. We ran our experiments on a desktop running
Scientific Linux 7.1 with 8 GB RAM, Intel i5-3470 quad core CPU at 3.20GHz.
In the following sections, we discuss the tools we use to limit available resources,
the Monte Carlo approach we use to understand the effect of limited resources,
and finally the benchmark applications used in our experiment.

2.1 Setting Hardware Parameters

We consider application performance as its completion time and measure it using
the time module in the python script used to run the benchmark and workload.
Other performance measures can also be used in place of execution time, but we
have not considered them in this paper. In addition to monitoring the output
performance, we need to control and vary the input parameters which is amount
of available resources–(1) CPU, (2) Memory (RAM), and (3) number of



cores – for the application of interest. Cgroups is a kernel feature to limit the
resource usage for a group of processes [7] and creates little to no overhead since
it is a kernel tool. We use Cgroups to modify all three hardware parameters using
the cpuset, cpu and memory subsystems. To achieve limits on cpu availability
and number of cores, the cpu and cpuset subsystem manipulates the scheduler
and its policy with respect to the group of processes in cgroup. The memory
subsystem manipulates the memory allocation policy to achieve limits on the
memory parameter.

2.2 Random Sampling of Parameters

In our experiments, we assume the parameters, CPU availability, #cores and
RAM availability, follow a gaussian distribution. If the developer knows one or
more of the parameters to follow a different distribution from gaussian, then
we can sample according to that. For each benchmark, we sample and generate
random settings of the parameters using their gaussian distributions. The CPU
availability(in %) has a mean 50, deviation 20, left limit 25 and right limit 100.
Number of cores parameter has a mean 2, deviation 1.5, left limit 1 and right
limit 4. The memory parameter has a mean 1 GB, deviation 0.4 GB, left limit
1KB and right limit 3 GB. These limits have been chosen based on the hardware
configuration and application characteristics (mainly for memory limits). Our
base case environment has 50% CPU availability, 2 cores and 1GB memory
and we use this as the mean of the normal distribution. The deviation in the
distribution corresponds to the variation in the resource availability.

2.3 Subject Programs

We used the Embedded Microprocessor Benchmark Consortium (EEMBC) [8]
that provides a diverse suite of benchmarks for microprocessors, microcontrollers
and embedded devices with a total of 32 programs and workloads from the
automotive, telecommunications, office, networking, and image processing do-
mains. We also used the integer benchmarks from the SPEC CPU 2006 suite [4]
(SPECint benchmarks), an industry standard benchmark suite to test CPU per-
formance, with a total of 12 programs and corresponding reference workload for
each. We also use Linux kernel compilation(build kernel) as a benchmark. We
disable non-essential drivers, networking, cryptography and virtualisation op-
tions. This lowers the number of dependencies, making it more tractable for our
initial evaluation. We compile it using multiple cores to assess the sensitivity of
execution with respect to cores.

3 Results and Analysis
We ran Monte Carlo simulation over the three hardware parameters for all
45 programs. Owing to space limitations, we show the results for only six of
the 45 programs in the paper– build kernel, matrix01 from the EEMBC
suite, astar, bzip2, gobmk, h264 from the SPEC CPU2006 benchmarks,
whose descriptions are shown in Table 1. Results for the remaining 39 pro-
grams from EEMBC and SPEC CPU 2006 benchmark suites can be accessed at
“http://homepages.inf.ed.ac.uk/arajan/results-ICTSS.pdf”.

Parameter sensitivity can be determined qualitatively by plots of input vs
output values, or quantitatively by calculations of correlation coefficients [3].
Table 3 shows scatter plots for the 6 programs, plotting each resource availability
against execution time. It is worth noting that although each plot only shows
one resource at a time, all three resource availability values have been changed
and sampled at the points in the plots.



Program Description Benchmark Suite # Samples
matrix01 Matrix operations EEMBC 1438
build kernel Building Linux kernel n/a 101
astar Pathfinding library for 2D maps SPEC CINT2006 500
bzip2 File compression SPEC CINT2006 500
gobmk Plays the GO game SPEC CINT2006 500
h.264 Video encoding SPEC CINT2006 500

Table 1. Benchmarks and their desciption

Program ρ CPU avail. ρ Num. Cores ρ RAM
matrix01 -0.55 0.05 0.03
build kernel -0.46 -0.61 0.19
astar -0.92 -0.07 0.09
bzip2 -0.93 -0.02 -0.01
gobmk -0.92 0.04 -0.03
h.264 -0.93 0.02 -0.07

Table 2. Sensitivity indices of resource availability (Correlation Coeff. with exec. time)

We compute sensitivity indices for the parameters using Pearson’s correlation
coefficient (ρ) which represents the sensitivity of the output to input parameter
variations [3]. The larger the absolute value of ρ the stronger the degree of linear
relationship between the input and output values. A negative value of ρ indicates
the output is inversely related to the input. Table 2 shows the sensitivity indices
for CPU availability, number of cores and RAM with respect to a program’s
execution time. Negative values of ρ for resource availability is to be expected
since execution time is typically lesser when there is more resource available.

From the plots in Table 3, we find that for all benchmarks, except
build kernel, CPU availability has the most effect on performance – increased
CPU availability results in decreased execution time. This is also reflected by its
significantly higher sensitivity index in Table 2 when compared to the other two
resources, RAM and #cores. For these 5 benchmark programs, the sensitivity
indices for #cores and RAM is small (absolute values in the range of 0.01 to
0.09) and only marginally different. As can be seen in the Cores and Memory
plots for the 5 programs in Table 3, there is no discernible effect on execution
time with increased availability. This is because the 5 benchmark programs are
not optimised to run on multiple cores (designed as single core benchmarks)
and have low memory requirements. Nevertheless, we found that for the gobmk
benchmark when the available RAM was sampled at values less than 30MB,
execution time increased dramatically – by 2 times for 24.1 MB RAM to 1195
times for 0.82 MB. We confirmed the effect was because of the RAM, rather than
the other resources, by fixing the values for #cores at 2 and CPU available at
100%. Among available RAM values beyond 30MB, the difference in execution
time was negligible. This implies that performance degradation is rapid when
RAM available is below a certain threshold, which is 30MB for gobmk. We can
use this information to notify the user when available RAM nears the threshold,
using performance monitoring tools, to avoid this performance degradation. We
did not see this phenomenon with available RAM for the other 4 benchmarks.

build kernel exhibited a different trend from the other benchmarks. We find
that execution time is most affected by changes in #cores (highest sensitivity
index) – an increased number of CPU cores results in decreased build time. This
is seen in the plot for build kernel Cores in Table 3 as the number of cores
increases from 1 to 4, the execution time observed reduces significantly. The
make tool and the Linux kernel build processes are well optimised for multi-



threaded execution on multicore processors. Although not as high as #cores,
CPU availability also has a significant impact and sensitivity index. Increased
CPU availability results in decreased build time as seen in the build kernel
Availability plot. Thus, #cores and CPU availability are both important for
build kernel execution time. Changes in RAM availability produced no notice-
able result in the build time and this may be because memory requirements for
build kernel are not high.

Using the information on parameter sensitivity, the plots in Table 3 and the
raw data from running the experiment, one can identify thresholds for the dif-
ferent parameters beyond which performance degradation is unacceptable for
the user. Identifying the threshold of unacceptability will require knowledge of
expected performance levels (as per user) which can be inferred using historical
data or user input. For instance, for the bzip2 benchmark, if we assume unac-
ceptable performance is execution slowdown (from best case time) greater than
33%, then we pick threshold 60% for CPU availability (see plots in Table 3),
since execution time increases by more than 33% for lower than 60% available
CPU. RAM and # cores do not have a profound effect on execution time, so we
do not pick thresholds for these resources for bzip2.

4 Conclusion
For the industry standard benchmarks used in this paper, we found that varying
the input parameters using Monte Carlo simulations and examining the effect on
execution time was an effective way to study application performance sensitivity
to availability of different resources. Systematically analysing global resource
sensitivity has not been studied previously. We found that such a study helps in
identifying thresholds of unacceptable performance degradation. Resources can
be monitored for these threshold values and the information communicated to
the user or the system to act upon as needed.

References

1. M. Bhadauria, V. Weaver, and S. McKee. Understanding parsec performance on
contemporary cmps. In IISWC 2009, pages 98–107. IEEE, 2009.

2. T. Dey, W. Wang, J. Davidson, and ML Soffa. Characterizing multi-threaded
applications based on shared-resource contention. In ISPASS 2011, pages 76–86.
IEEE, 2011.

3. DM Hamby. A review of techniques for parameter sensitivity analysis of environ-
mental models. Environmental monitoring and assessment, 32(2):135–154, 1994.

4. John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Com-
puter Architecture News, 34(4):1–17, 2006.

5. H. Jin, R. Hood, J. Chang, J. Djomehri, D. Jespersen, K. Taylor, R. Biswas,
and P. Mehrotra. Characterizing application performance sensitivity to resource
contention in multicore architectures. NASA Ames Research Center, Tech. Rep.
NAS-09-002, 2009.

6. J. Mars, N. Vachharajani, R. Hundt, and ML Soffa. Contention aware execution:
online contention detection and response. In Proceedings of the 8th CGO, pages
257–265. ACM, 2010.

7. P. Menage, P Jackson, and C Lameter. Cgroups. Available on-line at: http://www.
mjmwired. net/kernel/Documentation/cgroups. txt, 2008.

8. J.A. Poovey, M Levy, S Gal-On, and T Conte. A benchmark characterization of
the eembc benchmark suite. Micro, IEEE, PP(99):1–1, 2009.

9. H. Wagner. Global sensitivity analysis. Operations Research, 43(6):948–969, 1995.
10. C. Xu, X. Chen, R. Dick, and Z. Mao. Cache contention and application perfor-

mance prediction for multi-core systems. In ISPASS 2010, pages 76–86.
11. S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource con-

tention in multicore processors via scheduling. In ACM Sigplan Notices, volume 45,
pages 129–142. ACM, 2010.



Table 3. Scatter plots of execution time versus resource availability (CPU, RAM,
#cores) for build kernel, 1 EEMBC and 4 SPEC benchmarks


