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Abstract

Training a statistical named entity recognition
system in a new domain requires costly man-
ual annotation of large quantities of in-domain
data. Active learning promises to reduce the an-
notation cost by selecting only highly informa-
tive data points. This paper is concerned with
a real active learning experiment to bootstrap a
named entity recognition system for a new do-
main of radio astronomical abstracts. We evalu-
ate several committee-based metrics for quanti-
fying the disagreement between classifiers built
using multiple views, and demonstrate that the
choice of metric can be optimised in simulation
experiments with existing annotated data from
different domains. A final evaluation shows that
we gained substantial savings compared to a ran-
domly sampled baseline.

1. Introduction

The training of statistical named entity recognition (NER)
systems requires large quantities of manually annotated
data. Manual annotation however is typically costly and
time-consuming. Furthermore, successful application of
NER is dependent on training data from the same domain.
Thus, bootstrappingNER in a new domain typically re-
quires acquisition of new annotated data. Active learning
promises to reduce the total amount of labelled data by se-
lectively sampling the most informative data points.

We introduce the newly created Astronomical Bootstrap-
ping Corpus (ABC), which contains abstracts of radio as-
tronomical papers, and report on our assessment of active
learning methods for bootstrapping a statistical named en-
tity recognition (NER) system for this new domain.

Appearing inProceedings of the Workshop on Learning with Mul-
tiple Views, 22nd ICML, Bonn, Germany, 2005. Copyright 2005
by the author(s)/owner(s).

As part of our methodology, we experimented with aNER

system in a known domain with existing corpus resources,
namely the Genia corpus of biomedical abstracts (Kim
et al., 2003). We tested relevant active learning parame-
ters in simulation experiments with a view to arrive at an
optimal setting for a real active learning experiment in the
new astronomical domain. This was of particular impor-
tance since we were budgeted only 1000 sentences for ac-
tive learning annotation.

We employ a committee-based method where trained clas-
sifiers are caused to be different by employing multiple
views of the feature space. The degree of deviation of the
classifiers with respect to their analysis can tell us if an ex-
ample is potentially useful. We evaluate various metrics
to quantify disagreement and demonstrate that the choice
of metric can be optimised in simulation experiments with
existing annotated data from distinct domains.

In the following section, we present the new corpus of as-
tronomy abstracts developed for the bootstrapping task. In
section 3, we introduce our active learning set-up for boot-
strapping named entity recognition. Next, section 4 con-
tains experimental results for a series of simulated active
learning experiments used for parameter optimisation and
section 5 contains the bootstrapping results. Finally, sec-
tion 6 contains conclusions and future work.

2. The Corpus

2.1. Astronomical Named Entities

The main purpose of the corpus development work was
to provide materials for assessing methods of porting a
statisticalNER system to a new domain. To do this we
needed to create a small annotated corpus in a new domain
which would serve as a basis for experiments with boot-
strapping. Our chosen new domain was abstracts of radio
astronomical papers and our corpus consists of abstracts
taken from the NASA Astrophysics Data System archive,
a digital library for physics, astrophysics, and instrumenta-
tion (http://adsabs.harvard.edu/preprintservice.html).



On the Column Density of<Source-type >AGN</Source-type > Outflows: The Case of
<Source-name >NGC 5548</Source-name >

We reanalyze the<Instrument-name >Hubble Space Telescope</Instrument-name > high-resolution spectroscopic data of
the intrinsic absorber in<Source-name >NGC 5548</Source-name > and find that the<Spectral-feature >C IV ab-
sorption</Spectral-feature > column density is at least 4 times larger than previously determined. This increase arises from
accounting for the kinematical nature of the absorber and from our conclusion that the outflow does not cover the narrow emission
line region in this object. The improved column density determination begins to bridge the gap between the high column densities
measured in the X-ray and the low ones previously inferred from the<Spectral-feature >UV lines</Spectral-feature >.
Combined with our findings for outflows in high-luminosity<Source-type >quasars</Source-type >, these results suggest that
traditional techniques for measuring column densities – equivalent width, curve of growth, and Gaussian modeling – are of limited value
when applied to UV absorption associated with<Source-type >active galactic nucleus</Source-type > outflows.

Figure 1. An example abstract.

Our choice of new domain was driven partly by longer-
term plans to build an information extraction system for
the astronomy domain and partly by the similarities and
differences between this domain and the biomedical do-
main that the initialNER tagger is trained on. The main
point of similarity between the two data sets is that they are
both comprised of scientific language taken from abstracts
of academic papers. The main difference lies in the techni-
cal terms and in the named entities that are recognised.

Following consultation with our astronomy collaborators,
we created a cohesive dataset in the radio astronomy do-
main, and established an inventory of four domain-specific
named entity types. The dataset was created by extracting
abstracts from the years 1997-2003 that matched the query
“quasar AND line”. 50 abstracts from the year 2002 were
annotated as seed material and 159 abstracts from 2003
were annotated as testing material. 778 abstracts from the
years 1997-2001 were provided as an unannotated pool for
bootstrapping. On average, these abstracts contain 10 sen-
tences with an average length of 30 tokens. The corpus
was annotated for the four entity types below (frequencies
in the seed set in brackets). Fig. 1 shows an example text
from this corpus.

Instrument-name Names of telescopes and other mea-
surement instruments, e.g.Superconducting Tunnel Junc-
tion (STJ) camera, Plateau de Bure Interferometer, Chan-
dra, XMM-Newton Reflection Grating Spectrometer (RGS),
Hubble Space Telescope. [136 entities, 12.7%]

Source-name Names of celestial objects, e.g.NGC 7603,
3C 273, BRI 1335-0417, SDSSp J104433.04-012502.2,
PC0953+ 4749. [111 entities, 10.4%]

Source-type Types of objects, e.g.Type II Supernovae
(SNe II), radio-loud quasar, type 2 QSO, starburst galaxies,
low-luminosity AGNs. [499 entities, 46.8%]

Spectral-feature Features that can be pointed to on a
spectrum, e.g.Mg II emission, broad emission lines, ra-
dio continuum emission at 1.47 GHz, CO ladder from (2-1)
up to (7-6), non-LTE line. [321 entities, 30.1%]

2.2. Corpus Preparation and Annotation

The files were converted from their originalHTML to
XHTML using Tidy (http://www.w3.org/People/
Raggett/tidy/ ), and were piped through a sequence
of processing stages using theXML -based tools from the
LT TTT andLT XML toolsets (Grover et al., 2000; Thomp-
son et al., 1997) in order to create tokenisedXML files. It
turned out to be relatively complex to achieve a sensible
and consistent tokenisation of this data. The main source
of complexity is the high density of technical and formu-
laic language (e.g.(N(H2) ' 1024cm

−2), 17.8h−1
70 kpc,

for Ωm = 0.3, Λ = 0.7, 1.4 GHz of 30µ Jy) and an ac-
companying lack of consistency in the way publishers con-
vert from the original LaTex encoding of formulae to the
HTML which is published on the ADS website. We aimed
to tokenise in such a way as to minimise noise in the data,
though inevitably not all inconsistencies were removed.

The seed and test data sets were annotated by two astro-
physics PhD students using theNITE XML toolkit annota-
tion tool (Carletta et al., 2003). In addition, they annotated
1000 randomly sampled sentences from the pool to pro-
vide a baseline for active learning. Inter-annotator agree-
ment was obtained by directly comparing the two annota-
tor’s data. Phrase-level f-score is 86.4%. Token-level accu-
racy is 97.3% which corresponds to a Kappa agreement of
K=.925 (N=44775, k=2; where K is the kappa coefficient,
N is the number of tokens and k is the number of annota-
tors).



3. Active Learning with Multiple Views

Supervised training of named entity recognition (NER) sys-
tems requires large amounts of manually annotated data.
However, human annotation is typically costly and time-
consuming. Active learning promises to reduce this cost
by requesting only those data points for human annotation
which are highly informative. Example informativity can
be estimated by the degree of uncertainty of a single learner
as to the correct label of a data point (Cohn et al., 1995)
or in terms of the disagreement of a committee of learn-
ers (Seung et al., 1992). Active learning has been success-
fully applied to a variety of similar tasks such as document
classification (McCallum & Nigam, 1998), part-of-speech
tagging (Argamon-Engelson & Dagan, 1999), and parsing
(Thompson et al., 1999).

We employ a committee-based method where the degree of
deviation of different classifiers with respect to their anal-
ysis can tell us if an example is potentially useful. Trained
classifiers can be caused to be different by bagging (Abe
& Mamitsuka, 1998), by randomly perturbing event counts
(Argamon-Engelson & Dagan, 1999), or by producing dif-
ferent views using different feature sets for the same clas-
sifiers (Jones et al., 2003; Osborne & Baldridge, 2004). In
this paper, we present active learning experiments forNER

in astronomy texts following the last approach.

3.1. Feature split

We use a conditional Markov model tagger (Finkel et al.,
2004) to train two different models on the same seed data
by applying a feature split. The feature split as shown in Ta-
ble 1 was hand-crafted such that it provides different views
while empirically ensuring that performance is sufficiently
similar. While the first feature set comprises of character
sub-strings, BNC frequencies, Web counts, gazetteers and
abbreviations, the second set contains features capturing in-
formation about words, POS tags, word shapes, NE tags,
parentheses and multiple references to NEs. These features
are describe in more detail in (Finkel et al., 2004).

3.2. Level of annotation

For the manual annotation of named entity examples, we
needed to decide on the level of granularity. The question
arises what constitutes an example that will be submitted
to the annotators. Reasonable levels of annotation include
the document level, the sentence level and the token level.
The most fine-grained annotation would certainly be on the
token level. This requires semi-supervised training to al-
low for partially annotated sentences, as in (Scheffer et al.,
2001). However, there are no directly applicable semi-
supervised training regimes for discriminative classifiers.
On the other extreme, one may submit an entire document

Feature Set 1
Prefix/Suffix Up to a length of 6
Frequency Frequency in BNC
Web Feature Based on Google hits of pattern instan-

tiations
Gazetteers Compiled from the Web
Abbreviations abbri

abbri + abbri+1

abbri−1 + abbri + abbri+1

Feature Set 2
Word Features wi, wi−1, wi+1

Disjunction of 5 prev words
Disjunction of 5 next words

TnT POS tags POSi, POSi−1, POSi+1

Word Shape shapei, shapei−1, shapei+1

shapei + shapei+1

shapei−1 + shapei + shapei+1

Prev NE NEi−1, NEi−2 + NEi−1

NEi−3 + NEi−2 + NEi−1

Prev NE + Word NEi−1 + wi

Prev NE + POS NEi−1 + POSi−1 + POSi

NEi−2 + NEi−1 + POSi−2 + POSi−1

+ POSi

Prev NE + Shape NEi−1 + shapei
NEi−1 + shapei+1

NEi−1 + shapei−1 + shapei
NEi−2 + NEi−1 + shapei−2 +
shapei−1 + shapei

Paren-Matching Signals when one parenthesis in a pair
has been assigned a different tag in a
window of 4 words

Occurrence
Patterns

Capture multiple references to NEs

Table 1. Feature split for parameter optimisation experiments

for annotation. A possible disadvantage is that a document
with some interesting parts may well contain large portions
with redundant, already known structures for which know-
ing the manual annotation may not be very useful. In the
given setting, we decided that the best granularity is on the
sentence level.

3.3. Sample Selection Metric

There are various metrics that could be used to quantify the
degree of deviation between classifiers in a committee (e.g.
KL-divergence, information radius, f-measure). The work
reported here uses two sentence-level metrics based on KL-
divergence and one based on f-score. In the following, we
describe these metrics.

KL-divergencehas been suggested for active learning to
quantify the disagreement of classifiers over the probability
distribution of output labels (McCallum & Nigam, 1998)
and has been applied to information extraction (Jones et al.,
2003). KL-divergence measures the divergence between
two probability distributionsp andq over the same event



spaceχ:

D(p||q) =
∑
x∈χ

p(x) log
p(x)
q(x)

(1)

KL-divergence is a non-negative metric. It is zero for iden-
tical distributions; the more different the two distributions,
the higher the KL-divergence. KL-divergence is maximal
for cases where distributions are peaked and prefer differ-
ent labels. Taking a peaked distribution as an indicator for
certainty, using KL-divergence thus bears a strong resem-
blance to the co-testing setting (Muslea, 2002). Intuitively,
a high KL-divergence score indicates an informative data
point. However, in the current formulation, KL-divergence
only relates to individual tokens. In order to turn this into
a sentence score, we need to combine the individual KL-
divergences for the tokens within a sentence into one single
score. We employed mean and max.

The f-complementhas been suggested for active learning
in the context of NP chunking as a structural compari-
son between the different analyses of a committee (Ngai
& Yarowsky, 2000). It is the pairwise f-score comparison
between the multiple analyses for a given sentence:

fMcomp =
1
2

∑
M,M ′∈M

(1− F1(M(t),M ′(t))) (2)

whereF1 is the balanced f-score ofM(t) andM ′(t), the
preferred analyses of data pointt according to different
membersM,M ′ of ensembleM. The definition assumes
that in the comparison between two analyses, one may ar-
bitrarily assign one analysis as the gold standard and the
other one as a test case. Intuitively, examples with a high
f-complement score are likely to be informative.

4. Parameter Optimisation Experiments

In the previous section, we described a number of param-
eters for our approach to active learning. Bootstrapping
presents a difficult problem as we cannot optimise these pa-
rameters on the target data. The obvious solution is to use a
different data set but there is no guarantee that experimental
results will generalise across domains. The work reported
here addresses this question. We simulated active learn-
ing experiments on a data set which consists of biomed-
ical abstracts marked up for the entities DNA, RNA, cell
line, cell type, and protein (Kim et al., 2003).1 Seed, pool,
and test sets contained 500, 10,000, and 2,000 sentences
respectively, roughly the same size as for the astronomical
data. As smaller batch sizes require more retraining itera-
tions and larger batch sizes increase the amount of annota-
tion necessary at each round and could lead to unnecessary
strain for the annotators, we settled on a batch size of 50

1Simulated AL experiments use 5-fold cross-validation.

sentences for the real AL experiment as a compromise be-
tween computational cost and work load for the annotator.

We then ran simulated AL experiments for each of the
three selection metrics discussed in section 3. The perfor-
mance was compared to a baseline where examples were
randomly sampled from the pool data. Experiments were
run until there were 2000 sentences of annotated training
material including the sentences from the seed data and the
sentences selected from the pool data.

4.1. Costing Active Learning

For quality evaluation, we used the established f-score met-
ric as given by the evaluation scripts developed for the
CoNLL NER tasks (Tjong Kim Sang & De Meulder, 2003).
In order to assess the relative merits of various active learn-
ing scenarios, we will plot learning curves, i.e. the increase
in f-score over the invested effort. Ideally, a cost metric
should reflect the effort that went into the annotation of ex-
amples in terms of time spent. However, a precise time
measurement is difficult, or may be not available in the
case of simulation experiments. We will therefore consider
a number of possible approximations.

A sentence-based cost metric may seem like an obvious
cost function, but this may pose problems when different
sample selection metrics have a tendency to choose longer
or shorter sentences. Thus, we will also consider more fine-
grained metrics, namely the number of tokens in a sentence
and the number of entities in a sentence.

4.2. Comparison of Selection Metrics

The plots in figure 2 show the learning curves for random
sampling and the three AL selection metrics we examined
for the parameter optimisation experiments. The first takes
the number of sentences as the cost metric and the second
and third take the number of tokens and the number of en-
tities respectively.

Random sampling is clearly outperformed by all other se-
lection metrics. The random curve for the sentence cost
metric, for example, reaches an f-score of 69% after ap-
proximately 1500 sentences have been annotated while the
maximum KL-divergence curve reaches this level of per-
formance after only≈ 1100 sentences. This represents
a substantial reduction in sentences annotated of 26.7%.
In addition, at 1500 sentences, maximum KL-divergence
offers an error reduction of 4.9% over random sampling
with a 1.5 point improvement in f-score. Averaged KL-
divergence offers the same error reduction when using the
sentence cost metric, but at 19.3%, a lower reduction of
sentences annotated. F-complement performs worst giving
10% cost reduction and 1.6% error reduction.

The learning curves also allow us to easily visualise the
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Figure 2. Parameter optimisation learning curves for sentence, token, and entity cost metrics
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Figure 3. Active annotation learning curves for sentence, token, and entity cost metrics

performance difference of the three selection metrics with
respect to each other. The f-complement metric clearly un-
derperforms with respect to KL-divergence based metrics.

According to the learning curves with number of sentences
as the cost metric, maximum KL-divergence performs the
best. However, when choosing a different cost metric, as
for example the number of tokens or entities that occur in
each selected sentence, the learning curves behave com-
pletely differently as can be seen in the second and third
plots in figure 2. This illustrates the fact that the selec-
tion metrics operate in different ways preferring shorter or
longer sentences with more or less entities. With number
of tokens as the cost metric, averaged KL-divergence per-
forms the best with a 23.5% reduction in annotation cost to
reach an f-score of 69% and an error reduction of 4.9% at
≈ 40,000 tokens. And with entities as the cost metric, the
f-complement selection metric seems to perform best. So,
the question arises: how do we combine this information
to prepare for a real annotation task where we only have a
single opportunity to get the best performing and most cost
effective system possible.

To explore the behaviour of the three selection metrics fur-
ther, we also look at the number of tokens and the num-
ber of entities in the sentences chosen by each metric. Ta-
ble 2 contains the number of tokens and entities contained
within the selected sentences averaged across the 5 cross-
validation results. Comparing these numbers, one can ob-
serve the types of sentences preferred by each selection

Metric Tokens Entities
Random 26.7 (0.8) 2.8 (0.1)
F-comp 25.8 (2.4) 2.2 (0.7)
KL-max 30.9 (1.5) 3.5 (0.2)
KL-ave 27.1 (1.8) 3.3 (0.2)

Table 2. Average tokens and entities per sentence for different se-
lection metrics (standard deviation in brackets)

metric. While the maximum KL-divergence metric selects
the longest sentences containing the most number of enti-
ties, the f-complement selection metric chooses the shortest
sentences with the least number of entities in them. The av-
eraged KL-divergence metric, on the other hand, generally
selects average length sentences which still contain rela-
tively many entities.

As averaged KL-divergence does not affect sentence
length, we expect the sentences selected to take less time
to annotate than the sentences selected by maximum KL-
divergence. And, since these sentences have relatively
many entity phrases, we expect to have more positive ex-
amples than with the f-complement metric and thus have
higher informativity and therefore performance increase
per token. Furthermore, sentence length is not the best sin-
gle unit cost metric. The number of sentences is too coarse
as this gives the same cost to very long and very short sen-
tences and does not allow us to consider the types of sen-
tences selected by the various metrics. Likewise, the num-
ber of entities does not reflect the fact that every selected



sentence needs to be read regardless of the number of en-
tities it contains, which again covers up effects of specific
selection metrics.

5. Active Annotation Results

We developed NEAL, an interactive Named Entity Active
Learning tool for bootstrappingNER in a new domain. The
tool manages the data and presents batches of selectively
sampled sentences for annotation in the same annotation
tool used for the seed and test data. The entire abstract
is presented for context with the target sentence(s) high-
lighted. On the basis of the findings of the simulated ex-
periments we set up the real AL experiment using averaged
KL-divergence as the selection metric. The tool was ini-
tialised with the 50 document seed set described in section
2 and given to the same annotators that prepared the seed
and test sets.

As we do not have a model of temporal or monetary cost in
terms of our three cost metrics, we evaluate with respect to
all three cost metrics. Figure 3 contains learning curves for
random sampling and for selective sampling with the aver-
aged KL-divergence selection metric plotted against num-
ber of sentences, number of tokens, and number of entities.
The initial performance (given only the seed data for train-
ing) amounts to an f-score of 69.1%. 50 sentences (with an
average of 28 tokens and 2.5 entities per sentence as com-
pared to 29.8 and 2.0 for the randomly sampled data) are
added to the training data at each round. After 20 itera-
tions, the training data therefore comprises of 1,502 sen-
tences (containing approx. 43,000 tokens) which leads to
an f-score of 79.6%.

Comparing the selective sampling performance to the base-
line, we confirm that active learning provides a significant
reduction in the number of examples that need annotating.
Looking first at the token cost metric, the random curve
reaches an f-score of 76% after approximately 39,000 to-
kens of data has been annotated while the selective sam-
pling curve reaches this level of performance after only≈
24,000 tokens. As for the optimisation data, this represents
a dramatic reduction in tokens annotated of 38.5%. In addi-
tion, at 39,000 tokens, selectively sampling offers an error
reduction of 13.0% with a 3 point improvement in f-score.
Selective sampling with the averaged KL-divergence selec-
tion metric also achieves dramatic cost and error rate re-
ductions for the sentence (35.6% & 12.5%) and entity cost
metrics (23.9% & 5.0%).

These improvements are comparable to the cost and er-
ror reduction achieved in the optimisation data. While it
should be taken into account that these domains are rela-
tively similar, this suggests that a different domain can be
used to optimise parameters when using active learning to

bootstrapNER. This is confirmed not only by an improve-
ment over baseline for the token cost metric but also by an
improvement for the sentence and entity cost metrics.

In a companion paper, we report in some more detail about
the effects of selective sampling on annotator’s perfor-
mance (Hachey et al., 2005). Even though we find that
active learning may result in a slightly higher error rate in
the annotation, we demonstrate that active learning still in-
curs substantial reductions in annotation effort as compared
to random sampling.

6. Conclusions and Future Work

We have presented an active learning approach to boot-
strapping named entity recognition for which a new corpus
of radio astronomical texts has been collected and anno-
tated. We employ a committee-based method that uses two
different feature sets for a conditional Markov model tagger
and we experiment with several metrics for quantifying the
degree of deviation: averaged KL-divergence, maximum
KL-divergence, and f-complement.

We started with aNER system tested and optimised in a
domain with existing corpus resources and built a system
to identify four novel entity types in a new domain of as-
tronomy texts. Experimental results from the real active
learning annotation illustrate that the optimised parameters
performed well on the new domain. This is confirmed for
cost metrics based on the number of sentences, the number
of tokens, and the number of entities.

While presenting results with respect to the three cost met-
rics ensures completeness, it also suggests that the real cost
might be better modelled as a combination of these met-
rics. During annotation, we collected timing information
for each sentence and we are currently using this timing in-
formation to investigate realistic models of cost based on
sentence length and number of entities.
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