
INFORMATION AND COMMUNICATION

TECHNOLOGIES

(ICT)

PROGRAMME

Project FP7-ICT-2009-C-243881 CerCo

Report n. D3.1

Executable Formal Semantics of C

Version 1.0

Main Authors:
Brian Campbell, Randy Pollack

Project Acronym: CerCo
Project full title: Certified Complexity
Proposal/Contract no.: FP7-ICT-2009-C-243881 CerCo

1

CerCo, FP7-ICT-2009-C-243881 2

Abstract We present an execution semantics of the C programming language for use in
the CerCo project. It is based on the small-step inductive semantics used by the CompCert
verified compiler. We discuss the extensions required for our target architecture, porting the
semantics to our choice of tool, Matita, providing an equivalent executable semantics and the
validation of the semantics.

CerCo, FP7-ICT-2009-C-243881 3

Contents

1 Introduction 3

2 Language extensions for the 8051 memory model 3

3 Port of CompCert Clight semantics to Matita 5
3.1 Parsing and elaboration . 5
3.2 Small-step inductive semantics . 6

4 Executable semantics 9
4.1 Expressions . 9
4.2 Statements . 10

5 Validation 11
5.1 Equivalence to inductive semantics . 11
5.2 Animation of simple C programs . 13

A Description of the Code 15

1 Introduction

We present an executable formal semantics of the C programming language which will serve as
the specification of the input language for the CerCo verified compiler. Our semantics is based
on Leroy et. al.’s C semantics for the CompCert project [2, 3], which divides the treatment of
C into two pieces. The first is an OCaml stage which parses and elaborates C into an abstract
syntax tree for the simpler Clight language, based on the CIL C parser. The second part is a
small step semantics for Clight formalised in the proof tool, which we have ported from Coq
to the Matita theorem prover. This semantics is given in the form of inductive definitions,
and so we have added a third part giving an equivalent functional presentation in Matita.

The CerCo compiler needs to deal with the constrained memory model of the target mi-
crocontroller (in our case, the 8051). Thus each part of the semantics has been extended to
allow explicit handling of the microcontroller’s memory spaces. Cost labels have also been
added to the Clight semantics to support the labelling approach to cost annotations presented
in a previous deliverable [1].

The following section discusses the C language extensions for memory spaces. Then the
port of the two stages of the CompCert Clight semantics is described in Section 3, followed
by the new executable semantics in Section 4. Finally we discuss how the semantics has been
validated in Section 5.

2 Language extensions for the 8051 memory model

The choice of an extended 8051 target for the CerCo compiler imposes an irregular memory
model with tight resource constraints. The different memory spaces and access modes are
summarised in Figure 1 — essentially the evolution of the 8051 family has fragmented memory
into four regions: one half of the ‘internal’ memory is fully accessible but also contains the
register banks, the second half cannot be accessed by direct addressing because it is shadowed

CerCo, FP7-ICT-2009-C-243881 4

Internal (256B)

0h Register bank 0

8h Register bank 1

10h Register bank 2

18h Register bank 3

20h Bit addressable

30h ...

80h

...
ffh

indirect

direct/stack

sfr direct

External (64kB)

0h

paged access

direct/indirect

80h ...
direct/indirect

Code (64kB)

0h

...

direct

PC relative

Figure 1: The extended 8051 memory model

by the ‘Special Function Registers’ (SFRs) for I/O; ‘external memory’ provides the bulk of
memory in a separate address space; and the code is in its own read-only space.

To make efficient use of the limited amount of memory, compilers for 8051 microcontrollers
provide extra keywords to allocate global variables to particular memory spaces, and to limit
pointers to address a particular space. The freely available sdcc compiler provides the follow-
ing extensions for the 8051 memory spaces:

Attribute Pointer size (bytes) Memory space

__data 1 Internal, first half (0h – 7fh)
__idata 1 Internal, indirect only (80h – ffh)
__pdata 1 External, page access (usually 0h – 7fh)
__xdata 2 External, any (0h – ffffh)
__code 2 Code, any (0h – ffffh)

none 3 Any / Generic pointer

The generic pointers are a tagged union of the other kinds of pointers.
We intend the CerCo compiler to support extensions that are broadly compatible with

sdcc to enable the compilation of programs with either tool. In particular, this would allow
the comparison of the behaviour of test cases compiled with each compiler. Thus the C syntax
and semantics have been extended with the memory space attributes listed above. The syntax
follows sdcc and in the semantics we track the memory space that each block was allocated
from and only permit access via the appropriate kinds of pointers. The details on these changes
are given in the following sections.

The sdcc compiler also supports special variable types for accessing the SFRs, which
provide the standard I/O mechanism for the 8051 family. (Note that pointers to these types

CerCo, FP7-ICT-2009-C-243881 5

are not permitted because only direct addressing of the SFRs is allowed.) We intend to use
CompCert-style ‘external functions’ instead of special types. These are functions which are
declared, but no C implementation of them is provided. Instead they are provided by the
runtime or compiled directly to the corresponding machine code. This has the advantage that
no changes from the CompCert semantics are required, and a compatibility library can be
provided for sdcc if necessary. The 8051 and the sdcc compiler also provide bit-level access
to a small region of internal memory. We do not intend to expose this feature to C programs
in the CerCo compiler, and so no extension is provided for it.

Finally, we have the option of using CompCert’s translation of volatile variable accesses
to ‘external’ function calls. Should we need more flexible I/O than SFRs provide, then we
could adopt the sdcc extension to allocate a variable at a particular address to provide a way
to deal with memory mapped I/O in the external memory space. The translation to function
calls would mean that the semantics presented here would be unaffected.

3 Port of CompCert Clight semantics to Matita

3.1 Parsing and elaboration

The first stage taken from the CompCert semantics is the parsing and elaboration of C pro-
grams into the simpler Clight language. This is based upon the CIL library for parsing,
analysing and transforming C programs by Necula et. al. [5]. The elaboration provides ex-
plicit type information throughout the program, including extra casts for promotion. It also
performs simplifications such as breaking up expressions with side effects into effect-free ex-
pressions along with statements to perform the effects. The transformed Clight programs are
much more manageable and lack the ambiguities of C, but also remain easily understood by
C programmers.

The parser has been extended with the 8051 memory spaces attributes given above. The
resulting abstract syntax tree records them on global variable declarations and pointer types.
However, we also need to deal with them during the elaboration process to produce all of the
required type information. For example, when the address-of operator & is used it must decide
which kind of pointer should be used. Thus the extended elaboration process keeps track of
the memory space (if any) that the value of each expression resides in. Where the memory
space is not known, a generic pointer will be used instead. Moreover, we also include the
pointer kind when determining whether a cast must be inserted so that conversions between
pointer representations can be performed.

Thus the elaboration turns the following C code

int g(int *x) { return 5; }

int f(__data int *x, int *y) {

return x==y ? g(x) : *x;

}

__data int i = 1;

int main(void) {

return f(&i, &i);

}

CerCo, FP7-ICT-2009-C-243881 6

into the Clight program below:

int g(int *x) { return 5; }

int f(__data int * x, int * y)

{

int t;

if (x == (__data int *)y) {

t = g((int *)x);

} else {

t = *x;

}

return t;

}

int main(void)

{

int t;

t = f(&i, (int *)(&i));

return t;

}

The expression in f had to be broken up due to the call to g, and casts have been added
to change between generic pointers and pointers specific to the __data section of memory.
The underlying data structure also has types attached to every expression, but these are
impractical to show in source form.

Note that the translation from C to Clight is not proven correct — instead it effectively
forms a semi-formal part of the whole C semantics. We can have some confidence in the code,
however, because it has received testing in the CerCo prototype, and it is very close to the
version used in CompCert. We can also perform testing of the semantics without involving
the rest of the compiler because we have an executable semantics. Moreover, the cautious
programmer could choose to inspect the generated Clight code, or even work entirely in the
Clight language.

3.2 Small-step inductive semantics

The semantics for Clight itself has been ported from the Coq development used in CompCert
to Matita for use in CerCo. Details about the original big-step formalisation of Clight can
be found in Leroy and Blazy [3] (including a discussion of the translation from C in §4.1),
although we started from a later version with a small-step semantics and hence support for
goto statements. Several parts of the semantics were shared with other parts of the CompCert
development, notably:

• the representation of primitive values (integers, pointers and undefined values, but not
structures or unions) and operations on them,

• traces of I/O events,

• a memory model that keeps conceptually distinct sections of memory strictly separate
(assigning ‘undefined behaviour’ to a buffer overflow, for instance),

CerCo, FP7-ICT-2009-C-243881 7

• results about composing execution steps of arbitrary small-step semantics,

• data structures for local and global environments, and

• common error handling constructs, in particular an error monad.

We anticipate a similar arrangement for the CerCo verified compiler, although this means that
there may be further changes to the common parts of the semantics later in the project to
harmonise the stages of the compiler. In particular, some of data structures for environments
are just preliminary definitions for developing the semantics.

The main body of the small-step semantics is a number of inductive definitions giving
details of the defined behaviour for casts, expressions and statements. Expressions are side-
effect free in Clight and only produce a value as output. In our case we also need a trace of
any cost labels that are ‘evaluated’ so that we will be able to give fine-grained costs for the
execution of compiled conditional expressions.

As an example of one of the expression rules, consider an expression which evaluates a
variable, Expr (Evar id) ty. A variable is an example of a class of expressions called lvalues,
which are roughly those expressions which can be assigned to. Thus we use a general rule for
lvalues,

ninductive eval_expr (ge:genv) (e:env) (m:mem) : expr → val → trace → Prop :=

...

| eval_Elvalue: ∀a,ty,psp,loc,ofs,v,tr.
eval_lvalue ge e m (Expr a ty) psp loc ofs tr →
load_value_of_type ty m psp loc ofs = Some ? v →
eval_expr ge e m (Expr a ty) v tr

where the auxiliary relation eval_lvalue yields the location of the value, psp,loc,ofs, consist-
ing of memory space, memory block, and offset into the block, respectively. The expression
can thus evaluate to the value v if v can be loaded from that location. One corresponding part
of the eval_lvalue definition is

...

with eval_lvalue (*(ge:genv) (e:env) (m:mem)*) :

expr → memory_space → block → int → trace → Prop :=

| eval_Evar_local: ∀id,l,ty.
get ??? id e = Some ? l →
eval_lvalue ge e m (Expr (Evar id) ty) Any l zero E0

...

simply looks up the variable in the local environment. The offset is zero because all variables
are given their own memory block to prevent the use of stray pointers. A similar rule handles
global variables, with an extra check to ensure that no local variable has the same name. Note
that the two relations are defined using mutual recursion because eval_lvalue uses eval_expr

for the evaluation of the pointer expression in the dereferencing rule.
Casts also have an auxiliary relation to specify the allowed changes, and operations on

values (including the changes in representation performed by casting) are given as functions.
The only new expression in our semantics is the cost label which wraps around another

expression. It does not change the result, but merely augments the trace with the given label
to identify the branches taken in conditional expressions so that accurate cost information can
be attached to the program:

CerCo, FP7-ICT-2009-C-243881 8

| eval_Ecost: ∀a,ty,v,l,tr.
eval_expr ge e m a v tr →
eval_expr ge e m (Expr (Ecost l a) ty) v (tr++Echarge l)

As the expressions are side-effect free, all of the changes to the state are performed by
statements. The state itself is represented by records of the form

ninductive state: Type :=

| State:

∀f: function.

∀s: statement.

∀k: cont.

∀e: env.

∀m: mem. state

| Callstate:

∀fd: fundef.

∀args: list val.

∀k: cont.

∀m: mem. state

| Returnstate:

∀res: val.

∀k: cont.

∀m: mem. state.

During normal execution the state contains the currently executing function’s definition (used
to find goto labels and also to check whether the function is expected to return a value),
the statement to be executed next, a continuation value to be executed afterwards (where
successor statements and details of function calls and loops are stored), the local environment
mapping variables to memory locations1 and the current memory state. The function call and
return states appear to store less information because the details of the caller are contained
in the continuation.

An example of the statement execution rules is the assignment rule (corresponding to the
C syntax a1 = a2),

ninductive step (ge:genv) : state → trace → state → Prop :=

| step_assign: ∀f,a1,a2,k,e,m,psp,loc,ofs,v2,m’,tr1,tr2.
eval_lvalue ge e m a1 psp loc ofs tr1 →
eval_expr ge e m a2 v2 tr2 →
store_value_of_type (typeof a1) m psp loc ofs v2 = Some ? m’ →
step ge (State f (Sassign a1 a2) k e m)

(tr1++tr2) (State f Sskip k e m’)

...

which can be read as:

• if a1 can evaluate to the location psp,loc,ofs,

• a2 can evaluate to a value v2, and

1In the semantics all variables are allocated, although the compiler may subsequently allocate them to
registers where possible.

CerCo, FP7-ICT-2009-C-243881 9

• storing v2 at location psp,loc,ofs succeeds, yielding the new memory state m’, then

• the program can step from the state about to execute Sassign a1 a2 to a state with the
updated memory m’ about to execute the no-op Sskip.

This rule would be followed by one of the rules to which replaces the Sskip statement with the
‘real’ next statement constructed from the continuation k. Note that the only true side-effect
here is the change in memory — the local environment is initialised once and for all on function
entry, and the only events appearing in the trace are cost labels used purely for accounting.
At present this imposes an ordering due to the cost labels. Should this prove too restrictive
we may change it to produce a set of labels encountered.

The Clight language provides input and output effects through ‘external’ functions and
the step rule

| step_external_function: ∀id,targs,tres,vargs,k,m,vres,t.
event_match (external_function id targs tres) vargs t vres →
step ge (Callstate (External id targs tres) vargs k m)

t (Returnstate vres k m)

which allows the function to be invoked with and return any values subject to the enforcement
of the typing rules in event_match, which also provides the trace.

Cost label statements prefix the trace with the given label, similar to the cost label ex-
pressions above.

4 Executable semantics

We have added an equivalent functional version of the Clight semantics that can be used to
animate programs. The definitions roughly follow the inductive semantics, but are necessarily
rearranged around pattern matching of the relevant parts of the state rather than presenting
each case separately.

4.1 Expressions

The code corresponding to the variable lookup definitions on page 7 is

nlet rec exec_expr (ge:genv) (en:env) (m:mem) (e:expr) on e : res (val×trace) :=

match e with

[Expr e’ ty ⇒
match e’ with

[...

| Evar _ ⇒
do 〈l,tr〉 ← exec_lvalue’ ge en m e’ ty;

do v ← opt_to_res ? (load_value_of_type’ ty m l);

OK ? 〈v,tr〉
...

]

]

and exec_lvalue’ (ge:genv) (en:env) (m:mem) (e’:expr_descr) (ty:type) on e’

: res (memory_space × block × int × trace) :=

match e’ with

CerCo, FP7-ICT-2009-C-243881 10

[Evar id ⇒
match (get ...id en) with

[None ⇒ do 〈sp,l〉 ← opt_to_res ? (find_symbol ? ? ge id);

OK ? 〈〈〈sp,l〉,zero〉,E0〉 (* global *)

| Some loc ⇒ OK ? 〈〈〈Any,loc〉,zero〉,E0〉 (* local *)

]

...

where the result is placed in an error monad (the res type constructor) so that undefined
behaviour such as dereferencing an invalid pointer can be rejected. We use do notation similar
to Haskell and CompCert, where

do x ← e; e’

means evaluate e and if it yields a value then bind that to x and evaluate e’, and otherwise
propogate the error.

4.2 Statements

Evaluating a step of a statement is complicated by the presence of the ‘external’ functions for
I/O, which can return arbitrary values. These are handled by a resumption monad, which
on encountering some I/O returns a suspension. When the suspension is applied to a value
the evaluation of the semantics is resumed. Resumption monads are a standard tool for
providing denotational semantics for input [4] and interleaved concurrency [6, Chapter 12].
The definition also incorporates errors, and uses a coercion to automatically transform values
from the plain error monad.

The definition of the monad is:

ninductive IO (output:Type) (input:output → Type) (T:Type) : Type :=

| Interact : ∀o:output. (input o → IO output input T) → IO output input T

| Value : T → IO output input T

| Wrong : IO output input T.

nlet rec bindIO (O:Type) (I:O → Type) (T,T’:Type)

(v:IO O I T) (f:T → IO O I T’) on v : IO O I T’ :=

match v with

[Interact out k ⇒ (Interact ??? out (λres. bindIO O I T T’ (k res) f))

| Value v’ ⇒ (f v’)

| Wrong ⇒ Wrong O I T’

].

Note that the type of the input value is dependent on the output value. This enables us to
ensure that the input is always well-typed. An alternative approach is a check in the semantics,
but this causes programs to fail in a way that has no counterpart in the inductive semantics.

The execution of assignments is straightforward,

nlet rec exec_step (ge:genv) (st:state) on st : (IO io_out io_in (trace × state)) :=

match st with

[State f s k e m ⇒
match s with

[Sassign a1 a2 ⇒

CerCo, FP7-ICT-2009-C-243881 11

! 〈l,tr1〉 ← exec_lvalue ge e m a1;

! 〈v2,tr2〉 ← exec_expr ge e m a2;

! m’ ← store_value_of_type’ (typeof a1) m l v2;

ret ? 〈tr1++tr2, State f Sskip k e m’〉
...

where ! is used in place of do due to the change in monad. The content is essentially the same
as the inductive rule given on page 8.

Most other rules are similar translations of the inductive semantics. The handling of
external calls uses the

do_io : ident → list eventval → IO eventval io_out eventval

function to suspend execution:

...

| Callstate f0 vargs k m ⇒
match f0 with

[...

| External f argtys retty ⇒
! evargs ← err_to_io_sig ...(check_eventval_list vargs (typlist_of_typelist argtys));

! evres ← do_io f evargs (proj_sig_res (signature_of_type argtys retty));

ret ? 〈Eextcall f evargs (mk_eventval ? evres), Returnstate (mk_val ? evres) k m〉
]

...

The rest of the code after do_io is included in the suspension returned.
Together with functions to provide the initial state for a program and to detect a final

state we can write a function to run the program up to a given number of steps. Similarly, a
corecursive function can return the entire execution as a stream of trace and state pairs.

5 Validation

We have used two methods to validate our executable semantics: we have proven them equiv-
alent to the inductive semantics of Section 3.2, and we have animated small examples of key
areas.

5.1 Equivalence to inductive semantics

To show that the executable semantics are sound with respect to the inductive semantics we
need to prove that any value produced by each function satisfies the corresponding relation,
modulo errors and resumption. To deal with these monads we lift the properties required.
In particular, for the resumption monad we ignore error values, require the property when a
value is produced, and quantify over any interaction with the outside world:

nlet rec P_io O I (A:Type) (P:A → Prop) (v:IO O I A) on v : Prop :=

match v return λ_.Prop with

[Wrong ⇒ True

| Value z ⇒ P z

| Interact out k ⇒ ∀v’.P_io O I A P (k v’)

].

CerCo, FP7-ICT-2009-C-243881 12

We can use this lifting with the relations from the inductive semantics to state soundness
properties:

ntheorem exec_step_sound: ∀ge,st.
P_io ??? (λr. step ge st (\fst r) (\snd r)) (exec_step ge st).

The proofs of these theorems use case analysis over the state, a few lemmas to break up the
expressions in the monad and the other soundness results to form the corresponding derivation
in the inductive semantics.

We experimented with a different way of specifying soundness using dependent types:

nlet rec exec_step (ge:genv) (st:state) on st

: (IO eventval io_out (Σr:trace × state. step ge st (\fst r) (\snd r))) :=

Note the Σ type for the result of the function, which shows that successful executions are sound
with respect to the inductive semantics. Matita automatically generates proof obligations for
each case due to a coercion between the types

option (res T) and res (Σx:T. P x)

(where a branch marked None would generate a proof obligation to show that it is impossible,
although the semantics do not use this feature). This is intended to mimic Sozeau’s Russell
language and elaboration into Coq [7]. The coercion also triggers an automatic mechanism
in Matita to add equalities for each pattern matched. The proofs are essentially the same as
before.

However, the soundness proofs then pervade the executable semantics, making rewriting
in the correctness proofs more difficult. We decided to keep the soundness results separate,
partly because of the increased difficulty of using the resulting terms in proofs, and partly
because they are of little consequence once equivalence has been shown.

The completeness results requiring a dual lifting which requires the term to reduce to a
particular value, allowing for resumptions with existential quantification:

nlet rec yieldsIO (A:Type) (a:IO io_out io_in A) (v’:A) on a : Prop :=

match a with

[Value v ⇒ v’ = v

| Interact _ k ⇒ ∃r.yieldsIO A (k r) v’

| _ ⇒ False

].

We then show the completeness theorems, such as

ntheorem step_complete: ∀ge,s,tr,s’.
step ge s tr s’ → yieldsIO ? (exec_step ge s) 〈tr,s’〉.

by case analysis on the inductive derivation and a mixture of reduction and rewriting. Thus
we know that executing a step in these semantics is equivalent to a step in the inductive
semantics.

CerCo, FP7-ICT-2009-C-243881 13

Showing the equivalence of whole program execution is a little trickier. Our executable
semantics produces a coinductive execution which is really a tree of executions, branching at
each I/O resumption on the input value:

e step ti si → · · · e stop tj i m

↗
...

e step E0 s0 → e step t1 s1 → · · · e interact o1 k1 → e step t′i s
′
i → · · · e step tj sj → · · ·

↘
...

e step t′′i s
′′
i → · · · e wrong

Each e step comes with the trace (often the empty trace, E0) and current state. Each
branch corresponds to calling the continuation k1 with a different input value. We use the
single_exec_of predicate to identify single executions from these trees, essentially fixing a
stream of input values.

However, the inductive semantics divides program behaviours into four categories which
have individual (co)inductive descriptions:

• successfully terminating executions;

• programs which eventually diverge (with an empty trace);

• programs which keep interacting in some way (with an infinite trace)2; and

• programs which go wrong.

We cannot constructively decide which of these categories an execution can fit into because
the properties they describe are undecidable. Hence we follow CompCert’s approach for
showing that one of the behaviours always exists using classical logic. Thus we characterise
the executions, then show the existence of the inductive semantics’ behaviour that matches.
We limit the scope of classical reasoning by taking the relevant axioms as hypotheses:

ntheorem exec_inf_equivalence:

∀classic:(∀P:Prop.P ∨ ¬P).
∀constructive_indefinite_description:(∀A:Type. ∀P:A→Prop. (∃x. P x) → Σx:A. P x).

∀p,e. single_exec_of (exec_inf p) e →
∃b.execution_matches_behavior e b ∧ exec_program p b.

5.2 Animation of simple C programs

We are currently working with a development version of Matita which (temporarily) does not
support extraction to OCaml code. Hence to animate a program we first parse it with CIL
and produce a Matita term in text format representing the program, then interpret it within
Matita.

This process is rather laborious, so we have concentrated on testing small programs which
exercised areas of the semantics which depart from CompCert. In particular, we tested several
aspects of the handling of memory spaces and the casting of pointers. Together with the
results in the previous sections we gain considerable confidence that the semantics describe

2In our setting this includes passing through cost labels as well as I/O.

CerCo, FP7-ICT-2009-C-243881 14

the behaviour of programs properly. Nevertheless, we intend to experiment with larger C
programs once extraction is available.

To give a concrete example, the following C program reads an integer using an ‘external’
function and returns its factorial as the program’s exit value:

int get_input(void);

int main(void) {

int i = get_input();

int r = 1;

int j;

for (j = 2; j<=i; j++)

r = r * j;

return r;

}

The Clight code is essentially the same, and the Matita term is:

ndefinition myprog := mk_program fundef type

[mk_pair ?? (succ_pos_of_nat 132 (* get_input *))

(External (succ_pos_of_nat 132) Tnil (Tint I32 Signed));

mk_pair ?? (succ_pos_of_nat 133 (* main *)) (Internal (

mk_function (Tint I32 Signed) [] [mk_pair ?? (succ_pos_of_nat 134) (Tint I32 Signed);

mk_pair ?? (succ_pos_of_nat 135) (Tint I32 Signed);

mk_pair ?? (succ_pos_of_nat 136) (Tint I32 Signed)]

(Ssequence

(Scall (Some ? (Expr (Evar (succ_pos_of_nat 134)) (Tint I32 Signed)))

(Expr (Evar (succ_pos_of_nat 132))

(Tfunction Tnil (Tint I32 Signed)))

[])

(Ssequence

(Sassign (Expr (Evar (succ_pos_of_nat 135)) (Tint I32 Signed))

(Expr (Econst_int (repr 1)) (Tint I32 Signed)))

(Ssequence

(Sfor (Sassign (Expr (Evar (succ_pos_of_nat 136)) (Tint I32 Signed))

(Expr (Econst_int (repr 2)) (Tint I32 Signed)))

(Expr (Ebinop Ole

(Expr (Evar (succ_pos_of_nat 136)) (Tint I32 Signed))

(Expr (Evar (succ_pos_of_nat 134)) (Tint I32 Signed)))

(Tint I32 Signed))

(Sassign (Expr (Evar (succ_pos_of_nat 136)) (Tint I32 Signed))

(Expr (Ebinop Oadd

(Expr (Evar (succ_pos_of_nat 136)) (Tint I32 Signed))

(Expr (Econst_int (repr 1)) (Tint I32 Signed)))

(Tint I32 Signed)))

(Sassign (Expr (Evar (succ_pos_of_nat 135)) (Tint I32 Signed))

(Expr (Ebinop Omul

(Expr (Evar (succ_pos_of_nat 135)) (Tint I32 Signed))

(Expr (Evar (succ_pos_of_nat 136)) (Tint I32 Signed)))

(Tint I32 Signed)))

)

(Sreturn (Some ? (Expr (Evar (succ_pos_of_nat 135))

CerCo, FP7-ICT-2009-C-243881 15

(Tint I32 Signed)))))))

))]

(succ_pos_of_nat 133)

[].

We can use the definitions in the Animation.ma file to reduce the term for a given input (5,
in this case; executing a maximum of 40 steps):

nremark exec: result ? (exec_up_to myprog 40 [EVint (repr 5)]).

nnormalize; (* you can examine the result here *)

@; nqed.

The result state records the interaction (the EVextcall) and the return result (120 in least-
significant-bit first binary):

result (res (list event×state))
(OK (list event×state)
〈[(EVextcall (p1 (p0 (p1 (p0 (p0 (p0 (p0 one))))))) []

(EVint (mk_int (pos (p1 (p0 one))) (inrg_mod (pos (p1 (p0 one)))))))],

Returnstate (Vint (mk_int (pos (p0 (p0 (p0 (p1 (p1 (p1 one)))))))

(inrg_mod (pos (p0 (p0 (p0 (p1 (p1 (p1 one))))))))))

Kstop MEM 〉)

A Description of the Code

The files ported from CompCert were based on version 1.6, with some minor details taken from
1.7.1 (in particular, the parser and the method of building infinite traces for the equivalence
proof).

The majority of the semantics is given as Matita source files. The exception is the changes
to the CIL based parser, which is presented as a patch to a preliminary version of the CerCo
prototype compiler. This patch provides both the extensions to the parser and a pretty printer
to produce a usable Matita term representing the program.

acc-0.1.spaces.patch Changes to early prototype compiler for parsing

Ancilliary definitions

Files corresponding to CompCert.

Coqlib.ma Minor definitions ported from CompCert
Errors.ma The error monad
Floats.ma Axiomatised floating point numbers
Globalenvs.ma Global environments
Integers.ma Integers modulo powers of two
Maps.ma Finite maps (used in particular for local environments)
Smallstep.ma Generic definitions and lemmas for small step semantics

Files specific to this development.

binary/positive.ma Binary positive numbers
binary/Z.ma Binary integers
extralib.ma Extensions to Matita’s library

CerCo, FP7-ICT-2009-C-243881 16

Inductive semantics ported from CompCert

AST.ma Minor syntax definitions intended for several compiler stages
Values.ma Definitions for values manipulated by Clight programs
Mem.ma Definition of the memory model
Events.ma I/O events
CostLabel.ma Definition of cost labels
Csyntax.ma Clight syntax trees
Csem.ma Clight inductive semantics

Executable semantics

IOMonad.ma Definitions of I/O resumption monad
Cexec.ma Definition of the executable semantics
CexecSound.ma Soundness of individual steps
CexecComplete.ma Completeness of individual steps
CexecEquiv.ma Equivalence of whole program executions
Animation.ma Definitions to help test the semantics

References

[1] Roberto M. Amadio, Nicolas Ayache, Yann Régis-Gianas, Kayvan Memarian, and Ronan
Saillard. Compiler design and intermediate languages. Deliverable 2.1, Project FP7-ICT-
2009-C-243881 CerCo.

[2] Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler with
a proof assistant. In POPL’06: Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 42–54, New York, NY, USA,
2006. ACM Press.

[3] Xavier Leroy and Sandrine Blazy. Formal verification of a C-like memory model and its
uses for verifying program transformations. Journal of Automated Reasoning, 41(1):1–31,
2008.

[4] Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55 – 92, 1991. Selections from 1989 IEEE Symposium on Logic in Computer Science.

[5] George C. Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer. CIL: Intermediate
language and tools for analysis and transformation of C programs. In R. Nigel Horspool,
editor, Compiler Construction: 11th International Conference (CC 2002), volume 2304 of
Lecture Notes in Computer Science, pages 213–228. Springer, 2002.

[6] David A. Schmidt. Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, Inc., 1986.

[7] Matthiue Sozeau. Subset coercions in Coq. In Thorsten Altenkirch and Conor McBride,
editors, Types for Proofs and Programs (TYPES 2006), volume 4502 of Lecture Notes in
Computer Science, pages 237–252. Springer-Verlag, 2007.

	Introduction
	Language extensions for the 8051 memory model
	Port of CompCert Clight semantics to Matita
	Parsing and elaboration
	Small-step inductive semantics

	Executable semantics
	Expressions
	Statements

	Validation
	Equivalence to inductive semantics
	Animation of simple C programs

	Description of the Code

