
The Effect of Progra m and Model Structur e on MC/DC Test
Adequa cy Coverage∗

Ajitha Rajan
Dept. of Comp. Sci. and Eng.

University of Minnesota
arajan@cs.umn.edu

Michael W. Whalen
Advanced Technology Center

Rockwell Collins Inc.
mwwhalen@rockwellcollins.com

Mats P.E. Heimdahl
Dept. of Comp. Sci. and Eng.

University of Minnesota
heimdahl@cs.umn.edu

ABSTRACT
In avionics and other critical systems domains, adequacy of
test suites is currently measured using the MC/DC metric
on source code (or on a model in model-based development).
We believe that the rigor of the MC/DC metric is highly
sensitive to the structure of the implementation and can
therefore be misleading as a test adequacy criterion. We
investigate this hypothesis by empirically studying the effect
of program structure on MC/DC coverage.

To perform this investigation, we use six realistic sys-
tems from the civil avionics domain and two toy exam-
ples. For each of these systems, we use two versions of their
implementation—with and without expression folding (i.e.,
inlining). To assess the sensitivity of MC/DC to program
structure, we first generate test suites that satisfy MC/DC
over a non-inlined implementation. We then run the gener-
ated test suites over the inlined implementation and measure
MC/DC achieved. For our realistic examples, the test suites
yield an average reduction of 29.5% in MC/DC achieved
over the inlined implementations at 5% statistical signifi-
cance level.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing Tools

General Terms
Experimentation, Verification

∗This work has been partially supported by NASA Ames
Research Center Cooperative Agreement NNA06CB21A,
NASA IV&V Facility Contract NNG-05CB16C, and the L-3
Titan Group.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08,May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

1. INTRODUCTION
Test adequacy metrics defined over the structure of a pro-

gram, such as statement coverage, branch coverage, and de-
cision coverage, have been used for decades to assess the ad-
equacy of test suites. Such criteria can be useful tools when
evaluating a testing effort. Nevertheless, it is well known
that these criteria can easily be ‘cheated’ by restructuring
a program to make it easier to achieve the desired cover-
age. In our work we have been particularly interested in the
coverage criterion Modified Condition and Decision Cover-
age (MC/DC) [2] since it is used as an exit criterion when
testing software for highly critical software in the avionics
industry. For certification of such software, a vendor must
demonstrate that the test-suite provides MC/DC coverage of
the source code [20]. In addition, the increased use of model-
based development (MBD) using tools such as Simulink [13]
and SCADE [4] has led to a discussion on what coverage
criteria to use when testing such models; MC/DC has been
a natural candidate for adoption for the most critical mod-
els [22].

Our concern regarding MC/DC is its sensitivity to the
structure of the program or model under test. A straightfor-
ward way to reduce the difficulty of achieving MC/DC cov-
erage over a program is to introduce additional variables to
factor complex Boolean expressions into simpler expressions.
In this paper, we examine the effect of such transformations
by comparing test suites necessary to cover programs con-
sisting of simple decisions (consisting of at most one logical
operator) versus programs in which such intermediate vari-
ables are removed. We refer to these versions as the non-
inlined and inlined implementations, respectively. In our
experiment we found the effect of such transformations to
be dramatic: in one case, a suite that achieved 100% cov-
erage of the non-inlined implementation yielded only 13.6%
coverage of the inlined implementation. Our analysis re-
vealed that the transformations yield an average reduction
of 29.5% in MC/DC measured over inlined implementations
(which was statistically significant for a null hypothesis of no
difference at the 5% significance level). Many of the discrep-
ancies are due to situations when the effect of the code struc-
ture being tested is ‘masked out’ by another condition, and
cannot affect the result computed by the implementation.
Given that the inlined and non-inlined implementations are

161

Distinguished Paper

Version 1: Non-Inlined Implementation

expr_1 = in_1 or in_2; //stmt1

out_1 = expr_1 and in_3; //stmt2

Version 2: Inlined Implementation

out_1 = (in_1 or in_2) and in_3;

Sample Test Sets for (in 1, in 2, in 3):

TestSet1 = {(TFF),(FTF),(FFT),(TTT)}

TestSet2 = {(TFT),(FTT),(FFT),(TFF)}

Table 1: Example of behaviorally equivalent imple-
mentations with different structures

semantically equivalent, the discrepancy in the rigor of the
testing metric under this simple transformation is a cause
for concern.

A test suite provides MC/DC over the structure of a pro-
gram or model if every condition within a decision has taken
on all possible outcomes at least once, and every condition
has been shown to independently affect the decision’s out-
come (note here that when discussing MC/DC coverage, a
decision is defined to be an expression involving any Boolean
operator). As an example, consider the trivial program frag-
ments in Table 1. The program fragments have different
structures but are functionally equivalent. Version 1 is non-
inlined with intermediate variable expr_1, Version 2 is in-
lined with no intermediate variables. Based on the definition
of MC/DC, TestSet1 in Table 1 provides MC/DC over pro-
gram Version 1 but not over Version 2; the test cases with
in_3 = false (bold faced) contribute towards MC/DC of
in_1 or in_2 in Version 1 but not over Version 2 since the
masking effect of in_3 = false is revealed in Version 2.

In contrast, MC/DC over the inlined version requires a
test suite to take the masking effect of in_3 into considera-
tion as seen in TestSet2. This disparity in MC/DC cover-
age over the two versions can have significant ramifications
with respect to fault finding of test-suites. Suppose the code
fragment in Table 1 is faulty, the correct expression should
have been in_1 and in_2 (which was erroneously coded as
in_1 or in_2). TestSet1 would be incapable of revealing
this fault, since there would be no change in the observable
output—out_1. On the other hand, any test set providing
MC/DC of the inlined implementation would be able to re-
veal this fault.

Programs may be structured with significant numbers of
intermediate variables for many reasons, for example, for
clarity (nice program structure), efficiency (no need to re-
compute commonly used values), or to make it easer to
achieve the desired MC/DC coverage (it is significantly eas-
ier to find the MC/DC tests if the decisions are simple).
Either way, we hypothesize the efficacy of the MC/DC cov-
erage criterion will be reduced over such programs.

The issue with decision structure is not confined only to
code. The move towards model-based development in the
critical systems community makes test-adequacy measure-
ment a crucial issue in the modeling domain. Commercial
modeling notations such as Simulink [13] and SCADE [4]
are gaining widespread acceptance. For example, Figure 1
is a Simulink model equivalent to the example in Table 1.
MC/DC coverage of such models is currently defined on a

1

Out1

AND

Logical

Operator1
OR

Logical

Operator

3

In3

2

In2

1

In1

Figure 1: Simulink model of example in Table 1

‘gate level’ (analogous to the MC/DC measurement over
Version 1 in Table 1). Since there are no complex decisions
in this definition of MC/DC, MC/DC measured this way is
susceptible to the masking problem discussed above. Test-
suites designed to provide MC/DC coverage over the models
could, therefore, be potentially ineffective. Thus, the current
approach to measuring MC/DC over such models is cause
for concern. For simplicity, in the remainder of this paper,
we refer to a ‘model’ or ‘program’ as the ‘implementation’
since the concerns discussed here are the same regardless of
whether we are discussing a model or a program.

In this paper, we empirically study the effect of inlining
on MC/DC achieved. For our case study we used six sys-
tems from the civil avionics domain and two toy examples.
For each of these examples we first generated test suites
that provide MC/DC over an implementation with no in-
lining. We then ran the test suite over an implementation
where temporary variables had been inlined, and measured
MC/DC achieved. This measurement was then compared
against the achievable coverage of the inlined program to
assess the sensitivity of the MC/DC metric to inlining.

Our case studies revealed that inlining the implementa-
tion has a profound effect on the MC/DC achieved by a
test suite. For all six industrial examples in our case study,
a test suite providing MC/DC over the non-inlined version
achieved significantly lower coverage on the inlined version.
Coverage reductions ranged from 12% - 86% (of the achiev-
able coverage) on these examples. Needless to say, all un-
covered portions of the programs represent locations where
faults of the type discussed earlier in this section may reside
undetected. On the other hand, for the toy examples, negli-
gible reduction (less than 1%) in MC/DC was observed. Sta-
tistical analysis of these results revealed that for industrial
systems, our hypothesis that the MC/DC metric is sensitive
to the structure of the implementation is supported.

We find the effect of program or model structure on MC/DC
coverage as well as the general lack of awareness of the (po-
tential) problems worrisome; in particular with respect to
the efficacy of test suites developed to provide model cover-
age. Engineers and certifiers should be aware and cautious
of this issue when using MC/DC to assess the adequacy
of test suites for safety-critical applications. We are aware
that test suite assessment using coverage is not adequate
and only serves as an initial indication; the real concern is
in their fault finding capability. In the future, we plan to
further evaluate this hypothesis by running fault-finding ex-
periments.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces our experimental setup and the case ex-
amples used in our investigation. Techniques used to inline
the implementation are described in Section 2.3. We discuss
our test case generation methodology in Section 2.4. Sec-
tion 2.5 describes the coverage measurements gathered over

162

the implementations. Results obtained and their analysis is
presented in Section 3. Finally, Section 4 discusses the im-
plications of our results, and points to future directions in
evaluating the sensitivity of the MC/DC metric.

2. EXPERIMENT
To investigate how MC/DC is affected by the structure

of a implementation we designed our experiment to test the
following hypothesis:

Hypothesis: A test-suite generated to provide MC/DC
over the non-inlined implementation will achieve lower
MC/DC over an implementation that is inlined.

We formulated our hypothesis based on the observation
that the effect of masking may not be revealed in the non-
inlined version of the implementation and, therefore, it may
be significantly easier to achieve MC/DC than on the in-
lined version that forces the construction of test cases to
take masking into account. To illustrate this idea consider
again the example in Table 1. In the two behaviorally equiv-
alent versions of the implementation for out_1, TestSet1 will
achieve 100% MC/DC over Version 1 because the masking
effect of in_3 is not revealed (MC/DC coverage of stmt1

is credited even though the effect of expr_1 is masked out
in stmt2). Nevertheless, the test-set will only achieve 33%
MC/DC over the inlined version (2 of 3 cases for ‘and’, and
0 of 3 cases for ‘or’) since in_3 = false masks out the effect
of in1 or in21.

Chilenski investigated three different notions of
MC/DC [1], namely: Unique Cause MC/DC, Unique
Cause + Masking MC/DC, and Masking MC/DC. In
this paper we use masking MC/DC [8] to determine the
independence of conditions within a Boolean expression.
In masking MC/DC, a basic condition is masked if varying
its value cannot affect the outcome of a decision due to
structure of the decision and the value of other conditions.
To satisfy masking MC/DC for a basic condition, we must
have test states in which the condition is not masked and
takes on both true and false values. Masking MC/DC
is the easiest of the three forms of MC/DC to satisfy
since it allows for more independence pairs per condition
and more coverage test sets per expression than the other
forms. Chilenski’s analysis showed that even though Mask-
ing MC/DC could allow fewer tests than Unique-Cause
MC/DC, its performance in terms of probability of error
detection was nearly identical to the other forms of MC/DC.
This led Chilenski to conclude in [1] that Masking MC/DC
should be the preferred form of MC/DC.

To better illustrate the definition of masking MC/DC,
consider the expression A and B. To show the indepen-
dence of B, we must hold the value of A to true; otherwise
varying B will not affect the outcome of the expression. In-
dependence of A is shown in a similar manner. Table 2
shows the test suite required to satisfy MC/DC for the ex-
pression A and B. When we consider decisions with multiple
Boolean operators, we must ensure that the test results for
one operator are not masked out by the behavior of other
operators. For example, given A or (B and C) the tests
for B and C will not affect the outcome of the decision if

1Note here that there is no standard way of measuring par-
tial MC/DC and others might come up with a different num-
ber. This is a topic for a separate report, however.

A B A and B

T T T
T F F
F T F

Table 2: Example of a test suite that provides Mask-
ing MC/DC over A and B

A is true. Table 3 gives one of the test suites that would
satisfy masking MC/DC for the expression A or (B and C).
Note that in Table 3, test cases {2,4} or {3,4} will demon-
strate independence of condition A under Masking MC/DC.
Nevertheless, these test cases will not be sufficient to show
independence of A under Unique Cause MC/DC since the
values for conditions B and C are not fixed between the test
cases.

A B C A or (B and C)

F T T T
F T F F
F F T F
T F F T

Table 3: Example of a test suite that provides Mask-
ing MC/DC over A or (B and C)

2.1 Experimental Setup
To evaluate our hypothesis, we generate a test-suite to

provide MC/DC over a non-inlined version of the imple-
mentation, and run the test suite over the inlined version
of the same implementation and measure MC/DC achieved;
we are then in a position to pass judgement on whether or
not a program where complex decisions are broken down
into many small conditions reduces the effectiveness of the
MC/DC coverage criterion. Subsequent paragraphs provide
more information on the experimental procedure.

To provide realistic results, we conducted experiments
on six industry sized examples: three models from a dis-
play window manager for an air-transport-class aircraft
(DWM 1, DWM 2, and DWM 3), and three models related
to flight guidance mode logic (ToyFGS 05, Vertmax Batch
and Latctl Batch). We also conducted experiments using
two toy case examples: a Wheel Brake System, and a Sen-
sor Voting model developed at Honeywell Labs. Section 2.2
gives a description of each of the models used in our exper-
iments. For each of the case examples, we conducted the
experiment following the steps described below.

1. From the specification of the case example, we gener-
ated two artifacts

An implementation with no inlining. The struc-
ture of this implementation closely reflects the
structure of a typical Simulink model (very sim-
ple conditions and many intermediate variables
carrying temporary values). We will refer to this
version of the implementation as the ‘non-inlined’
version.

An implementation that is inlined. The imple-
mentation is inlined in the sense that multiple
levels of hierarchy in the specification are flat-
tened to a single level (functions calls are inlined)
and intermediate variables in complex conditions

163

are inlined. Section 2.3 provides more infor-
mation on the inlining mechanism used in our
experiment. We will refer to the implementation
generated in this manner as the ‘inlined’ version.

2. From the non-inlined version of the implementation we
generated a test-suite that provided maximal MC/DC
coverage. The test suites were näıvely generated,
which led to much larger suites than actually neces-
sary for maximal coverage. It is worth noting that
the generated test suite may not always provide 100%
MC/DC coverage over the implementation since some
constructs may not be reachable. Thus, ‘achievable’
MC/DC may be lower than 100%; our generated test-
suites provided achievable MC/DC coverage over the
non-inlined models. It was proven (by model checking)
that our suites provide maximal achievable coverage.

3. We performed a näıve reduction of the test suite gen-
erated in Step 2 ensuring the MC/DC coverage over
the non-inlined version was maintained (a greedy al-
gorithm).

4. We ran the reduced test suite over the inlined version
of the implementation, and measured the MC/DC cov-
erage achieved.

5. Finally, we compared the result from Step 4 with
‘achievable coverage’ on the inlined implementation to
determine how much (if any) of the inlined implemen-
tation was not covered by the tests providing maximal
coverage of the non-inlined implementation.

In the remainder of this paper we provide a detailed dis-
cussion of the activities involved in the experiment and our
findings.

2.2 Case Examples
In our experiment, we used six close to production or pro-

duction systems and two toy examples. All systems used in
our experiment were modeled using the Simulink [13] nota-
tion from Mathworks Inc. We provide descriptions for these
systems below.

2.2.1 Flight Guidance System
A Flight Guidance System is a component of the over-

all Flight Control System (FCS) in a commercial aircraft.
It compares the measured state of an aircraft (position,
speed, and altitude) to the desired state and generates pitch
and roll-guidance commands to minimize the difference be-
tween the measured and desired state. The FGS consists of
the mode logic, which determines which lateral and vertical
modes of operation are active and armed at any given time,
and the flight control laws that accept information about the
aircraft’s current and desired state and compute the pitch
and roll guidance commands.

The three FGS models in this paper focus on the mode
logic of the FGS. The first model (ToyFGS 05) is a Simulink
version of the prototype model described in [14]. The Vert-
max Batch and Latctl Batch models describe the vertical
and lateral mode logic for the Rockwell Collins FCS 5000
flight guidance system family, described in [15].

2.2.2 Display Window Manager Models (DWM_1,
DWM_2 and DWM_3)

The Display Window Manager models, DWM 1, DWM 2
and DWM 3, represent 3 of the 5 major subsystems of the
Display Window Manager (DWM) of the Rockwell Collins
ADGS-2100, an air transport-level commercial displays sys-
tem. The DWM acts as a ‘switchboard’ for the system and
has several responsibilities related to routing information to
the displays and managing the location of two cursors that
can be used to control applications by the pilot and copilot.
The DWM must update which applications are being dis-
played in response to user selections of display applications,
and must handle reversion in case of hardware or applica-
tion failures, deciding which information is most critical and
moving this information to the remaining display(s). It also
must manage the cursor, ensuring that the cursor does not
appear on a display that contains an application that does
not support the cursor. In the event of reversion, the DWM
must ensure that the cursor is not tasked to a dead display.

2.2.3 Sensor Voting Model
The triplex sensor voter used in our experiment is a

slightly simplified version of one developed at Honeywell
Laboratories. The design is that of a generic triplex voter:
the voter takes inputs from three redundant sensors and
synthesizes a single reliable sensor output. Each of the re-
dundant sensors produces both a measured data value and
self-check bit (validity flag) indicating whether or not the
sensor considers itself to be operational. All valid sensor
signals are combined to produce the voter output. If three
sensors are available, a weighted average is used in which
an outlying sensor value is given less weight than those that
are in closer agreement. If only two sensors are available
a simple average is used. If only one sensor is available, it
becomes the output. There are two mechanisms whereby
a faulty sensor may be detected and eliminated: compari-
son of the redundant sensor signals and monitoring of the
validity flags produced by the sensors themselves.

2.2.4 Wheel Brake System (WBS)
The Wheel Brake System (WBS) is a Simulink model de-

rived from the WBS case example found in ARP 4761 [21,
10]. The WBS is installed on the two main landing gears.
Braking on the main gear wheels is used to provide safe
retardation of the aircraft during the taxiing and landing
phases, and in the event of a rejected take-off. Braking on
the ground is either commanded manually, via brake ped-
als, or automatically (autobrake) without the need for pedal
application. The Autobrake function allows the pilot to pre-
arm the deceleration rate prior to takeoff or landing. When
the wheels have traction, the autobrake function will control
break pressure to provide a smooth and constant decelera-
tion.

2.3 Inlined and Non-Inlined Implementations

The case examples described in Section 2.2 were modeled
in Simulink and we refer to these models as the specification
of the system. As part of a previous project, we developed a
translation framework with the ability to translate Simulink
Models into the synchronous programming language Lus-
tre [7]. Lustre is a synchronous dataflow language and is
the underlying notation for the SCADE Suite from Esterel
Technologies [3]. We translated each of the case examples

164

Non-Inlined Implementation:

node Compute(x,y,z: bool;

temp,thresh: int)

returns(out: bool);

var

run, no_danger, no_alarm: bool;

let

run = AndOr(x,y,z);

no_danger = (temp <= thresh);

no_alarm = if (no_danger)

then true

else false;

out = run and no_alarm;

tel;

node AndOr(a,b,c: bool)

returns(out: bool);

var

local: bool;

let

local = b or c;

out = a and local;

tel;

Inlined Implementation:

node Compute(x,y,z: bool;

temp,thresh: int)

returns(out: bool);

var

no_alarm: bool;

let

no_alarm = if (temp <= thresh)

then true

else false;

out = (x and (y or z)) and no_alarm;

tel;

Table 4: Example implementation with and without
inlining

modeled in Simulink to Lustre. We refer to the translated
case examples in Lustre as the implementation of the spec-
ification. This is analogous to automated code generation
(with default compilation options) from Simulink models us-
ing Real Time Workshop from Mathworks [12], where the
generated C code is the implementation of the Simulink
specification. Using the options in our translation infrastruc-
ture, we generated two different implementations in Lustre
- with and without inlining, as described below.

2.3.1 No Inlining
The structure of the generated non-inlined implementa-

tion in Lustre closely follows the structure of the specifica-
tion in Simulink in terms of the hierarchies (or subsystems)
and intermediate variables needed to propagate signals in
the Simulink model. A sample Lustre implementation with
no inlining is presented in Table 4. The implementation
shown in the table, computes the result of X and Y or Z

for the three inputs X,Y,Z if the danger condition (temp >

thresh) is not violated.

2.3.2 With Inlining
Here we flatten the multiple levels of hierarchy in the

Simulink model of the system so that the implementation
in Lustre has only a single level of hierarchy. In addition
we also inline intermediate variables in the model into their
original definition. Note however that we do not inline all
the intermediate variable definitions. MC/DC was defined
for constructs in a traditional imperative language such as
C. We therefore made an attempt to make inlining in Lus-
tre resemble that of an imperative language. For instance,
although ‘if-then-else’ constructs are expressions in Lustre
and can thus be inlined, such inlining would not be possi-
ble in C where ‘if-then-else’ is a statement. Thus, we did
not inline variables defined through an ‘if-then-else’ expres-
sion. Table 4 presents the inlined version of the previously
mentioned example.

Note that the terms ‘Inlined Implementation’ and ‘Non-
Inlined Implementation’ used in the rest of this paper refers
to the implementation in Lustre with and without inlining
(as described above) respectively.

2.4 Test Suite Generation and Reduction

Several research efforts [18, 19, 6] have developed tech-
niques to automatically generate test cases using model
checkers. We use the same techniques to generate test suites
that provide MC/DC over the implementation. We used the
NuSMV [17] model checker in our experiments. The steps
followed in test suite generation were as follows:

1. The Lustre implementation was translated into the in-
put language of NuSMV [17] using the translation in-
frastructure developed in a previous project [23].

2. We augmented the translation infrastructure with the
capability to automatically generate MC/DC obliga-
tions for constructs in the implementation. Using this
capability, we generated the requisite MC/DC obliga-
tions and negated them to form trap properties [6] for
the model checker.

3. We merged the NuSMV model in step 1 along with
the trap properties in step 2 and gave it to the model
checker which then generates counter examples that
constitute the test suite providing MC/DC coverage
over the Lustre implementation in step 1.

Note that not every trap property generated in step 2
will result in a test case (counter-example), since some parts
of the model may be unreachable or specific combinations
of truth values infeasible (for example, because of mask-
ing). Therefore, expressions occurring in those portions of
the model may not be exercised up to MC/DC, and the
‘achievable’ MC/DC over an implementation with such ex-
pressions will be less than a 100%. To assess the achievable
MC/DC over the implementation, we run the generated test
suite and measure MC/DC achieved over the implementa-
tion. Section 2.5 provides more information on the coverage
measurement tool. We use this tool to measure ‘achievable
MC/DC’ over the inlined and non-inlined implementation.

We attempt to generate a separate test case for every con-
struct we need to cover in the implementation. This is a
straightforward way of generating test suites but the suites
will be highly redundant. In many cases, a single test case
may satisfy more than one test obligation. For instance, a

165

test case designed to cover a certain MC/DC truth assign-
ment of one decision will most likely also cover many other
truth assignments on other decisions. Thus, the size of the
complete test suite can typically be reduced while preserving
coverage.

Since in this experiment we are interested in how imple-
mentation structure affects MC/DC coverage, we are inter-
ested in a small test suite so that redundant test cases do not
artificially inflate the coverage measured on the inlined im-
plementation. Therefore, in our experiments, we performed
test suite reduction and we used a simple greedy method.
We begin with an empty set of test cases and initialize the
coverage to zero. The greedy algorithm then sequentially
picks a test case from the complete test suite, runs the
test, and determines if the test case improved the overall
MC/DC achieved. Any test case that improves the coverage
achieved is added to the reduced test set and those that do
not are discarded. This is done until we have exhausted
all the test cases in the complete test suite. We now—
presumably—have a much smaller test suite that achieves
the same MC/DC coverage over the implementation. In our
experiments we were able to achieve reductions in test suite
size of up to 99% while maintaining MC/DC over the imple-
mentation. The näıve greedy manner is not guaranteed to
be optimal, since the order of picking the test cases will af-
fect the size of the reduced set. Since the experiments in this
paper did not require large test suites to provide MC/DC
coverage, we did not investigate creating minimal test suite
sets (although it would be desirable to have this minimal
set).

2.5 Measuring MC/DC Coverage

For this project we built a test-adequacy measurement
tool for Lustre that takes a test suite and an implementation
(in Lustre), and then gathers information on the MC/DC
coverage achieved over the implementation. We currently
measure masking MC/DC [8]. In our case studies, we used
the coverage measurement tool to gather MC/DC measures
over the inlined and non-inlined implementations (recall that
Section 2.3 provides a description of the terms inlined and
non-inlined) using different test suites. We gathered the
following metrics in our experiment:

Measured MC/DC Coverage: Here we simply run a
test-suite and measure the MC/DC coverage achieved
over the implementation.

Achievable MC/DC Coverage: As a result of mask-
ing and unreachability mentioned in Section 2.4, a
MC/DC test suite generated from an implementation
may not provide 100% MC/DC coverage. We deter-
mine the achievable MC/DC for the implementation
by (1) generating MC/DC test suite using our test-
case generation tool (this will find all feasible test
cases), and (2) using the generated test suite we exe-
cute all tests and measure the achievable MC/DC (the
MC/DC achieved by the feasible tests).

Given these two measures we can investigate the effect of
inlining on the MC/DC coverage of an implementation.

3. EXPERIMENTAL RESULTS

For every case example described in Section 2.2, we gen-
erated a non-inlined implementation as well as an inlined
implementation.
Non-inlined Implementation: For the non-inlined im-

plementation, we measured the following:

1. Achievable MC/DC Coverage,

2. Size of the complete test suite generated to
provide MC/DC over the non-inlined implemen-
tation, and

3. Size of the reduced test suite that maintains
MC/DC achieved.

Inlined Implementation: For the inlined implementa-
tion, we measured the following:

1. Measured MC/DC Coverage achieved by
running the reduced test suite that was generated
from the non-inlined implementation,

2. Achievable MC/DC Coverage,

3. % of Achievable Coverage which is the ratio
of Measured MC/DC over Achievable MC/DC on
the inlined implementation,

4. Size of the complete test suite generated from
the inlined implementation enabling us to estab-
lish the achievable MC/DC of the inlined imple-
mentation, and

5. Size of the reduced test suite that maintains
Achievable MC/DC.

Tables 5 and 6 summarize the above measures for the
different case examples.

In Table 5, the full test suite represents the number of fea-
sible MC/DC obligations in the non-inlined implementations
for which we generated a test case, for example, ToyFGS 05
has 4,445 feasible MC/DC obligations that must be covered
and we generate one test case for each one. The reduced
set indicates the number of test cases our simple greedy re-
duction algorithm generated to provide the same coverage
as the full set. For ToyFGS 05, 75 test cases were sufficient
to provide the maximum achievable coverage. This reduced
set column is repeated in Table 6 since we run the reduced
test sets on the inlined implementations.

With these test-suites we are in a position to measure
the coverage of the original non-inlined implementations as
well as the inlined implementations (Tables 5 and 6). Note
here that the test suites for the non-inlined implementations
provide 100% achievable coverage for all non-inlined imple-
mentations (column labelled %Achievable in Table 5).

We then ran the reduced tests sets on the inlined imple-
mentations and measured the coverage (Table 6). At first
glance the MC/DC coverage numbers are alarming; cover-
age dropped dramatically in most cases (Measured MC/DC
in Table 6). This number is misleading, however. The mea-
sured coverage must be judged in the context of achievable
coverage; when decisions are inlined to form more complex
conditions the effect of masking and infeasible combinations
of conditions will become visible and the achievable coverage
typically drops. We generated and ran test suites that pro-
vided 100% achievable coverage over the inlined implementa-
tions to determine the maximum possible coverage (Achiev-
able MC/DC in Table 6). We can now see that the drop
in MC/DC coverage is not quite as dramatic as indicated
by the raw Measured Coverage numbers—the % Achievable

166

Tests Achievable MC/DC % Achievable
Full Reduced

ToyFGS 05 4445 75 91.2% 100%
DWM 1 180 18 95.1% 100%
DWM 2 299 39 96.2% 100%
DWM 3 2522 23 100% 100%

Latctl Batch 315 52 98.9% 100%
Vertmax Batch 1415 235 100% 100%

WBS 271 10 76.6% 100%
Sensor Voting Model 103 10 68.7% 100%

Table 5: MC/DC coverage achieved over the non-inlined implementations.

Tests Measured MC/DC Achievable MC/DC % Achievable
Reduced

ToyFGS 05 75 33.6% 41.9% 80.2
DWM 1 18 81.2% 92.3% 87.9
DWM 2 39 61.9% 92.5% 66.9
DWM 3 23 13.6% 100% 13.6

Latctl Batch 52 88.3% 100% 88.3
Vertmax Batch 235 86.2% 99.8% 86.3

WBS 10 77.7% 77.7% 100
Sensor Voting Model 10 56.4% 57.2% 98.6

Table 6: MC/DC coverage achieved over inlined implementations.

column points out the percentage of the achievable MC/DC
obligations that were actually covered by the test-suite—but
they are still a serious concern. For the six industrial sized
models the test-suites providing 100% of the achievable cov-
erage of the non-inlined implementations provided between
13.6% and 88.3% of the achievable coverage on the inlined
implementations. This is clearly worrisome since the inlined
implementation is semantically equivalent to the non-inlined
implementation and all uncovered MC/DC obligations could
potentially contain a fault.

The wide range in coverage reductions observed over the
different systems was due to their varied behavior and imple-
mentations. The DWM 3 system, which recorded the maxi-
mum reduction, consists almost entirely of complex Boolean
mode logic. Inlining the implementation thus resulted in
complex Boolean expressions in contrast to the very sim-
ple Boolean expressions in the non-inlined version. On the
other hand, the Latctl Batch system, with the least coverage
reduction among the industry sized examples, was primar-
ily a functional transform with less complex mode logic and
inlining did not have a dramatic effect on the complexity
of Boolean expressions. Therefore, the mismatch between
the measured MC/DC and the achievable MC/DC was not
as dramatic on this system. We provide statistical analy-
sis of the results from the industrial and toy examples in
Section 3.1.

The very low achievable coverage (only about 41.9% of
the MC/DC obligations can actually be covered) of the
ToyFGS 05 example merits a closer examination. Low
achievable coverage is an indication of decisions where large
parts are masked out due to lazy evaluation or the con-
trol flow of the implementation; either way, it indicates a
large number of conditions that simply have no impact on
the program behavior. Low achievable coverage is an issue

that should cause concern and spur investigation. In this
case, the Simulink version of the ToyFGS 05 case-example
we used in this study was a literal translation of a previous
version expressed in the RSML-e notation [16]. Boolean ex-
pressions in RSML-e are expressed as And/Or tables [11]
that are basically nicely formatted Boolean expressions in
disjunctive normal form. Therefore, the decisions are often
large and contain a lot of redundancy which creates signifi-
cant opportunities for masking. As a consequence, there are
many MC/DC combinations of truth values that are simply
not feasible.

Finally, let us study the size of the test-suites needed to
provide coverage over the various implementations. Table 7
gives the sizes of test suites generated to provide MC/DC
over the non-inlined implementations versus the inlined im-
plementations. (Note again that the full test-suites represent
one test-case per achievable MC/DC obligation.) As seen in
the table, there is no regular trend in the number of achiev-
able MC/DC obligations for the two versions; the number of
obligations to cover may go up or down. Nevertheless, the
reduced test-suites for the inlined implementation are always
as big or bigger (1 to 20 times for our examples) than the
non-inlined counterpart. If we inline we will get fewer deci-
sions, but they will be larger and—in general—more difficult
to cover with a test-case. Therefore based on the results in
our experiment, to cover an inlined implementation we need
a greater number and more rigorously prepared test-cases to
achieve the desired coverage.

3.1 Statistical Analysis and Evaluation of
Hypothesis

In this section, we analyze the results in Tables 5 and 6
and determine if the hypothesis stated in Section 2 that “a
test suite generated to provide MC/DC over the non-inlined

167

Non-Inlined Implementation Inlined Implementation
Tests # Tests

Full Reduced Full Reduced

ToyFGS 05 4445 75 1909 166
DWM 1 180 18 121 29
DWM 2 299 39 946 88
DWM 3 2522 23 2697 463

Latctl Batch 315 52 205 77
Vertmax Batch 1415 235 1464 285

WBS 271 10 125 10
Sensor Voting Model 103 10 189 12

Table 7: Sizes of Test Suites providing MC/DC over implementations with and without Inlining.

implementation will achieve lower MC/DC coverage over the
inlined implementation” is supported. From here on, we will
refer to this hypothesis as H. To evaluate H, we first for-
mulate our null hypothesis H0 as follows:

H0: A test suite generated to provide achievable MC/DC
over the non-inlined implementation will provide
achievable MC/DC over the inlined implementation.

Thus, to accept H we would have to reject the null hypoth-
esis H0. We are aware that the number of samples used
in our experiment is rather small, and would therefore be
unreasonable to fit the data to a theoretical probability dis-
tribution. We therefore test the hypothesis by not assuming
any particular distribution. To do this, we use the permu-
tation test, a non-parametric test with no distributional as-
sumptions, to evaluate our hypothesis. A permutation test
is a type of statistical significance test in which a reference
distribution is obtained by calculating all possible values of
the test statistic under rearrangements of the labels on the
observed data points [5]. Note that the permutation test
presented here is only for the results from the six industrial
systems. A discussion of the results from the toy examples
and why they were excluded from our analysis is presented
at the end of this section. To perform the permutation test,
we restate the null hypothesis as:

H0: The %Achievable data from the inlined and non-
inlined implementations come from the same popula-
tion.

In our experiment we have two groups of data – non-inlined
% Achievable (group A), and inlined % Achievable (group
B) – that are paired (100 paired with 80.2, 100 paired with
87.9, 100 paired with 66.9, 100 paired with 13.6, 100 paired
with 88.3 and 100 paired with 86.3). Group A has all values
of 100 and a sample mean µA(= 100) and group B has the
other values (80.2, 87.9, 66.9, 13.6, 88.3, 86.3) with a sample
mean µB(= 70.5). We want to test at 5% significance level
(α = 0.05) whether they come from the same population
(the null hypothesis). If they do then the paired values can
be switched, for instance 80.2 could occur in group A and
its pair value of 100 could occur in group B. The two-sided
permutation test is designed to determine whether the ob-
served difference between the sample means is large enough
to reject the null hypothesis H0 that the two groups have
identical probability distribution.

The test proceeds as follows. First, the absolute value of
the difference in means between the two samples is calcu-
lated - this is the observed value of the test statistic, T (stat).

T (stat) = abs(µA − µB) = 100− 70.5 = 29.5

We then calculate the number of ways of grouping the paired
values into 2 sets. With a sample size of 6 paired values,

Number of Permutations = 26 = 64

Let COUNT be the number of permutations with absolute
difference in means greater than or equal to the observed
value, T (stat). For our sample data, we found COUNT = 2
(One permutation where group A had all 100s and group B
had the other values, and another permutation where group
B had all 100s and group A had the other values).
The two-sided P − V alue for the test is calculated as:

P − V alue = COUNT / Number of Permutations
= 2/64 = 0.031

Since our P − V alue (0.031) is less than the α value
(0.05), for the industrial models the null hypothesis H0
that the %Achievable data from the inlined and non-inlined
implementations come from the same population would
be rejected at the level of significance α = 0.05. Based
on these results, the alternate hypothesis that states %
Achievable MC/DC for the inlined and non-inlined mod-
els come from different populations is supported. Since the
%Achievable MC/DC for the non-inlined model is always at
100, %Achievable inlined MC/DC can only be lower than
%Achievable non-inlined. Thus, for the industrial models
in our experiment, our hypothesis (H) that states a test
suite generated to provide MC/DC over the non-inlined im-
plementation will achieve lower MC/DC coverage over the
inlined implementation is supported.

For the toy examples in our case study (WBS and Sensor
Voter) the generated test suites provided close to achievable
MC/DC on the inlined implementation. This was some-
what surprising to us since these results differ significantly
from our other data points. The results can be attributed to
the simple Boolean decisions typically present in toy exam-
ples; decisions that are largely unaffected by inlining. We
do not believe these negative results affect the support of
our hypothesis (When the toy examples are included in the
analysis, the null hypothesis is still rejected but the aver-
age reduction in coverage is smaller). Instead, these results
should act as a warning that experimenting with toy exam-
ples can be misleading—experimentation must take place
with real or industrial systems exhibiting both the size and
structure seen in practice.

168

3.2 Threats to Validity
We see two threats to the external validity of our

experiment—the selection of case examples and the use of
Lustre as an implementation langauge.

Although our results are statistically significant, to gener-
alize them across the class of systems where MC/DC cover-
age may be of interest, it would be desirable to select more
case examples than the six we have selected. We believe,
however, that the examples we used are highly representa-
tive and our results are generalizable to other systems in the
same domain.

We used Lustre as an implementation language in this
study rather than a commonly used langauge such as C or
C++. We do not see this as a serious problem since the
structure of decisions is identical to traditional imperative
languages. Therefore, we believe our results are generaliz-
able to a ‘normal’ implementation.

The threat to internal validity in our experiment is the
näıve test suite reduction algorithm used—the algorithm will
give us a reduced test-suite, but there is no guarantee that it
will be the smallest (or even small). Had we been able to ob-
tain the minimal set of test-cases (an NP-complete problem)
the effect observed in our experiments would—we believe—
have been even more dramatic. Therefore, we do view our
näıve reduction algorithm as a problem.

4. DISCUSSION AND CONCLUSIONS
There are three primary conclusions that can be derived

from the results in Tables 5 through 7.
Firstly, for our six industrial examples, test suites that

provide MC/DC on the non-inlined implementation did
poorly on the inlined implementations. The reason for this
result is that MC/DC measurement on the former does not
take the effect of masking into account while measuring over
the latter does. Masking is a crucial consideration for gen-
erating test suites that are rigorous and effective in fault
finding. Keeping this in mind, we believe there is a serious
need for one of the following:

1. a coverage metric (or test adequacy metric) that takes
masking into consideration irrespective of implemen-
tation structure, or

2. a canonical way of structuring code so that condition
masking is revealed when measuring coverage using ex-
isting coverage criteria.

This observation takes on an additional dimension of im-
portance in the model-based domain since there have been
suggestions to allow measurement of test adequacy in the
model domain as a substitute for measurement in the code
domain. The reason being the instrumentation necessary to
measure coverage on the code often leads to a very costly
testing process (it is not only expensive to find the tests,
but also to run the tests) as opposed to measuring cov-
erage on the model where instrumentation is much easier.
Modeling languages such as Simulink and SCADE are ex-
tensively used in the critical systems domain and current
coverage metrics for these languages provide the weakest
possible MC/DC obligation; all decisions are simple (for ex-
ample, only one or, and, or implication in each decision).
Therefore, measuring coverage over these models as opposed
to the code derived from the models exposes the problems
discussed in this paper and would, in our opinion, have the

potential to significantly weaken existing MC/DC test oblig-
ations. Based on our results in this experiment, we advise
that new MC/DC coverage metrics be proposed that account
for condition masking or to restructure the implementation
(for e.g., inlining) so that masking is revealed.

Secondly, in addition to judging quality of test suites, mea-
suring coverage over the inlined implementation will help de-
velopers better assess the independence of conditions, i.e.,
do the conditions affect the outcome of execution, within
an application. With a non-inlined implementation, cover-
age results may be highly misleading, as seen for the FGS
system in Table 6. The achievable MC/DC over the non-
inlined implementation of the FGS was 91.2% as compared
to an achievable MC/DC of 41.9% over the inlined imple-
mentation. The difference in the numbers is unnerving since
these additional conditions contributing to coverage in the
non-inlined implementation are essentially ‘dead code’ in the
sense that they cannot affect the outcome of the execution.
Based on these results, we believe reporting coverage num-
bers for the non-inlined implementation may hide many in-
stances of useless code.

Finally, as Table 7 illustrates, for all case examples the
size of the reduced test suite that provides MC/DC over
the inlined implementation is larger than that for the non-
inlined implementation. Although finding more test cases is
an added burden, previous research efforts [9] have shown
that the larger test suite size necessitated by the inlined-
implementation will enhance its fault finding effectiveness.

To summarize, our empirical investigation in this paper
revealed that for all six industrial examples the MC/DC
metric was highly sensitive to the structure of the imple-
mentation. Statistical analysis on the experimental data re-
vealed that our hypothesis stating that test suites generated
to be MC/DC adequate on a non-inlined implementation
is inadequate on the inlined version of the same implemen-
tation was supported at 5% significance level. Inadequacy
ranged from 12 to 86 percentage points for the different sys-
tems. Thus, we conclude that the MC/DC metric can be
highly subjective as a test adequacy metric. In the absence
of a metric that is robust to structural changes in the imple-
mentation, we believe that test suite adequacy measurement
using the MC/DC metric will be better served if done over
the inlined implementation. The reason being the inlined
implementation requires a more rigorous test suite that we
postulate will provide better fault finding and better assess
whether masked conditions exist in critical software.

In future work we will further evaluate the sensitivity of
MC/DC to code structure with fault finding experiments.
We also plan to investigate canonical forms of the MC/DC
metric that are more robust to structural changes in the
implementation.

5. ACKNOWLEDGEMENTS
We would like to thank Dr. Elizabeth Whalen from Boeing

Co. for her help with the statistical analysis of the presented
results. We would also like to thank John Chilenski from
Boeing Co. for his insights and discussions about the pitfalls
of structural coverage metrics. We thank Dr. Steve Miller
and Dr. Alan Tribble of Rockwell Collins Inc. for their help
and support with the flight control systems.

169

6. REFERENCES
[1] J. Chilenski. An investigation of three forms of the

modified condition decision coverage (mcdc) criterion.
Technical Report DOT/FAA/AR-01/18, Office of Aviation
Research, Washington, D.C., April 2001.

[2] J. J. Chilenski and S. P. Miller. Applicability of modified
condition/decision coverage to software testing. Software
Engineering Journal, pages 193–200, September 1994.

[3] Esterel-Technologies. Corporate web page.
www.esterel-technologies.com, 2004.

[4] Esterel-Technologies. SCADE Suite product description.
http://www.esterel-technologies.com/v2/ scadeSuiteFor-
SafetyCriticalSoftwareDevelopment/index.html,
2004.

[5] R. Fisher. The Design of Experiment. New York: Hafner,
1935.

[6] A. Gargantini and C. Heitmeyer. Using model checking to
generate tests from requirements specifications. Software
Engineering Notes, 24(6):146–162, November 1999.

[7] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language Lustre.
Proceedings of the IEEE, 79(9):1305–1320, September 1991.

[8] K. Hayhurst, D. Veerhusen, and L. Rierson. A practical
tutorial on modified condition/decision coverage. Technical
Report TM-2001-210876, NASA, 2001.

[9] M. P. Heimdahl and G. Devaraj. Test-suite reduction for
model based tests: Effects on test quality and implications
for testing. In Proceedings of the 19th IEEE International
Conference on Automated Software Engineering (ASE),
Linz, Austria, September 2004.

[10] A. Joshi and M. P. Heimdahl. Model-Based Safety Analysis
of Simulink Models Using SCADE Design Verifier. In

SAFECOMP, volume 3688 of LNCS, pages 122Ű–135.
Springer-Verlag, Sept 2005.

[11] N. G. Leveson, M. Heimdahl, H. Hildreth, and J. Reese.
TCAS II Requirements Specification.

[12] MathWorks. The MathWorks Inc. corporate web page. Via
the world-wide-web: http://www.mathworks.com, 2004.

[13] Mathworks Inc. Simulink product web site. Via the
world-wide-web:
http://www.mathworks.com/products/simulink.

[14] S. Miller, A. Tribble, T. Carlson, and E. J. Danielson.
Flight guidance system requirements specification.
Technical Report CR-2003-212426, NASA, June 2003.

[15] S. P. Miller, E. A. Anderson, L. G. Wagner, M. W.
Whalen, and M. P. Heimdahl. Formal verification of flight
critical software. In Proceedings of the AIAA Guidance,
Navigation and Control Conference and Exhibit, August
2005.

[16] S. P. Miller, M. P. Heimdahl, and A. Tribble. Proving the
shalls. In Proceedings of FM 2003: the 12th International
FME Symposium, September 2003.

[17] The NuSMV Toolset, 2005. Available at
http://nusmv.irst.itc.it/.

[18] S. Rayadurgam. Automatic Test-case Generation from
Formal Models of Software. PhD thesis, University of
Minnesota, November 2003.

[19] S. Rayadurgam and M. P. Heimdahl. Coverage based
test-case generation using model checkers. In Proceedings
of the 8th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems
(ECBS 2001), pages 83–91. IEEE Computer Society, April
2001.

[20] RTCA. DO-178B: Software Considerations In Airborne
Systems and Equipment Certification. RTCA, 1992.

[21] ARP 4761: Guidelines and Methods for Conducting the
Safety Assessment Process on Civil Airborne Systems and
Equipment. SAE International, December 1996.

[22] RTCA SC-205 (Joint with EUROCAE WG-71) Software
Considerations.
http://www.rtca.org/comm/Committee.cfm?id=55.

[23] M. Whalen. Autocoding tools interim report. In NASA
Contract NCC-01-001 Project Report, February 2004.

170

