
Accelerated Test Execution using GPUs

Ajitha Rajan1, Subodh Sharma2, Peter Schrammel2, and Daniel Kroening2

1School of Informatics, University of Edinburgh, UK
2Department of Computer Science, University of Oxford, UK

1arajan@inf.ed.ac.uk
2{subodh.sharma,peter.schrammel,kroening}@cs.ox.ac.uk

ABSTRACT
As product life-cycles become shorter and the scale and complex-
ity of systems increase, accelerating the execution of large test
suites gains importance. Existing research has primarily focussed
on techniques that reduce the size of the test suite. By contrast, we
propose a technique that accelerates test execution, allowing test
suites to run in a fraction of the original time, by parallel execution
with a Graphics Processing Unit (GPU).

Program testing, which is in essence execution of the same pro-
gram with multiple sets of test data, naturally exhibits the kind of
data parallelism that can be exploited with GPUs. Our approach
simultaneously executes the program with one test case per GPU
thread. GPUs have severe limitations, and we discuss these in the
context of our approach and define the scope of our applications.
We observe speed-ups up to a factor of 27 compared to single-core
execution on conventional CPUs with embedded systems bench-
mark programs.

1. INTRODUCTION
The number of tests needed to effectively validate any non-trivial

software is extremely large. For instance, Yoo et al. [24] state that
for an IBM middleware product used in their study, it takes a to-
tal of seven weeks to execute all the test cases, making overnight
builds impossible. Much of the research in software testing over the
last few decades has focussed on test suite reduction techniques and
criteria (such as coverage) that help in identifying the effective tests
to retain. This trend is particularly seen in regression testing and
black-box testing, where numerous optimisation techniques—test
case selection, test suite reduction, and test case prioritisation—
have been proposed to reduce testing time [23, 19]. Even after
applying these optimisations, test suites remain large and their ex-
ecution is typically very time consuming. This puts an enormous
strain on software development schedules.

We present an approach with the potential of executing test suites
in a fraction of the original time and explore its feasibility on em-
bedded systems benchmark programs. Our approach leverages the
speedup offered by Graphics Processing Units (GPUs). GPUs

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright 2014 ACM 978-1-4503-3013-8/14/09.
http://dx.doi.org/10.1145/2642937.2642957.

Testcase1

Load
Instructions

Program

Execute
Input[] = testcase0 ... testcaseN-1
Copy Input[] to GPU device memory
Launch N GPU threads

ThreadID

TestcaseNTestcase2 . . .

Load
Data

Load
Data

Load
Data

Copy Output[] from device memory to CPU

output[threadIdx] = program(input[threadIdx])

0 1 2 3 4 5 6 7 N-2N-1

Figure 1: Our Approach for Test Execution on a GPU

are massively parallel processors featuring multi-threaded perfor-
mance unmatched by high-end CPUs. The single-chip peak per-
formance of state-of-the-art GPU architectures exceeds 1500 G-
FLOPS, which compares to around 100 GFLOPS for a traditional
processor at its best [12]. A further advantage of GPUs is that
they are more energy efficient than their multi-core CPU counter-
parts [11, 20]. Finally, in terms of cost per performance, GPUs
are more affordable than multiple PCs. In particular, the manage-
ment cost of one computer with GPU is much smaller than that of
a corresponding cluster of PCs.

Test Execution using GPUs.
General-purpose computing on GPUs (GPGPU) has been suc-

cessfully applied in a broad range of domains [15, 21, 8]. GPUs
use a Single Instruction Multiple Thread (SIMT) architecture to ex-
ploit data-level parallelism. We believe software testing will benefit
greatly from GPUs, and the most compelling reason for this is the
fact that program testing, i.e., running the same program with mul-
tiple sets of test data, naturally exhibits data parallelism that can
be exploited with GPUs. There has been no work in the past ex-
ploring this possibility and this paper paves the way in leveraging
the acceleration provided by GPUs for software testing.

Existing literature on GPGPU investigates techniques to trans-
form CPU versions of a program to run on the GPU. The key prob-
lem here is the identification of opportunities to parallelise. Our
approach is dramatically different: we leave the program and its
logic untouched and only paralellise the running of multiple test
cases on the program.

Our approach simultaneously executes the the program with one
test case per GPU thread. We will instrument the program with
GPU device management code that acts as a wrapper for the orig-

inal code. We store the test suite in the GPU device memory and
launch one GPU thread with the original program functionality for
each test input. The threads require no synchronisation or coordi-
nation since the executions of different test cases are completely
independent. No program transformation from CPU program to
GPU program is required in our proposed technique, and thus, we
still test the original program logic and obtain results that are the
same as those obtained with a CPU. However, current GPUs have
severe limitations and impose restrictions on the class of programs
we can test. We discuss these limitations in Section 3.3.

Our approach for accelerated test case execution using GPUs
provides the following potential benefits: (1) a significant reduc-
tion in test suite execution time and as a result huge savings in
testing costs, and (2) for the same allotted test time, allows more
test cases to be executed, potentially increasing the likelihood of
fault detection [9], and (3) better energy efficiency than testing us-
ing multi-core CPUs or PC clusters [11, 20].

Related Work.
GPUs can be exploited for non-graphical tasks using General

Purpose computing on Graphical Processing Units (GPGPU) [15].
GPGPU has been successfully applied in a broad range of applica-
tions. There is growing interest in the software engineering com-
munity to use the massive performance advantage offered by GPUs.
Recenty, Yu et al. explored the use of GPUs for test case genera-
tion [25]. Bardsley et al. have developed a static verfication tool,
GPUVerify, for analysing GPU kernels. Li at al. and Yoo et al. have
adapted multi-objective evolutionary algorithms for test suite opti-
mization to execute on GPUs. Nevertheless, we are not aware of
any existing study that has explored the use of GPUs to accelerate
test suite execution which is the goal of our work.

Our contributions.
To validate our hypothesis on test acceleration with GPUs, we

make the following contributions in this paper:
1. We describe and implement our approach for executing test

cases in parallel on a GPU using the CUDA programming
model.

2. We evaluate our approach experimentally using example pro-
grams and test suites, and discuss the achieved speedup. We
use programs from the embedded systems domain, in partic-
ular programs from the embassy benchmark suite [6].

3. We discuss the limitations of our approach, i.e., the testing
activities it can be applied to, and the application domain.

2. BACKGROUND
The success of GPUs in the past few years has been due to the

ease of programming using the CUDA [1] and OpenCL [3] parallel
programming models, which abstract away details of the architec-
ture. In these programming models, the developer uses a C-like
programming language to implement algorithms. The parallelism
in those algorithms has to be exposed explicitly. The GPU SIMT ar-
chitecture can deliver extreme speedups if the different threads exe-
cuted have no data dependencies. We now present a brief overview
of the core concepts of CUDA.

The highest level of the CUDA thread programming model is a
parallel kernel. A kernel is a function that is invoked by a pro-
gram running on the host CPU but is executed on the GPU. Kernel
functions are identified by means of the keyword __global__. Ker-
nel functions can only access the memory on the GPU; any data
required by it has to be copied to GPU memory before invoking
the kernel. The kernel is executed as a grid of blocks of threads.

In other words, threads are grouped into blocks and blocks are
grouped into a grid. Grid and block dimensions can be specified
when launching the kernel. Grids and blocks can be multidimen-
sional and along each dimension there is a hardware-defined limit
on the number of threads and blocks that can be created.

The memory system is organized in three levels of hierarchy.
Closest to the core are the registers, which have the lowest latency
and are private to each thread. Next is shared memory, which is
again small and has low access latency. Shared memory is available
to the threads within a block. All threads can access the large global
memory, which is comparatively slow (400–800 cycles).

Finally, the execution model in CUDA requires threads in blocks
to be executed in groups called warps. A warp is a group of 32
threads in a block that are launched and executed together. All
threads in a warp execute the same instruction but on different data.
This is often referred to as lock-step execution semantics. When
a conditional instruction is encountered with control flow diver-
gence among the threads within a warp, GPUs resort to predica-
tion, which can improve instruction scheduling and cache behavior
of programs. Each thread block is mapped to one or more warps.
As a result, we choose the thread block dimension as multiple of the
warp size. Warps within a thread block can execute independently.

The example in Figure 3 gives the definition of a kernel function,
which is invoked as follows:

compute<<<1,NUM_TESTS>>>(device_inputs)

Here, 1 specifies the grid dimension and NUM_TESTS specifies the
block dimension. A pointer to a block of GPU memory is passed
as an argument to the function. Note that such memory is allo-
cated and initialised by the host code using the cudaMalloc and
cudaMemcpy functions. A unique thread id within a thread block
is given by the system variable threadIdx.x (along a single di-
mension) and the block id is denoted by blockIdx.x. Thus, a
thread id that is unique in the grid can be obtained by calculating
blockIdx .x · blockdim + threadIdx .x .

3. OUR APPROACH
We believe that the execution of a large test suite is a natural

match for this architecture, since it requires executing the same
program multiple times with different inputs. Running a program
with a test case on a CPU typically involves loading the program
and the test case into memory and executing the instructions with
the loaded data. This is repeated for every test case in the test suite.
Each test case run is completely independent of other test case runs.
Also, all the executions are over the same program, albeit possibly
not the same instructions, depending on the control logic in the
program. On the GPU, our approach will launch as many GPU
threads as there are test cases, where each thread executes the same
sequential program with a different test case. Since executions of
different test cases have no data dependencies, there is no need for
any thread synchronisation in our approach.

The key points of our approach (Figure 1) are:
1. We vectorise the test inputs so that their dimension is the

number of test cases in the test suite.
2. We copy the vectorised inputs from the host memory to the

GPU device memory.
3. We then launch the kernel with the program functionality on

the requisite number of GPU threads (ideally as many as
there are test cases). Each GPU thread will operate on the
same program but with different test data, using the unique
thread id to identify the test case inputs to execute over.

4. We copy the program output from the GPU back to the CPU.

#define ARRAY_SIZE 9

void quickSort(int[], int, int);
int partition(int[], int, int);

int main(void) {
// sample input array as test case
int a[] = { 7,12,1,−2,0,15,4,11,9 };
quickSort(a, 0, ARRAY_SIZE−1);
return 0;

}

Figure 2: Harness for testing Quicksort with one test input

#define ARRAY_SIZE 9
#define NUM_TESTS 256

__device__ void quickSort(int[], int, int);
__device__ int partition(int[], int, int);

// GPU function
__global__ void compute(int ∗tests) {

// The thread ID identifies the test case
int test_case = threadIdx.x∗ARRAY_SIZE;
quickSort(tests+test_case, 0, ARRAY_SIZE−1);

}

int main(void) {
int host_inputs[NUM_TESTS][ARRAY_SIZE] = {....};
int ∗device_inputs;

cudaMalloc((void ∗∗)&device_inputs, sizeof(host_inputs));
cudaMemcpy(device_inputs, host_inputs,

sizeof(host_inputs), cudaMemcpyHostToDevice);

// Number of blocks is 1 and number of threads per block is 256.
compute<<<1, NUM_TESTS>>>(device_inputs);
return 0;

}

Figure 3: CUDA test harness for Quicksort with 256 tests

Developers using our approach only need to understand the pro-
gram interface, i.e., inputs and outputs. The rest of the program is
used as a black box.

3.1 An Example
To better understand our approach, consider Figure 2, which

gives a harness for testing a quicksort program. We omit the code
for the quicksort implementation, which is unchanged in our ap-
proach. The original quicksort program is available at [5]. One test
input is provided as an integer array and the quicksort function is
called, given the array and its lower and upper array index bounds.

Figure 3 gives a CUDA harness for testing the quicksort pro-
cedure. The CUDA kernel has four functions: compute , main ,
quicksort and partition . The main function now features a test
suite with 256 tests, which are stored in the host_inputs variable.
The test cases in host_inputs are copied to device_inputs , which
resides on the GPU device memory, using cudaMemcpy . Finally,
the function compute is called by the kernel, which launches one
block of 256 threads in parallel.

The function compute runs on the GPU and is identified as a ker-
nel using the keyword __global__. A local variable arr_inputs is
assigned a test case from the suite of tests in test_inputs parameter
using the unique thread id and the size of the array. The function
quicksort is called using the array input as before. The functions
quicksort and partition run on the GPU, which is indicated us-
ing the __device__ keyword. The bodies of the functions remain
unchanged and are not shown.

The main code changes required for this example using our ap-
proach stem from: (i) transferring the test suite from the host to
the device, (ii) adding a kernel function (compute) to be called
on all threads, (iii) reading the test case from the test suite using
the thread ID in the kernel function. The rest of the code largely
remains the same. In particular, note that that the quicksort and
partition functions remain unchanged. As a result we still test the
original functions with our approach.

Compilers for GPU programs are highly specialised and do not
support all features used in C/C++ programs. The limitations of
GPUs and their implications are discussed in the next section.

3.2 Limitations of GPUs and Implications
GPUs can offer considerable acceleration. However, in turn,

there are severe limitations:

L1 GPU programs have to copy data back and forth from the host
memory to perform I/O or when GPU memory is exhausted. Data
transfer between the GPU and host memory is slow due to the high
latency of the interface. Furthermore, the typical bandwidth of ac-
cesses to GPU memory is two to three orders of magnitude higher
than the bandwidth of transfers to host memory over PCIe.

L2 The different programming model–CUDA or OpenCL–often re-
quires heavy, non-trivial changes to existing source code to lever-
age GPU performance.

L3 Control-flow branching in source code (using control structures
like if-then-else statements) penalises GPU performance. GPUs
execute groups of threads in lock-step. All threads that belong to
the same group execute the same instruction but use different data.
Lock-step execution is violated if the branch instruction diverges.
This can impact performance negatively [13].

L4 While the typical memory bandwidth of GPUs is about five
times higher than that of CPUs [14], GPUs are restricted by the fact
that their bandwidth is shared among thousands of threads [18].
This is not a problem in applications like graphics where threads
share large data sets that can be retrieved from the shared memory
in blocks. In applications that do not share data, data transfers from
the device global memory to each of the several thousand threads
will be a bottleneck.

L5 The compiler for CUDA source files (NVCC [2]) processes
them according to C++ syntax rules. As a result, some valid C
(but invalid C++) code fails to compile. Full C++ is supported for
the host code. However, only a subset of C++ is supported for the
device code, as described in CUDA programming guide [1].

We will now discuss these limitations in the context of our ap-
proach. Limitations L1 and L4 are believed to be less of an issue in
next generation GPUs. A recent keynote from the CEO of NVIDIA
predicts the next generation of NVIDIA GPUs (Pascal, to be re-
leased in 2016) to bring larger memory size and bandwidth (us-
ing stacked memory), faster data transfer between CPU and GPU
(5 to 12 times more) using NVLink, and smaller, more energy-
efficient chips [10]. In our approach, we would ideally want to
do a data transfer once from the CPU to the GPU and once the
other way. However, system calls and other program features that
CUDA/OpenCL cannot handle require data to be transferred more
frequently. Handling system calls effectively on the GPU is an ac-
tive area of research [22].

Limitation L2 is not an issue for our approach, since we are not
transforming the program to run on the GPU. Instead, we only need
to write a test wrapper in CUDA or OpenCL that launches for each
test case a copy of the program on a thread. Little or no knowledge
of the program logic is needed and the transformation is typically

straightforward. We plan to automate the insertion of this test wrap-
per in the future.

Limitation L3 restricts the programs we can test with our ap-
proach. We hypothesise that for programs with heavy branching
our approach will not produce a significant speedup. We have ap-
plied our approach to programs with different degrees of control
flow divergence to test this hypothesis. It is expected that the im-
pact of this limitation will reduce in future-generation GPUs, which
will feature more sophisticated branch prediction logic. Limitation
L5 restricts the program features CUDA/OpenCL can support on
the GPU device. Unsupported features can be re-implemented for
CUDA, but this requires program transformations, which may af-
fect the correctness of the test execution. CUDA and OpenCL are
evolving and future releases will support more features of C/C++.
However, this limitation is currently the primary constraint for the
scope of our approach.

3.3 Scope of our Approach
Our approach is best suited to:
(1) C++ programs that can be compiled for the GPU. Limitation L5
drives the set of programs that satisfy this constraint.
(2) C/C++ programs with limited system calls.
(3) C/C++ programs with limited control flow branching.
(4) C/C++ programs that do not exceed GPU memory size.
Future generation GPUs and CUDA/OpenCL compilers will po-
tentially allow a wider application scope. In this paper, we use C
programs from the embedded systems domain that satisfy the con-
straints mentioned above.

4. EVALUATION
We check the feasibility of our approach on C programs from

the embedded systems domain. We evaluate the hypothesis that
test execution on GPUs is faster than on CPUs on the example C
programs and test suites. We also show that our approach does not
alter the program functionality and that the test case outputs on the
GPUs and CPUs remain the same. Finally, we discuss the overhead
of data transfer between host and device. In our experiments, the
CPU we use is an Intel Xeon processor with 8 cores at 3.07 GHz
and 16 GB RAM. The GPU we use features the GTX 670 Kepler
architecture, 960 cores at 1.07 GHz, and 2 GB device memory.

4.1 Benchmarks
We use four benchmarks in our evaluation:

1. Image decompression using inverse discrete cosine transform
(idctrn01)

2. Fast Fourier Transform processing in the automotive area
(aifftr01)

3. Inverse Fast Fourier Transform processing (aiifft01)
4. Brake-By-Wire System (bbw, 2473 LOC)

The first three programs are from the Embedded Microprocessor
Benchmark Consortium (EEMBC), which provides a diverse suite
of processor benchmarks organised into categories that span nu-
merous real-world applications, namely automotive, digital media,
networking, office automation and signal processing, among oth-
ers [16]. The three benchmark programs that we have chosen are
from the automotive category. The benchmark programs have test
inputs associated with them. All the inputs are stored in a large
data structure. The program only reads a small fraction of the test
inputs in the data structure for one execution iteration. However,
the program is executed iteratively several times, each time reading
test inputs from a different location in the data structure. The out-
put values from all executions are captured for both CPU and GPU

Speedup
#Tests idctrn01 aifftr01 aiifft01 bbw
1024 10 8 18 2
2048 18 12 23 2
4096 26 15 25 2
8192 25 14 24 2
16384 27 15 25 2

Table 2: Speedup (CPU time/GPU time rounded) for the 4 pro-
grams with GPU block dimension of 64

executions and later compared to determine correctness of test ex-
ecution using our approach.

The fourth benchmark is a brake-by-wire (BBW) system pro-
vided by Volvo Technology AB designed in Simulink [7]. C code
was generated from it using Simulink Coder. The system consists
of five components, four wheel brake controllers for sensing and ac-
tuating, and a main controller responsible for computing the brak-
ing torque. We generated random test vectors over the input ranges
of the five inputs, rotations per minute for each wheel and state of
the brake pedal. The values of the four brake torque outputs were
captured for CPU and GPU executions and compared.

Similar to the example illustrated in Section 3.1, we added GPU
device management code to run the program with one test case on
each GPU thread. We did not make any changes to the code that
implements the program functionality. The modifications on all
programs were straightforward and easy to implement.

4.2 Experimental Results
We collect the following data: 1. Execution time on the CPU,

2. Execution time on the GPU for different grid and block dimen-
sions, 3. Test Outputs on the CPU and GPU, 4. Device from/to host
data transfer time for the GPU executions.

Table 1 gives the results obtained from test execution on the CPU
and GPU. Column Benchmark contains the name of the benchmark
used. Column #Tests is the number of tests run on the program.
Block Dim and Grid Dim are the number of threads in a block and
number of blocks in a grid, respectively. GPU time and CPU time
are times taken on the GPU and CPU, respectively, to execute all
the tests on the program. Device-Host time column represents the
time spent on data transfers between CPU (host) and GPU (device).
Finally, the Outputs Match column indicates whether test outputs
from the CPU run and the GPU run match.

Table 2 gives the speedup achieved by executing tests on the
GPU compared to the CPU for the different benchmarks. Speedup
is computed by dividing the CPU time column by the GPU time
column in Table 1.

4.3 Discussion
Speedup Achieved.

As seen in Table 2, the speedup achieved with our approach is
2 to 27 times, depending on the benchmark and test suite size.
Speedups achieved for the EEMBC benchmarks, idctrn01, aifftr01
and aiifft01, are high (10 to 27 times). A possible explanation for
this is that control flow in all of these benchmarks is induced by
for statements rather than if-else statements. Recall that in Sec-
tion 3.3 we mentioned that control-flow divergence reduces GPU
performance since groups of threads execute in lock step. Lock-
step execution is impossible if branches diverge. In our examples,
the for statements cause only very limited divergence in control
flow and hence a high speedup is observed.

On the other hand, the speedup achieved for the bbw example is
only two times, regardless of test suite size. The bbw code contains

Benchmark # Tests Block dim. Grid dim. GPU time (ms) CPU time (ms) Device-Host time Outputs Match?
idctrn01 1024 64 16 1.77 17.70 0.21 Yes
idctrn01 2048 64 32 1.95 35.33 0.35 Yes
idctrn01 4096 64 64 2.71 70.51 0.67 Yes
idctrn01 8192 64 128 5.60 141.18 1.19 Yes
idctrn01 16384 64 256 10.56 282.24 1.9 Yes
aifftr01 1024 64 16 25.42 192.11 12.33 Yes
aifftr01 2048 64 32 31.02 383.56 22.98 Yes
aifftr01 4096 64 64 50.57 766.98 45.81 Yes
aifftr01 8192 64 128 108.98 1533.66 94.86 Yes
aifftr01 16384 64 256 208.94 3067.93 178.03 Yes
aiifft01 1024 64 16 10.75 190.76 12.36 Yes
aiifft01 2048 64 32 16.52 380.60 23.01 Yes
aiifft01 4096 64 64 30.01 760.89 45.53 Yes
aiifft01 8192 64 128 62.88 1521.73 90.78 Yes
aiifft01 16384 64 256 124.19 3044.81 190.26 Yes

bbw 1024 64 16 3.45 5.50 4.18 Yes
bbw 2048 64 32 4.29 10.46 8.12 Yes
bbw 4096 64 64 9.06 20.35 8.47 Yes
bbw 8192 64 128 19.98 40.41 15.83 Yes
bbw 16384 64 256 39.43 80.31 30.88 Yes

Table 1: Results on both the CPU and GPU from running the 4 benchmarks with different test suite sizes

heavy control flow branching with if-else statements. Diverging
control flow and lock-step semantics cause instructions on differ-
ent branches to wait and synchronise, which leads to higher GPU
execution times and lower speedups. The CUDA version of the bbw
benchmark contains a large set of thread local variables. NVIDIA’s
Kepler architecture (evaluations were performed on the card having
this architecture) allows 255 32-bit registers per thread to be allo-
cated for thread local variables. Excess variables are spilled over to
the global memory. We confirmed that when bbw benchmark was
evaluated on 32 threads, a spill of 264 bytes was observed. Access-
ing global memory is known to be at least an order of magnitude
slower.

Notice that for all four programs, the speedup achieved remains
the same beyond 2048 tests (for grid dimensions 16, 32 and 64).
The likely reason for this is that the number of blocks and hence
warps for a very large number of tests exceeds the maximum num-
ber of warps that can be scheduled on a streaming multiprocessor.
It might also be that for larger number of tests (>2048 in our ex-
amples), there are not enough resources available to run all the test
cases in parallel. As a result, some of the threads will have to wait
and be scheduled later.

For all the benchmarks, we saved and compared the test outputs
from the CPU and GPU for different numbers of tests. We found
that in all the cases listed in Table 1, the test outputs from our ap-
proach matched the test outputs from CPU. Although this is not
a proof of correctness of our approach, it does serve as an initial
evidence of feasibility of test execution with GPUs.

Effect of Block and Grid Dimensions.
The user-supplied dimensions for grid and block play a crucial

role in the runtime of a kernel. A larger block size will result in
frequent context switching of warps in a block. While thread (and
warp) context switching in GPUs is relatively lightweight, the ef-
fects become tangible when kernel execution is long. Current GPU
cards allow a maximum of 1024 threads in a single-dimensional
block (a hardware restriction). The log-plot in Figure 4 quantifies
the effect of the block size on the benchmarks. For this plot, we
fixed the number of test runs to 1024. Notice that as the block size
approaches the limit of the hardware, the execution times worsen.
All the benchmarks show an optimal execution time when the block
size ranges between 16 and 64. A straightforward reason for this

Figure 4: Effect of block size on kernel runtime

is that a warp is executed as a group of 32 threads. Thus, block
sizes in the aforementioned range will require minimal or no con-
text switches.

When a block contains a single thread, then for most benchmarks
the execution time remains close to optimal, except for the BBW
benchmark. A block of size one implies that none of 1024 threads
are executing in lock-step. If a benchmark is frequently access-
ing global memory, then due to the absence of lock step execution
the kernel runtime will increase. The BBW benchmark has such
a memory access pattern. For each thread iteration in BBW, fre-
quently accessed inputs to the thread are located in global memory.
One may refactor the code to move inputs to the thread-local mem-
ory, but GPU cards only offer a very small amount of thread-local
memory (few KBs). Thus, such code refactorings become nontriv-
ial when the input data structures are large.

Data transfer between host and device.
A key component of our approach is to copy the inputs for a test

suite from the CPU memory to the GPU memory. These transfers
start to gain importance when the benchmark requires large inputs.
Notice in Table 1 that the memory transfers between the CPU and
the GPU take more time than kernel execution for large test runs
on aiifft01 and aifftr01. While the issue pertaining to GPU-CPU
memory transfer is not a show stopper for our benchmarks, it as-
sumes much larger importance for benchmarks where the complete
input may not fit in the GPU memory. In such cases, either GPU

cards with larger memory have to be procured or the GPU code will
involve nontrivial refactoring where the kernel operates on partial
inputs at a time and synchronises with the CPU before operating on
the rest. Consequently, transfer latency and bandwidth limitations
of the PCI express link will become more apparent.

The recent road maps of companies developing GPU cards in-
dicate that the next-generation GPUs try to address the problem of
CPU-GPU memory transfers. Some of the solutions have already
been released, including unified virtual memory and the fabrication
of the GPU chip on the same die as the CPU (Kaveri [4]). We be-
lieve that with advances in GPU technology, test acceleration via
GPUs will become only even more attractive.

System Calls.
Currently there are few abstractions available that allow GPU

code to perform system calls (such as brk(), file I/O) and call-
backs. With current state-of-the-art GPU technology, it is still non-
trivial to run benchmarks that frequently perform system calls on
GPUs. This is an active area of research [22, 17]. Our benchmarks
notably did not have system calls.

4.4 Threats to Validity
The first threat to validity is the small number of programs used

in our experiments. We have only used four programs, even if they
are all industry standard programs. The second threat arises from
the fact that we only use programs from the automotive domain.
Programs from other domains were not used in our experiments.
We plan to do a more extensive evaluation using programs from
different application domains in the future.

5. CONCLUSION
In this paper, we proposed an approach to accelerate test execu-

tion using GPUs and explored its feasibility. Our approach inserts
GPU device management code in the program interface to launch
a GPU thread for each test case. The program functionality is not
modified in our approach. We evaluated our approach using pro-
grams in the embedded systems domain – 3 benchmark programs
from EEMBC and one brake-by-wire system from Volvo. We ran
the programs on test suites with sizes that range from 1024 to 16384
tests. Our approach using GPUs achieved speedups in the range of
10 to 27 times for the EEMBC benchmarks, and a speedup of 2 for
the brake-by-wire system. The extent of control flow divergence
in a program affects the speedup achieved with GPUs. We veri-
fied, for the 4 benchmark programs, that our approach generated
the same test case outputs over all the tests as the CPU. Finally, we
also discussed limitations in GPUs and the restrictions they impose
in the context of our approach.

Acknowledgements
This work was supported by the ARTEMIS VeTeSS project and
ERC project 280053.

References
[1] “http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html”.
[2] “http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc”.
[3] "https://www.khronos.org/opencl/".
[4] “http://www.amd.com/en-gb/innovations/software-

technologies/compute-cores”.
[5] “http://www.comp.dit.ie/rlawlor/alg_ds/sorting/quicksort.c”.
[6] "http://www.eembc.org/".

[7] “http://www.mathworks.co.uk/products/simulink/”.
[8] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and

M. Ripeanu. StoreGPU: exploiting graphics processing units
to accelerate distributed storage systems. In High Perfor-
mance Distributed Computing, pages 165–174. ACM, 2008.

[9] M. P. E. Heimdahl and G. Devaraj. Test-suite reduction for
model based tests: Effects on test quality and implications for
testing. In ASE, pages 176–185, 2004.

[10] J.-H. Huang. “http://www.gputechconf.com/page/live-
stream-source1.html”.

[11] S. Huang, S. Xiao, and W. Feng. On the energy efficiency of
graphics processing units for scientific computing. In IPDPS,
pages 1–8. IEEE, 2009.

[12] S. Kato, S. Brandt, Y. Ishikawa, and R. Rajkumar. Operating
systems challenges for GPU resource management. In Op-
erating Systems Platforms for Embedded Real-Time Applica-
tions, pages 23–32, 2011.

[13] A. Lashgar and A. Baniasadi. Performance in GPU architec-
tures: Potentials and distances. In 9th Annual Workshop on
Duplicating, Deconstructing, and Debunking (WDDD), 2011.

[14] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D.
Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Ham-
marlund, et al. Debunking the 100x GPU vs. CPU myth:
an evaluation of throughput computing on CPU and GPU.
In ACM SIGARCH Computer Architecture News, volume 38,
pages 451–460. ACM, 2010.

[15] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. Lefohn, and T. Purcell. A survey of general-purpose com-
putation on graphics hardware. In Computer graphics forum,
volume 26, pages 80–113. Wiley Online Library, 2007.

[16] J. A. Poovey, T. M. Conte, M. Levy, and S. Gal-On. A bench-
mark characterization of the EEMBC benchmark suite. IEEE
Micro, 29(5):18–29, 2009.

[17] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. PTask: Operating system abstractions to manage
GPUs as compute devices. In Operating Systems Principles
(SOSP), pages 233–248. ACM, 2011.

[18] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-
Z. Ueng, J. A. Stratton, and W.-m. W. Hwu. Program opti-
mization space pruning for a multithreaded GPU. In Code
Generation and Optimization (CGO), pages 195–204. ACM,
2008.

[19] P. J. Schroeder and B. Korel. Black-box test reduction using
input-output analysis. In ISSTA, pages 173–177. ACM, 2000.

[20] T. Scogland, H. Lin, and W. Feng. A first look at integrated
GPUs for green high-performance computing. Computer
Science-Research and Development, 25(3):125–134, 2010.

[21] T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano,
T. Endo, A. Nukada, N. Maruyama, and S. Matsuoka. An
80-fold speedup, 15.0 TFlops full GPU acceleration of non-
hydrostatic weather model ASUCA production code. In High
Performance Computing, Networking, Storage and Analysis
(SC), pages 1–11. IEEE, 2010.

[22] J. A. Stuart, M. Cox, and J. D. Owens. GPU-to-CPU call-
backs. In Euro-Par 2010 Parallel Processing Workshops, vol-
ume 6586 of LNCS, pages 365–372. Springer, 2011.

[23] S. Yoo and M. Harman. Regression testing minimization, se-
lection and prioritization: a survey. Software Testing, Verifi-
cation & Reliability, 22(2):67–120, 2012.

[24] S. Yoo, M. Harman, and S. Ur. Highly scalable multi
objective test suite minimisation using graphics cards. In
Search Based Software Engineering (SSBSE), pages 219–236.
Springer, 2011.

[25] Z. Yu, J.-H. Cho, B.-W. Oh, and L.-S. Lee. Parallel algorithm
for generation of test recommended path using cuda. Inter-
national Journal of Engineering Science & Technology, 5(2),
2013.

