
Interaction Testing in Model-Based Development: Effect on Model-Coverage

Renée C. Bryce
Computer Science

Univ. of Nevada - Las Vegas
Las Vegas, NV 89154-4019

reneebryce@cs.unlv.edu

Ajitha Rajan
Comp. Sci. and Eng.

University of Minnesota
Minneapolis, MN 55455

arajan@cs.umn.edu

Mats P.E. Heimdahl
Comp. Sci. and Eng.

University of Minnesota
Minneapolis, MN 55455
heimdahl@cs.umn.edu

Abstract

Model-based software development is gaining interest in
domains such as avionics, space, and automotives. The
model serves as the central artifact for the development
efforts (such as, code generation), therefore, it is crucial
that the model be extensively validated. Automatic gen-
eration of interaction test suites is a candidate for partial
automation of this model validation task. Interaction test-
ing is a combinatorial approach that systematically tests all
t-way combinations of inputs for a system. In this paper,
we report how well interaction test suites (2-way through
5-way interaction test suites) structurally cover a model of
the mode-logic of a flight guidance system. We conducted
experiments to (1) compare the coverage achieved with in-
teraction test suites to that of randomly generated tests and
(2) determine if interaction test suites improve the coverage
of black-box test suites derived from system requirements.
The experiments show that the interaction test suites pro-
vide little benefit over the randomly generated tests and do
not improve coverage of the requirements-based tests; thus,
raising questions on the effectiveness of interaction testing
in this domain.

1. Introduction

In model-based development, the development effort is
centered around a model of the proposed software system.
The model also serves as the fundamental artifact for vali-
dation and verification purposes, where it can be subjected
to various types of analysis, for example, model checking
and theorem proving. Given the central role of the model, it
is crucial to adequately validate it to meet the users’ needs;
a natural choice for the majority of these validation efforts
is blackbox testing.

Blackbox tests derived from requirements exercise the
behavior of software (models or implementations), without
bias to its internal structure. Partial automation of black-

Globally Async. Switch : {On, Off}
Transfer Switch: {On,Off}
Overspeed: {True, False}
Nav. Switch: {On, Off}
Autopilot Engage Switch: {On, Off}

Table 1. Example input parameters

Globally Transfer Overspeed Nav. Autopilot
Async. Switch Switch Engage
Switch Switch
On On True Off Off
Off On False On On
On Off True On On
Off Off False Off Off
Off Off True Off On
On On False On Off

Table 2. Example pair-wise interaction test
suite

box testing is highly desirable to realize the full potential
of model-based development. One easily mechanized ap-
proach to blackbox testing is to systematically test combi-
nations of input parameters [9]; software interaction testing
is one such strategy. Software interaction testing is a com-
binatorial approach that systematically tests all t-way com-
binations of inputs for a system [6]. For instance, consider
a subset of the inputs to a Flight Guidance System (FGS)
shown in Table 1. There are five input parameters (vari-
ables) that have two possible settings each. To exhaustively
test all possible combinations of these input parameters re-
quires 25 = 32 tests, whereas, an interaction test suite that
covers all pairwise (2-way) combinations of input parame-
ters only requires 6 tests, as shown in Table 2. The differ-
ence in the number of test suites is more dramatic for the
complete FGS, which includes 40 parameters that have two



possible settings each. Testing all combinations of input
parameters for the FGS requires 240 = 1,099,511,627,776
tests, whereas pairwise interaction testing can be done in 13
tests, as seen in the forthcoming experiments.

Interaction testing is appealing since generation of test
suites can be automated (see [6] for survey of algorithms
that generate interaction test suites). There are also indi-
cations that interaction testing can be an effective test se-
lection technique. For instance, a study of a web browser
shows that 70% of reported problems were identifiable with
2-way interaction testing, approximately 90% with 3-way
interaction testing, and 95%with 4-way interaction testing
[12]. Another example shows that 97% of defects in 109
medical devices were revealed due to pairwise testing of
parameter settings [13]. Although these results are impres-
sive, these studies investigated existing problem reports and
hypothesize that these problems would have been detected
had interaction testing been used during development; these
results were not achieved in an actual testing project. Other
studies that apply interaction testing directly to implemen-
tations show that it may provide high code coverage [8, 4];
and it may be used to localize faults [7] and to characterize
faults [21] in a small number of tests.

To evaluate the applicability of interaction testing in the
model-based domain we are conducting a series of experi-
ments. In this paper, we set out to investigate how well 2-
way through 5-way interaction test suites cover the structure
of a model for a Flight Guidance System (FGS) developed
at Rockwell Collins1. (In the avionics domain, structural
coverage is important because of regulatory concerns.) We
report on two experiments: (1) a comparison of the struc-
tural coverage achieved with interaction tests with that of
randomly generated tests and (2) an attempt to determine
if adding interaction test suites improves the coverage of
black-box test suites derived from the system requirements.

In the next section we introduce our experiment. We dis-
cuss the results and point to future research directions in
Section 3. Section 4 covers the internal and external threats
to the validity of our study; we provide conclusions in Sec-
tion 5.

2. Experiment

In this initial evaluation of the applicability of interac-
tion testing in the model-based domain, we formulate two
hypotheses for our study.

Hypothesis 1: Interaction test suites achieve higher struc-
tural coverage of a model than randomly generated test
suites of the same size.

1We thank Dr. Michael Whalen, Dr. Steve Miller, and Dr. Alan Tribble
of Rockwell Collins Inc. for letting us use the models they have developed
during our collaboration.

Hypothesis 2: Augmenting a requirements-based black-
box test suite with interaction test suites will increase
model-coverage.

The model under test (described in more detail in Sec-
tion 2.1) is expressed in a state-based language with charac-
teristics similar to Statecharts [10] and Stateflow [15]. To
measure model-coverage we select a collection of model
coverage measures that can be intuitively defined over such
models; we measure state coverage, decision coverage,
transition coverage, and MC/DC (discussed further in Sec-
tion 2.2.4).

2.1. The Case Study: a Flight Guidance System

To provide a realistic evaluation of interaction testing
in the model-based domain we use an example from com-
mercial avionics—a close to production model of a Flight
Guidance System (FGS). The Flight Guidance System used
here is a component of an overall Flight Control System in
a commercial aircraft. It compares the measured state of an
aircraft (position, speed, and altitude) to the desired state
and generates pitch and roll-guidance commands to mini-
mize the difference between the measured and desired state.
The FGS consists of the mode logic that determines which
lateral and vertical modes of operation are active and armed
at any given time, and the flight control laws that accept
information about the aircraft’s current and desired state to
compute the pitch and roll guidance commands. In this pa-
per we use the mode logic of the FGS [16].

The FGS was built using RSML-e [18, 20] notation
— RSML-e is based on the Statecharts [10] like lan-
guage Requirements State Machine Language (RSML)
[14]. RSML-e is a fully formal and synchronous data-flow
language without any internal broadcast events (the absence
of events is indicated by the −e).

An RSML-e specification consists of a collection of in-
put variables, state variables, input/output interfaces, func-
tions, macros, and constants. Input variables are used to
record the values observed in the environment. State vari-
ables are organized in a hierarchical fashion and are used
to model various states of the control model. The state
variables change state when the guard condition on a state-
transition is satisfied.

There are 40 input variables (also referred to as input pa-
rameters) associated with the FGS. Each variable only takes
on two possible values (Boolean or two enumerations). As
an alternative to the 240= 1,099,511,627,776 combinations
needed for exhaustive testing of all possible inputs, we ap-
ply interaction testing to systematically tests all t-way inter-
actions in the system with test suites of feasible size.



2.2. Experimental Setup

We conduct the experiment through the the steps out-
lined below, with each step elaborated in the following sec-
tions.

1. We generate three sets of test suites for comparison:
(1) a set of interaction test suites ranging from 2-way
through 5-way coverage of the inputs of the FGS, (2)
a collection of random test suites, and (3) two sets of
requirements-based tests derived from the English lan-
guage requirements of the FGS.

2. We append the interaction test suites to the
requirements-based tests to yield a collection of
augmented requirements-based test suites.

3. We run the test suites on the RSML-e FGS model and
measure the coverage achieved.

In the remainder of this paper we provide a detailed de-
scription of activities involved in the experiment and discuss
our findings.

2.2.1 Interaction test suite generation

The interaction test suite generation algorithm constructs
test suites one-test-at-a-time until all t-tuples are cov-
ered [3]. For each test, the algorithm assigns values to the
input parameter one-at-a-time in random order. We refer
to input parameters that have been assigned values as fixed,
those not yet assigned settings are called free. To select a
setting for a free parameter, the algorithm selects the setting
that covers the largest number of previously uncovered t-
way combinations in relation to the fixed parameters. In the
case where two or more assignments cover the same num-
ber of t-way combinations we randomly select one of the
assignments. Once a test is complete, 100 iterations of hill
climbing permute settings for parameters in a test since this
sometimes increases the number of t-tuples in incremen-
tal tests; and consequently reduces the overall size of our
test suites here. (This implementation of hill climbing is a
variation of heuristic search applied in [5], however we ap-
ply search to incremental tests rather than to an entire test
suite.) The algorithm generates and appends new tests to
the test suite until all t-tuples are covered. The interaction
test suites generated provide 2-way, 3-way, 4-way, and 5-
way coverage of the inputs of the FGS in 13, 33, 83, and
214 number of tests respectively.

2.2.2 Random test suite generation

For each interaction test suite, we generate a random test
suite of the same size. We do this by randomly assigning
settings to each of the 40 FGS input variables, with the only

“If the onside Flight Director cues are off, the on-
side Flight Director cues shall be displayed when
the Auto-Pilot is engaged.”

(a)

G((¬Onside FD On ∧ ¬Is AP Engaged) →
X(Is AP Engaged→ Onside FD On))

(b)

Table 3. (a) Sample high-level requirement on
the FGS (b) LTL property for the requirement

restriction that redundant tests are not permitted in the re-
sultant test suite.

2.2.3 Requirements-based test suite generation

In addition to the formal RSML-e model of the FGS, our
case example also consists of 293 informal requirements
describing the intended behavior of the FGS. In a previ-
ous investigation we formalize these requirements as Linear
Temporal Logic (LTL) properties [17] and devised a tech-
nique to automatically generate black-box tests that provide
structural coverage of these LTL properties [19]. These for-
malized requirements serve as the basis for the generation of
two sets of blackbox tests; one set providing Requirements
Antecedent Coverage and a second set providing Unique
First Cause Coverage (both discussed in detail below).

Requirements Antecedent Coverage: At a minimum, a
blackbox test suite should contain one test per requirement
to illustrate one way in which the requirement can be met.
As an example, consider the FGS requirement in Table 3.
(In the formalization of the requirement, G means that the
requirement applies universally and the X means “in the
next state”.)

A test derived from the informal requirements might
look like the scenario in Table 4. Alternatively, we could
simply leave the auto-pilot turned off and it does not mat-
ter what happens to the flight director. Technically, this test
also demonstrates one way in which the requirement is met,
but the test is not particularly illuminating. When automat-
ing the generation of tests from LTL properties we do not
want to generate tests that illustrate the satisfaction of re-
quirements in trivial ways.

Therefore, we define a requirements coverage metric—
requirements antecedent coverage—that exercises the an-
tecedent in such requirements. A test providing require-
ments antecedent coverage over the requirement in Table 3
ensures that the antecedent becomes true at least once (the
flight director must be turned off and the auto-pilot disen-
gaged). We use this requirements antecedent coverage to



1. Turn the Onside FD off
2. Disengage the AP
3. Engage the AP
4. Verify that the Onside FD comes on

Table 4. Manually developed requirements-
based test scenario

derive one test per requirement yielding a test suite of 293
tests.

Unique First Cause Coverage: Most of the requirements
in the FGS are of the form G(A → B) (as the example in
Table 3). Nevertheless, the requirements are not always that
simple; the conditions making up A and B in the require-
ment can be quite complex. Rather than simply requiring
that A is true in the test, it can be desirable to derive tests
that demonstrate the effect of each atomic condition making
up the complex conditions in the requirement; requirements
antecedent coverage would not be able to do this. There-
fore, we define a coverage metric called Unique First Cause
(UFC) coverage over requirements [19]. A test suite is said
to satisfy UFC coverage over a set of LTL formulas if exe-
cuting the tests in the test suite guarantees that:

• every basic condition in a formula has taken on all pos-
sible outcomes at least once

• each basic condition has been shown to independently
affect the formula’s outcome.

Given this stronger notion of requirements coverage, one
can generate a second blackbox test suite from the 293 re-
quirements; and generate a test suite with UFC coverage in
713 tests.

A note on the blackbox test suites: In our work on
requirements-based testing we found that the test suites pro-
viding requirements antecedent coverage and UFC cover-
age of the FGS requirements provide reasonable, but not
high, coverage over the RSML-e FGS model. The reason
being that the set of requirements for the FGS is incom-
plete; a substantial number of the requirements were defined
using macros (abbreviations) that abstracted away numer-
ous complex conditions. Additional requirements defining
these macros were not captured when the requirements were
formalized as LTL properties. Therefore, the requirements-
based test suites used in this study are good, but they are not
quite up to the standards one would expect from a thorough
backbox testing effort. The implication of this observation
will be discussed in Section 3.

2.2.4 Model Coverage Measurement

The execution environment we use (called NIMBUS) in-
cludes a tool to measure different kinds of coverage
achieved over RSML-e models [11]. The tool measures the
state, transition, decision, and MC/DC coverage achieved
from executing test suites. The different measures of cover-
age are informally defined as follows:

State Coverage: requires that the test suite has tests that
force each state variable defined in the model to take
on all possible values at least once.

Transition Coverage: (analogous to branch coverage in
code) requires that the test suite has tests that exercise
every transition in the model at least once.

Decision Coverage: each decision occurring in the model
evaluates to true at some point in some test and evalu-
ates to false at some point in some other test. A deci-
sion in this context is defined as any complex boolean
expression. (An example of a decision is A or B,
where A and B are both conditions).

Modified Condition and Decision Coverage (MC/DC):
requires us to show that (1) every condition within
the decision has taken on all possible outcomes
at least once, and (2) every condition is shown to
independently affect the outcome of the decision.

3. Experimental Results and Discussion

Hypothesis 1: Interaction test suites achieve higher struc-
tural coverage of a model than randomly generated test
suites of the same size.

The results of running our four interaction test suites
(one each that covers interactions of size t={2,3,4,5}) and
the randomly generated tests of the same size can be seen in
Table 5. The results show that the interaction tests perform
only slightly better than the random tests for all four types of
coverage. The difference is most striking when fewer tests
are executed, such as with t=2 test suites. Thus, Hypothesis
1 is weakly supported. This is not surprising since random
tests are likely to cover many t-tuples. Table 6 shows that
in our experiment, each of the random test suites cover at
least 77% of the t-tuples in each case. This is similar to re-
sults in [1] where a random test suite covers 88% of pairs
that a pairwise interaction test suite of the same size does.

In the second experiment, the requirements-based tests
are augmented with t={2, 3, 4, 5} interaction tests to deter-
mine if the coverage of the blackbox suites is improved.

Hypothesis 2: Augmenting a requirements-based black-
box test suite with interaction test suites will increase
model-coverage.



Random 2-way Random 3-way Random 4-way Random 5-way
Number of tests 13 13 33 33 83 83 214 214
State cov. 77.4% 84.8% 78.7% 87.2% 84.2% 90.9% 90.2% 90.9%
Transition cov. 57.6% 64.0% 58.7% 65.7% 64.0% 68.0% 67.4% 68.0%
Decision cov. 71.4% 74.0% 72.6% 75.3% 74.8% 77.6% 78.4% 79.1%
MCDC cov. 7.4% 10.3% 8.1% 11.0% 10.0% 12.3% 11.9% 12.3%

Table 5. Model coverage achieved on the FGS with randomly generated tests and interaction tests.

No. of rows % of t-tuples
covered

t=2 13 77.2
t=3 33 77.4
t=4 83 82.6
t=5 214 87.8

Table 6. Percentage of t-tuples covered in the
random test suites.

Ant. Ant. UFC UFC
No. of % t-tuples No. of % t-tuples
tests covered tests covered

t=2 291 99.9 713 99.8
t=3 291 91.3 713 95.7
t=4 291 63.1 713 80.2
t=5 291 42.0 713 60.7

Table 8. Percentage of t-tuples covered in the
requirements-based test suites.

Table 7 shows that the interaction test suites do not in-
crease coverage of the model in any significant way for ei-
ther blackbox test suite. For the antecedent coverage test
suite, the interaction tests might find an occasional test that
increases the coverage a fraction of a percent. The inter-
action tests do not increase coverage when used to aug-
ment the Unique First Clause (UFC) test suites. Therefore,
our second hypothesis is not supported; interaction tests do
not improve the coverage of existing blackbox test suites.
This result is somewhat disappointing since we know that
the requirements-based blackbox test suites are deficient (as
discussed in Section 2) and there is scope for coverage im-
provement.

We believe the reason for the poor coverage achieved by
the interaction test suites can be attributed to the nature of
the FGS system. Much of the behavior of the FGS is depen-
dent on state that is computed and stored over two or more
execution steps. To reach many of the states in the system,
a sequence of steps is required to set the state appropriately.
Achieving high structural coverage over the model may

therefore require reaching some of these “deeper” states. To
illustrate this, consider the following decision in the FGS
model, where PREV STEP refers to value of a variable in
previous step:

(PREV STEP (Independent Mode) = Off) ∧
¬(Pilot F lying = This Side) ∧

(Offside Modes = On)

To exercise the above decision in the model up to MC/DC
coverage, we would have to be able to set values (Off, On,
and Undefined) for the Independent Mode input variable in
the previous step. Therefore, tests that provide MC/DC cov-
erage of the above decision need to be at least two steps
long, so as to allow the value of Independent Mode in the
previous step to be set. Many of the decisions in the FGS
model are of the above form.

The interaction tests used here are only one step long,
so it is impossible for them to achieve good coverage over
the model when the coverage criteria requires tests to reach
states that are “deeper” in the reachable state space. For ex-
ample, no set of interaction tests can achieve MC/DC cover-
age of the above decision in the FGS model (since it would
have to be at least two steps long). We hypothesize that
missing state information in the interaction test suites is a
significant factor in the poor coverage recorded for interac-
tion testing. Given the nature of software, we believe that
this problem in interaction testing (missing state informa-
tion) generalizes to many other software systems. In fu-
ture work, we will consider state information when gener-
ating interaction test suites, both by treating state informa-
tion in the combinations that must be satisfied to achieve
adequate coverage and by generating longer tests over the
input space. We believe that interaction test suites gener-
ated this way will record much better model coverage, and
fault finding. We plan to evaluate these hypotheses in our
future work.

While the requirements-based test procedures generate
sequences of steps that enable visitation of states deeper
within the state space and provide better structural cover-
age of the model than the interaction tests, they also provide
good coverage given the 2-way and 3-way interaction crite-
ria, however they do not exercise many of the 4-way and 5-
way input interactions. Intuitively, since the requirements-
based tests do not include a large number of 4-way and 5-



Antecedent Augmented Augmented Augmented Augmented
w/ 2-way w/ 3-way w/ 4-way w/ 5-way

Number of tests 293 tests 314 324 374 505
State cov. 98.8% 98.8% 98.8% 98.8% 98.8%
Transition cov. 89.5% 90.1% 89.5% 90.1% 90.1%
Decision cov. 88.6% 88.9% 88.6% 88.9% 88.9%
MCDC cov. 23.9% 24.2% 23.9% 24.2% 24.2%

UFC Augmented Augmented Augmented Augmented
w/ 2-way w/ 3-way w/ 4-way w/ 5-way

Number of tests 713 tests 726 746 796 927
State cov. 99.1% 99.1% 99.1% 99.1% 99.1%
Transition cov. 99.4% 99.4% 99.4% 99.4% 99.4%
Decision cov. 83.9% 83.9% 83.9% 83.9% 83.9%
MCDC cov. 53.5% 53.5% 53.5% 53.5% 53.5%

Table 7. Model Coverage comparisons of requirements-based test suites augmented with 2-way
through 5-way interaction tests

way interactions, it is possible that the requirements-based
tests can not reveal some faults that can be uncovered by
the 4-way and 5-way interaction test suites. Therefore, al-
though the interaction tests did not help to improve the cov-
erage of the model, the augmented tests may be of help with
it comes to fault finding. We plan to investigate this issue
further by running experiments that compare the fault find-
ing capability of the original and augmented requirements-
based test suites.

One additional consideration is that the requirements-
based test suites were generated in a constrained environ-
ment that disallowed certain combinations of inputs (based
on environmental assumptions for the model), while the in-
teraction test suites did not have these constraints. This
difference brings up concerns. First, the interaction test
suites may have been constructed of different size in order
to address constraints. Indeed, work in [2] shows that con-
straints can result in smaller or larger sized test suites. Sec-
ond, in the practical application of the study here, the differ-
ence in the number of tests executed and the states visited
may yield different results. Our intuition is that the model
coverage from interaction testing will not significantly in-
crease given the constraints used for requirements-based
testing. Nevertheless, this question warrants future study.

4. Threats to Validity

There are three obvious threats to the external validity
that prevent us from generalizing our observations. First,
and most seriously, we are using only one instance of a for-
mal model in our experiment. Although the FGS is an ideal
example, it was developed by an external industry group,

it is large, it represents a real system, and is of real world
importance, it is still only one instance. The FGS model is
entirely modelled using enumerated variables; it is impos-
sible to generalize the results to systems that, for example,
contain numeric variables and constraints.

Second, we use one algorithm to generate a test suite
that covers all t-way interactions. There are many other al-
gorithms with the same capability, but each of them may
produce test suites that cover the t-way interactions in a dif-
ferent order and in a different number of tests.

Third, we use a single test generation technique to gen-
erate the requirement-based test suites. The test generation
strategy plays an important role in test suite effectiveness
(with respect to model coverage and fault finding). We need
to evaluate the effect of other test generation strategies on
test suite effectiveness.

Although there are several threats to the external validity,
we believe the results raise serious doubts about the benefits
of interaction testing techniques in this domain. Questions
arise in the discussion section that warrant further work.

5. Conclusions

We conducted experiments to evaluate the effectiveness
of 2-way through 5-way interaction test suites by measur-
ing structural coverage of the mode-logic of a flight guid-
ance system model. The results show that the interaction
test suites provide little benefit over the randomly generated
tests and do not improve coverage of blackbox tests derived
from the informal requirements. This raises concerns on the
effectiveness of interaction testing in the model-based do-
main. Nevertheless, the results for model coverage can be



quite different from that obtained for fault finding effective-
ness. In our future work, we will evaluate the fault finding
capability of the interaction test suites over systems in this
domain.

Interaction test suites applied here do not consider state
information, and thereby only test combinations of input pa-
rameters over a single step. The experiments point out that
for the FGS, generating single-step interaction test cases
may not be sufficient, longer (multi-step) tests are needed
to achieve better coverage of the model. Given the nature
of software, we believe that missing state information in the
interaction test suites will cause a similar problem in many
other software systems. In our future work, we plan to gen-
erate interaction test suites that include state information
and conduct experiments to evaluate their effectiveness.

6 Acknowledgements

We would like to thank Dr. Michael Whalen from Rock-
well Collins Inc. for his helpful discussions and insightful
comments.

References

[1] J. Bach and P. Shroeder. Pairwise testing: A best practice
that isn’t. In Proceedings of 22nd Pacific Northwest Soft-
ware Quality Conference, pages 180–196, 2004.

[2] R. C. Bryce and C. J. Colbourn. Prioritized interaction test-
ing for pairwise coverage with seeding and avoids. Infor-
mation and Software Technology Journal (IST, Elsevier), to
appear.

[3] R. C. Bryce, C. J. Colbourn, and M. B. Cohen. A frame-
work of greedy methods for constructing interaction tests. In
The 27th International Conference on Software Engineering
(ICSE), pages 146–155, May 2005.

[4] K. Burr and W. Young. Combinatorial test techniques:
Table-based automation, test generation, and code coverage.
In Proceedings of the International Conference on Software
Testing Analysis and Review, pages 503–513, October 1998.

[5] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B.
Mugridge. Constructing test suites for interaction testing.
In Proceedings of the International Conference on Software
Engineering (ICSE 2003), pages 28–48, May 2003.

[6] C. J. Colbourn. Combinatorial aspects of covering arrays.
Le Matematiche (Catania), 2005.

[7] S. R. Dalal and C. L. Mallows. Factor-covering designs
for testing software. Technometrics, 50(3):234–243, August
1998.

[8] S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows,
and A. Iannino. Applying design of experiments to soft-
ware testing. In Proceedings International Conference on
Software Engineering (ICSE ’97), pages 205–215, October
1997.

[9] M. Grindal, J. Offutt, and S. Andler. Combination testing
strategies: a survey. Software Testing, Verification, and Re-
liability, 15:167–199, March 2005.

[10] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231–274,
June 1987.

[11] M. P. Heimdahl and G. Devaraj. Test-suite reduction for
model based tests: Effects on test quality and implica-
tions for testing. In Proceedings of the 19th IEEE Inter-
national Conference on Automated Software Engineering
(ASE), Linz, Austria, September 2004.

[12] D. Kuhn and M. Reilly. An investigation of the applicability
of design of experiments to software testing. In Proceed-
ings 27th Annual NASA Goddard/IEEE Software Engineer-
ing Workshop, pages 91–95, October 2002.

[13] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software testing. IEEE
Transactions on Software Engineering, 30(6):418–421, Oc-
tober 2004.

[14] N. Leveson, M. Heimdahl, H. Hildreth, and J. Reese.
Requirements Specification for Process-Control Systems.
IEEE Transactions on Software Engineering, 20(9):684–
706, September 1994.

[15] MathWorks. The MathWorks Inc. corporate web page. Via
the world-wide-web: http://www.mathworks.com, 2004.

[16] S. Miller, A. Tribble, T. Carlson, and E. J. Danielson. Flight
guidance system requirements specification. Technical Re-
port CR-2003-212426, NASA, June 2003.

[17] S. P. Miller, M. P. Heimdahl, and A. Tribble. Proving the
shalls. In Proceedings of FM 2003: the 12th International
FME Symposium, September 2003.

[18] J. M. Thompson, M. P. Heimdahl, and S. P. Miller. Specifi-
cation based prototyping for embedded systems. Technical
Report TR 99-006, University of Minnesota, Department of
Computer Science, Minneapolis, MN, 1999.

[19] M. Whalen, A. Rajan, M. Heimdahl, and S. Miller. Coverage
metrics for requirements-based testing. In Proceedings of
International Symposium on Software Testing and Analysis,
July 2006.

[20] M. W. Whalen. A formal semantics for RSML−e. Master’s
thesis, University of Minnesota, May 2000.

[21] C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays
for efficient fault characterization in complex configuration
spaces. In International Symposium on Software Testing and
Analysis, pages 45–54, July 2004.


