
Large Scale Linux Configuration with LCFG

Paul Anderson

Division of Informatics,
University of Edinburgh

paul@dcs.ed.ac.uk

Alastair Scobie

Division of Informatics,
University of Edinburgh

ajs@dcs.ed.ac.uk

This paper describes the automatic installation and configuration system currently being
used to manage several hundred Linux machines in the Division of Informatics at Edin-
burgh University. This is a development of the LCFG system which has been used success-
fully for several years under Solaris. The introduction provides some background on the
general problem of large-scale configuration, together with a short comparison of typical
solutions, and a brief description of the original LCFG system.

The specific changes required to support Linux are then discussed; in particular, the
issues of installation bootstrapping, and theupdaterpmsprogram. This automatically syn-
chronises client software packages with a specification in the central database. We describe
how the system is used in practice, and how it enables us to automatically maintain large
numbers of machines with very diverse and evolving configurations.

Some future plans are then discussed, including a major reworking of the LCFG im-
plementation, LDAP integration, and our intention to make the technology more widely
available.

1 Background

For many years, the Unix community has recognised the
inadequacy of vendor-supplied configuration tools for
managing large networks of disparate machines. A wide
range of solutions have been proposed and developed by
systems administrators, frequently just for their own use.
These range from simple cloning mechanisms to highly
flexible systems (a survey of some previous techniques is
available in [1]).

The LCFG framework [3] was developed by The De-
partment of Computer Science at Edinburgh University
to handle their own network of several hundred (mostly
Solaris) Unix machines. This system was designed to
satisfy several fundamental properties that we could not
find in any existing implementation, and has been very
successful. Over the last three years, the site has mi-
grated rapidly towards Linux, and the LCFG framework
has been ported and extended to support this with good
results. The Department has recently merged with sev-
eral others to form the Division of Informatics and work
is underway to extend the use of LCFG to the larger do-

main. As part of this work, we are taking the opportunity
to improve the design and implementation in some areas.

2 System Configuration

When a standard release of a large software product, such
as an operating system, is distributed to many users, it in-
variably needsconfiguringto tailor it to the requirements
of each individual installation. Even within a single site,
there can be a huge difference between configurations of
different machines; the following are some examples of
the parameters which may vary:

• Hardware configuration and drivers.

• Network configuration and servers.

• Installed software.

• Network services provided.

• Access control.

2.1 Manual Configuration

Obviously the amount of variety between machines de-
pends on the type of installation; an academic Computer
Science environment tends to have a larger variety of
software and configurations than a site concerned pri-
marily with a single application. Our current LCFG sys-
tem supports over 2000 parameters, about 25% of which
routinely vary between different systems. For individ-
ual machines, or a small site, these parameters would
traditionally be configured manually, and most distribu-
tions include graphical tools to make this process more
straightforward (for example [9, 17]). However, large in-
stallations require more sophisticated techniques:

2.2 Automatic Configuration

Most obviously, the effort required to configure several
hundred machines manually from a graphical interface is
not normally acceptable. However, most sites will also
want to have a reasonable confidence in the correctness
of their configurations; misconfigured systems represent
serious security problems, as well as leading to unpre-
dictable failures. Manually configured systems, with no
explicit representation of the configuration, are notori-
ously difficult to guarantee correct. Early attempts to
overcome these problems were often based on acloning
procedure where a single machine is configured by hand
and the resulting disk image is copied directly onto a set
of other machines. This is usually followed by execu-
tion of some scripts to apply any machine-specific differ-
ences. This process is useful for large numbers of very
similar machines which do not change regularly, such as
those in a student laboratory. It is also widely used in
Windows environments.

In many installations, such as our own, both the va-
riety of different configurations, and the rate at which
they change, makes cloning impractical. We support
a range of machines from file servers, to student lab-
oratory clients, to researcher’s laptops, and the hard-
ware and software requirements are all very different.
New machines arrive continuously, old machines are re-
allocated, and systems are rebuilt after hardware failures
or OS upgrades; all of these imply a reconfiguration, and
we estimate that, on average, about 10% of our machines
are completely reconfigured each week. Small configu-
ration changes also occur very frequently in a complex
environment; for example, changing a server or gateway
can imply configuration changes for many other hosts.
Software updates also occur at an average rate of several
tens of packages per day.

2.3 Supporting Diversity & Change

Automatically supporting such diversity and rate of
change requires two main features from a configuration
system: Firstly, there must be some representation of the
configuration information which is stored independently
of the host systems. This may be simple copies of ma-
chine configuration files stored on a central server, or it
may be a more complex “database”. Secondly, the sys-
tem must be capable of tracking changes to the configu-
ration and applying them to individual machines as nec-
essary, rather than requiring an explicit reconfiguration
operation.cfengine[7, 6] is a popular system which ad-
dresses this problem.

Both the format and the structure of the configuration in-
formation are very important. An obvious solution is to
store configuration files in the same format as they ap-
pear on the target host, but this coarse grain approach
means that the configuration system is not aware of the
relationships between data in the various files; for exam-
ple, the “owner” of a machine may have special access
rights which involves the username appearing in several
different configuration files, and we would like to be able
to change this at a single point. Storing the configura-
tion specifications in a more abstract format allows the
configuration to be examined and manipulated in a more
meaningful way. It also provides a degree of platform
independence, analogous to using a high-level program-
ming language which can be transformed into code for
any specific platform. The configuration system may use
this information to generate traditional configuration files
or the services on the host machine may be modified to
read this configuration format directly.

An object-oriented structure is usually the most conve-
nient way of organising the configuration information.
Hosts usually fall into various different categories (lap-
top, web server, student desktop, etc.) and it is natu-
ral to specify new machines by using inheritance to de-
scribe just the difference (if any) between the new ma-
chine and some existing category. Many systems adopt
this approach with varying degrees of sophistication (for
example [15, 14, 16]). Once the information is available
in this high-level form, there is considerable potential for
analysing and generating the specification automatically.
This opens up the possibility of treating the configura-
tion of a whole site as a complete entity; for example, we
should be able to prevent a gateway being removed while
there are still clients which depend on it.

The process of actually changing a machine configura-
tion to match a particular specification is not normally
straightforward. Ideally, we would like this to take place
automatically as soon as the specification is changed.
Sometimes this is possible; for example changing the an

entry in a TCP wrapper. However, changing the disk
partitioning is probably not desirable, or even possible,
while a machine is in use. In practice, changes take
place at different times, as appropriate; sometimes im-
mediately, sometimes from a nightly cron job and some-
times at reboot. Laptops are an interesting case because
they can normally only be reconfigured while they are
connected to the network, and this might not happen very
often at boot time, or at the time when a nightly cron job
would normally run. We allow laptops to be reconfig-
ured on demand by the user so that updates take place at
a convenient time.

3 LCFG

LCFG was designed to handle automated installation and
configuration in a very diverse and evolving environ-
ment. Abstract configuration parameters are stored in a
central repository where they are organised in files based
on machine categories. A simple inclusion mechanism
provides inheritance, as well as a form of modified in-
heritance which we callmutation. The centralised con-
figuration repository and the abstract representation of
configuration parameters are key features of LCFG.

A collection of scripts on the host machine read these
configuration parameters and either generate traditional
configuration files, or directly manipulate various ser-
vices.

3.1 Configuration Parameters

The configuration parameters are stored in the form of
key-value pairs, inspired by X resources, and similar to
the parameters used by COAS. For example:

mambo.dns.servers localhost

The key specifies the hostname, thesubsystemand the
parameter. The configuration files are passed through the
C preprocessor, supporting simple inheritance by file in-
clusion:

#include <standard_laptop.h>
auth.owner paul
....

The machine-specific file need only list those resources
which are different from a standard laptop (the first com-
ponent of the resource keys is generated automatically
from the name of the file). Notice that the included
classfile relates to a high-level concept (standard lap-
top machine) which may contain resource specifications

for many different low-level subsystems. The class files
may of course be nested.

Together with the use of preprocessor variables, this sim-
ple mechanism provides a powerful way of presenting
complex host configurations in a clear way, with very lit-
tle specialised software. However, it is not sufficiently
fine-grained to process information inside the resource
keys. This causes difficulties in some cases; for example,
a standard configuration might specify that the CD-ROM
should have its ownership changed to match that of the
user at the console:

auth.consolepermclass_cdrom
/dev/cdrom

If we have a second SCSI CD on our machine then we
might want to specify:

auth.consolepermclass_cdrom
/dev/cdrom /dev/scd0

Specifying this directly for a particular host is not good,
because it overrides the specification for the standard ma-
chine, so that changes to the standard specification (such
as changing the location of the default CD-ROM) would
not be reflected on this particular host.

At the same time as porting LCFG to Linux, we added
the facility to specify a regular expression for transform-
ing any inherited resource value. This allows us to easily
append or prepend items to a standard value:

auth.consolepermclass_cdrom
!/(.*)/\$1 /dev/scd0

We call this processmutation. Although it is very pow-
erful, overuse can lead to configurations which are very
hard to understand, and we usually restrict its use to a
few well-defined macros:

auth.consolepermclass_cdrom
ANDALSO(/dev/scd0)

The files containing the configuration parameters for the
entire installation are maintained on a central server un-
der RCS control. When changes are made, the param-
eters are preprocessed into a single table which is dis-
tributed to the clients as an NIS map. This provides a
replicated database which is easily accessible to all ma-
chines and simple to implement, but it was only origi-
nally intended as a temporary solution and it has a num-
ber of problems. These problems and a possible replace-
ment technology are discussed later (section 6). Since
this configuration information must be available at boot
time, laptops are all configured as NIS slaves which up-
date their maps on demand.

3.2 Subsystem Scripts

Eachsubsystemon a host has a controlling script which
is very similar to the startup scripts used by the System V
init mechanism. These scripts accept a number ofmeth-
odssuch asstart andstop which are invoked at ap-
propriate times. Each script reads configuration param-
eters from the repository and configures the appropriate
subsystem. This may involve translating the configura-
tion parameters into a traditional configuration file, or
controlling a service directly; for example, starting some
daemon with command-line parameters derived from the
configuration resources.

Traditionally, these scripts have been simple shell scripts
although, under Linux, Perl is available at install time
and many scripts now include some Perl code as well.
A set of default routines are available which can be in-
cluded into the script to load resources and perform other
utility functions, such as retrieving default values for
missing resources. Most scripts are quite short and it is
easy to write a configuration script for a new package or
service. Initially, new scripts are normally written just to
support the subset of configuration parameters which are
expected to vary in our installation, and this is easily ex-
panded later as the need arises. The independence, and
ease with which these scripts can be created has been
a major reason for the success of the system; they are
usually created by the person responsible for the corre-
sponding service, and many people have contributed.

The example in section 8 shows a section of code from a
script which starts the Samba server for VMware. No-
tice that most of the numerous Samba parameters are
hardwired into a template configuration file, but those
which we expect to vary between machines are set from
the LCFG resources by a simple substitution of variables
in the template. Some of these are also generated from a
“higher-level” LCFG parameter which specifies whether
or not we want the server to be visible on the external
network. Notice also, that VMware itself is started using
the standard init script.

3.3 Script Execution

As mentioned earlier, it is not always obvious when a
particular service should be reconfigured. Should a dae-
mon be stopped and restarted if necessary to force a re-
configuration? Or should we restart it during the night?
Or should we wait until the next reboot? In practice,
we never force a reconfiguration immediately whenever
a specification changes (although this would not be hard
to do). Those services which can be reconfigured while
a machine is running, are normally reconfigured nightly
by a cron job. Other services are reconfigured at boot

time. It is possible for configuration changes to schedule
a night-time reboot if it is essential that they are imple-
mented as soon as possible.

A simple client-server application (om/omd) allows
scripts on any remote machine (or group of machines)
to be executed manually.

3.3.1 The boot Script

A subsystem script calledboot is invoked both from the
system init scripts, and from a regularcron job. This in-
spects LCFG resources to determine which other subsys-
tems should be run at each stage. Thestart andstop
methods for each specified script are called byboot at
changes in the runlevel as specified by the appropriate
resource. Therun method is called at specified inter-
vals, usingcron . The resources can therefore determine
which subsystems are reconfigured, and when.

3.3.2 The update Script

The update script controls the updating of software
packages. This is described in more detail below and
completely replaces theupdatelf script previously
used under Solaris to update software usinglfu [2].
update is also capable of running at install time when
it uses LCFG resources to configure those aspects of the
machine which are too difficult to change while the sys-
tem is running; for example, the primary network address
and the disk partitioning. The installation process is de-
scribed in more detail below (section 4.1).

4 Linux-Specific Issues

A number of small improvements were made to various
aspects of LCFG when porting to Linux, and two areas
were changed significantly:

• The installation bootstrapping process has been
changed to accommodate the differences in hard-
ware, and to make use of the new updating mech-
anism:

• Updating of software uses a completely different
technique to takes advantage of the Redhat Pack-
age Manager (RPM) [4] and the wide availability
of packages in this format.

4.1 Installation Bootstrapping

Providing the ability to install new machines with the ab-
solute minimum of manual intervention is very impor-

tant. This allows failed machines to be replaced, and
new machines to be installed, quickly and correctly, by
unskilled staff1.

Installing an operating system on to bare hardware re-
quires some sort of bootstrap process. Typically:

• A minimal version of the operating system or other
install program is loaded from the network, or re-
movable media.

• Once booted, this program partitions the system
disk and installs a copy of the operating system.

• There will usually be some additional software in-
stallation and configuration, the first time that the
machine reboots from the newly installed system.

The first operation tends to be operating system-
dependent and the original LCFG made use of Solaris
Jumpstart [15, 14] to boot an initial image from the net-
work. The current Linux port requires a boot floppy (or
CD) for the same purpose, since not all hardware sup-
ports network booting (Kickstart [12] is not used).

Desktop machines may not have CD drives, and they use
BOOTP/DHCP to mount the root filesystem from NFS.
Laptops cannot use NFS so easily in this way because of
the need for PCMCIA drivers, and they are installed us-
ing a bootable CD which contains an equivalent image.
Once the system is booted, access to the network is nec-
essary to retrieve the configuration parameters from the
NIS and the RPMs for building the system disk.

When the minimal system has booted, anupdate script
runs automatically to partition the system disk according
to the LCFG resources and load the software. In the orig-
inal Solaris implementation, a small hand-crafted image
was first copied directly from the network onto the sys-
tem disk, but this is difficult to maintain. Under Linux,
theupdate script builds the root filesystem completely
from a set of RPMs. Although it is aware of the con-
text, this uses exactly the same process which is used
nightly to update the software on a running machine (see
4.2.1), ensuring a consistent interpretation of the LCFG
resources at install and update time.

When the software has been installed, the system reboots
from the new image. The LCFG subsystem scripts start
normally and perform the remaining configuration.

Once the install operation has been started, it runs com-
pletely unattended, allowing whole laboratories of ma-
chines to be installed easily by one person. However,
the server load imposed by large numbers of clients per-
forming simultaneous installations can be a performance

problem. A “helper” CD is sometimes used to provide a
local copy of many of the packages. If the CD becomes
out of date, and newer versions of some packages are
available on the network, the newer versions will auto-
matically be installed instead. It would be interesting to
look at ways of improving simultaneous large-scale in-
stallations, perhaps by using multicast to distribute the
RPMs.

4.2 Software Updating

The original version of LCFG used a program calledlfu
[2] to update software on the local disks. At that time,
clients tended to have smaller disks and mount much of
their software from the network, solfu was mainly con-
cerned with synchronising a comparatively small number
of replicated servers, and the performance would be poor
for a large number of clients. There was also no obvious
candidate for a package format which was widely sup-
ported by the packages that we wanted to install;lfu
provides a crude mechanism for matching files to their
packages, based on file ownership, but this was not al-
ways adequate. More importantly, it was also difficult to
keep track of the link between binaries and their corre-
sponding sources.

In theory,lfu could have been used under Linux, but the
Redhat distribution is based on the RPM package man-
agement software which provides a much better mech-
anism for managing software packages. Many of the
packages that we require are also distributed in this for-
mat.

Although there are now numerous programs available
for updating and distributing RPMS (for example [13,
11, 5, 10]), few of these tools were available in 1997.
We also wanted to interface with the LCFG and provide
automatic installation, upgrade and deletion of RPMs.
The Linux version of LCFG therefore uses a locally-
developed program calledupdaterpms . This is cur-
rently written in C and makes use ofrpmlib 2 (rewrit-
ing this in Python is a possibility now that there anrpm-
lib interface available).

4.2.1 updaterpms

Updaterpms compares the RPMs installed on a ma-
chine with a specification provided by the LCFG and in-
stalls, upgrades, or deletes RPMs as necessary. Using the
current NIS implementation of the LCFG resource map,
it would be unwieldy to hold the full list of RPMs in the

1This does not include the restoration of any user data from backup
2The latest version ofupdaterpms needs a modified version ofrpmlib to support per-package options

map itself, so the lists are held in files which are ref-
erenced by LCFG resources. This is adequate since we
tend to install most available software on most machines,
but it is not ideal, and this may change as we move to a
different technology for map distribution.

The package specification files are preprocessed with the
C preprocessor to provide some degree of structure sim-
ilar to the LCFG files themselves. Individual machines
can therefore include a standard software specification
and override individual packages. The RPM specifica-
tions may contain wildcards to refer to the latest version
(or release); for example, the standard installation might
include a specific version:

toshutils-1-1.34

And a particular machine might override that to carry the
latest available version:

#include <standard>
+toshutils-1-*

The ’+’ symbol indicates that the new specification over-
rides any preceeding one thus inhibiting the error mes-
sage that would normally be generated by the duplicate
package specifications.

The ability to import software which has been prepack-
aged in RPM format saves a considerable amount of
work. However the packaging is not always well im-
plemented; post-install scripts, for example, are often
poorly designed, perhaps attempting to add users to a
password file, or to demand user interaction, neither of
which are appropriate for an automated install on a net-
worked system. Occasionally, dependency information
is also incorrect. Several standard RPM options such as
--noscripts or --force can be specified on a per-
package basis to help with these problems.

Some other options are also available, for example:

• Ignore the RPM; do not attempt to delete or update
it (:i). This is useful if an RPM has been installed
manually (perhaps for testing) and should not be
deleted by the automatic update.

• Schedule a reboot if this RPM is changed(:r).
This is useful for important updates such as new
kernel, which demand a reboot.

4.2.2 rpmsubmit

updaterpms obtains the the copies of the RPMs for in-
stallation from an NFS-mounted repository. This repos-

itory is replicated on several servers by an LCFG sub-
system script which synchronises the copies before the
nightly update.

A program calledrpmsubmit allows authorised users
to submit new RPMs into the master repository. This
is capable of insisting on valid PGP signatures, and en-
suring that corresponding source RPMs are available for
all submitted RPMs. Currently,rpmsubmit uses NFS
to copy the files into the repository, but this is not ideal
because signature verification occurs on the submitting
client; we would like to rewrite this an a client-server
application.

5 LCFG in Action

This section shows how LCFG is used in practice dur-
ing a number of common tasks; most normal client in-
stallations and system rebuilds are performed by junior
technical staff:

5.1 Installing New Machines

A new host is installed by first creating an LCFG file
specifying the configuration. Frequently, this contains
only included classes and, if the machine is intended to
be identical to an existing one, then the LCFG file for
the existing machine can simply be copied. This exam-
ple shows a typical configuration for a student laboratory
machine:

#include <linuxdef.h>
#include <linux_rh62.h>
#include <linux_wire_at1.h>
#include <linux_cs1.h>
#include <dell_optiplex_g1.h>

The included classes define the machine as a Linux sys-
tem, running Redhat 6.2, using servers on the Ethernet
segment AT1, configured as a standard first year Com-
puter Science undergraduate machine, and based on Dell
G1 hardware.

At present, the Ethernet and IP addresses are entered
separately into the NIS and DNS tables, however, there
is no reason why these values could not be generated
from the LCFG configuration file. The machine is then
booted from an install floppy3, and after a single warn-
ing prompt, it performs a full unattended install.

3Portables normally require a CD rather than a floppy because of the extra drivers required for the PCMCIA

5.2 Customising Machines

Individual machines can be customised simply by over-
riding default resources in the LCFG file. For example,
to increase the logging level for VMware:

vmware.loglevel 3

Servers typically have more machine-specific resources
than normal clients, but these are rarely more than about
one page; groups of resources which perform a related
function are usually collected together into a separate
class file.

5.3 Rebuilding Machines

If a machine requires a rebuild after an OS corruption or
hardware failure, it can be completely rebuilt simply be
booting off the installation floppy. This is all that is re-
quired, even if hardware has been replaced, and even if
the machine has been customised to a non-standard con-
figuration.

5.4 Changing Server Configurations

If the class hierarchy is well constructed, it is straightfor-
ward to change all dependent client configurations auto-
matically at the same time as a server configuration is
changed. Because the configuration of the whole site is
held in a single place, we can also identify possible prob-
lems in advance.

For example, at our site, the default DNS servers are set
by a class file which depends on the Ethernet segment.
If we want to remove a DNS server from a segment, we
can simply remove it from the class file and replace it
with another machine. This will be detected by all clients
next time they reconfigure.

It is also very simple to inspect the DNS servers being
used by all the clients. This allows us to check that our
old DNS server is no longer in use, before physically
removing it. One advantage of the crude NIS implemen-
tation of resource maps, is that people can simply type:

ypcat -k lcfg |grep dns.servers

5.5 Changing Security Policies

Many security-related parameters can be set by LCFG re-
sources. Setting these in the appropriate class file allows
the security configuration of whole groups of hosts to be
manipulated. For example, we could control the ability

to access all first year undergraduate machines from a
remotessh by setting the following in the appropriate
class file:

inet.allow_sshd ALL : rfc931

We are aware that this depends heavily on the security of
the LCFG system itself which is currently not as strong
as we would like. This is one area being addressed in
the current re-implementation. Similar issues involving
automatic configuration of security parameters are dis-
cussed in [8].

5.6 Upgrading Software

New software packages can be added simply by in-
stalling the RPMS into the central repository and adding
them to the appropriate configuration file. They will
then be installed onto all the corresponding machines
overnight. Upgrading a package usually involves no
more than copying the new version of the RPM into the
repository (assuming the specification contains a wild-
card).

To upgrade the operating system, a new set of base RPMs
and an install floppy are needed. Once these have been
prepared, hosts can be updated simply be changing the
LCFG file to refer to the new class file and rebuilding
the system by booting off the install floppy. The host
will then rebuild with the new OS, but retaining any
customised configuration previously in use. Changes in
the operating system itself may require changes to some
of the resources, however, the abstract nature of the re-
source means that such changes can often be avoided by
changing the way in which the subsystem script inter-
prets the resource.

5.7 Adding a New Subsystem

The modular nature of the LCFG scripts means that it
is very easy to add a script to control a new subsystem,
and this will often start with a copy of an existing script.
The script should use the provided routines to load the re-
quired resources into shell variables. It might then start a
daemon with this configuration, or it might simply gener-
ate a configuration file and allow something else to start
any daemon (See example 8). The script itself would
then be loaded onto all the necessary machines by in-
cluding its RPM in the appropriate configurations, and
it would be immediately available for use. Adding the
subsystem to the boot resources would cause it to start
automatically on the corresponding machines:

boot.services ANDALSO(myservice)
myservice.key value
myservice.key value

6 Future Plans

The basic concepts behind the LCFG system have proven
very sound and the system has been extremely success-
ful. However, a number of aspects of the implementation
were not intended for wider large scale use. In particular:

• We would like a finer grained access control on
the resource “database”, so that we could delegate
management more easily.

• We would like a more secure and efficient technol-
ogy than NIS for distributing resource maps.

• We intend to rewrite the framework for construct-
ing subsystem scripts using a more object-oriented
approach, and a different language.

It seems likely that we will use LDAP as the configu-
ration resource repository, and a Perl framework for the
subsystem scripts.

We have also learned a good deal about the way in which
sysadmins want to specify configurations and classes,
and we intend to implement a custom language for de-
scribing machine configurations. The design of this lan-
guage is still under discussion, but we would like to pro-
vide:

• Multiple inheritance and mutation.

• Some form of typing to allowing better validation
for resource values.

• The ability to specify components (such as a disk
configuration) which could be used by several ma-
chines (or several times by the same machine).

The current system is also tied closely to other local pro-
cedures, making it difficult to export, and we would like
to address this, so that we can export it as open source
(see below).

7 Availability

The actual amount of code in the LCFG system is com-
paratively small and we believe that the concepts are
more significant than the implementation. However, we
do intend to make the software available, and we would
like to see it adopted more widely. This includes a num-
ber of components:

• The code which takes the LCFG files and trans-
forms them into a single resource map.

• The common subroutines used by the subsystem
scripts.

• The subsystem scripts themselves.

• The install subsystem.

• updaterpms .

As discussed above, the first four of these are cur-
rently being redesigned and we intend to release the
new versions as soon as they are available. The
current version of updaterpms is available via
http://www.dcs.ed.ac.uk/˜ajs/ .

References

[1] Paul Anderson. System configuration and installa-
tion (SANS97).
http://www.dcs.ed.ac.uk/home/-
paul/publications/Config.pdf .

[2] Paul Anderson. Managing program binaries in a
heterogeneous unix network. InProceedings of
the 5th Large Installations Systems Administration
(LISA) Conference, pages 1–9, Berkeley, CA,
1991. Usenix.
http://www.dcs.ed.ac.uk/home/-
paul/publications/LISA5 Paper.pdf .

[3] Paul Anderson. Towards a high-level machine
configuration system. InProceedings of the 8th
Large Installations Systems Administration (LISA)
Conference, pages 19–26, Berkeley, CA, 1994.
Usenix.
http://www.dcs.ed.ac.uk/home/-
paul/publications/LISA8 Paper.pdf .

[4] Edward C Bailey. Maximum RPM. Redhat Soft-
ware Inc.
http://www.rpmdp.org/rpmbook/ .

[5] Kirk Bauer. autoRPM.
http://www.kaybee.org/˜kirk/html/-
linux.html .

[6] Mark Burgess. cfengine.
http://www.iu.hioslo.no/cfengine/ .

[7] Mark Burgess. Computer immunology. InProceed-
ings of the 12th Large Installations Systems Admin-
istration (LISA) Conference, page 283, Berkeley,
CA, 1998. Usenix.

[8] Mark Burgess. Managing network security with
cfengine.Login;, pages 26–28, August 1999.

[9] Caldera. COAS.
http://linux.davecentral.com/-
3724 sysutiladmin.html .

[10] Yellog Dog. YUP.
http://devel.yellowdoglinux.com/-
rp yup.shtml .

[11] Ken Estes. rpmsync.
http://www.moongroup.com/RPM/00-
05/msg00092.html .

[12] Martin Hamilton.
RedHat Linux Kickstart HOWTO.
http://metalab.unc.edu/pub/-
Linux/docs/HOWTO/other-formats/-
html single/KickStart-HOWTO.html .

[13] Dirk Lutzebaeck. freshrpms.
http://rpmfind.net/linux/RPM/-
contrib/noarch/noarch/freshrpms-
0.7.3-1.noarch.html .

[14] Scott McDermott.
Introduction to Solaris Jumpstart.
http://www.octaldream.com/scottm/-
talks/jsintro/jsintro.htm .

[15] Sun Microsystems. Automatic installation. In
Solaris 2.3 system configuration and installation
guide. 1993.

[16] Nils Philippsen. RACE.
http://www-stud.fht-esslingen.de/-
race/ .

[17] Solucorp. Linuxconf.
http://www.solucorp.qc.ca/-
linuxconf/ .

8 Example: The Start Method of a VMware Script

Fetch resource values
LoadResources subnet workgroup smblog external \

printer encrypt loglevel external

Allow external Samba connections?
if ["$external" == "yes"]; then

nosa=";"
hostname=‘hostname‘
subnet=‘grep $hostname /etc/hosts |awk -F. ’{print $1"."$2"."$3}’‘
xinterface="$subnet.0/255.255.255.0"

else
nosa=""
xinterface=""

fi

Create configuration
sed <$smb_conf.tmpl >$smb_conf \

-e "s@%SUBNET%@$subnet@g" \
-e "s@%WORKGROUP%@$workgroup@g" \
-e "s@%SMBLOG%@$smblog@g" \
-e "s@%PRINTER%@$printer@g" \
-e "s@%ENCRYPT%@$encrypt@g" \
-e "s@%LOGLEVEL%@$loglevel@g" \
-e "s@%NOSA%@$nosa@g" \
-e "s@%XINTERFACE%@ $xinterface@g"

Start VMware
/etc/rc.d/init.d/vmware start >>$logfile

