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Introduction

In the CerCo project we've been working on

the construction of a formally verified complexity
preserving compiler from a large subset of C to some
typical microcontroller assembly

Inspired by (and borrowing a little from) Leroy et al's CompCert.

They define languages by small-step inductive definitions.
We define language with executable interpreters.

Executable semantics are easier to test.

Can we retrofit executable semantics to CompCert and find out
anything interesting?
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C is quirky, flawed, and an enormous success.

— dmr, HOPL'93.
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What's so difficult about C?

Around 160 A4 pages of specification (400 with libraries added).
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What's so difficult about C?

Around 160 A4 pages of specification (400 with libraries added).

Implicit conversions:
int x = ’a’ + 0.5;

Mixed reads and writes of an object are undefined:
X =i + i++;
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What's so difficult about C?

Around 160 A4 pages of specification (400 with libraries added).

Implicit conversions:
int x = ’a’ + 0.5;

Mixed reads and writes of an object are undefined:
X =i + i++;

Evaluation order constraints very lax, not uniform:

X i++ && i++;
X = i++ & i++;

Annoying corner cases:

int x[]1;
int main() { return x[0]; }
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History (up to 1.8)

» CompCert starts with big-step Clight semantics

» Side-effect free expressions, no gotos.
> Some of the literature refers to this version.
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History (up to 1.8)

» CompCert starts with big-step Clight semantics

» Side-effect free expressions, no gotos.
> Some of the literature refers to this version.

» Switch to small-step Clight semantics

» Side-effect free expressions, gotos.
> CerCo project started from here

» Small-step CompCert C language

» C-like expressions,
» gotos, and ...

The latter comes in two flavours:
1. A non-deterministic version (the intended input language)

2. A deterministic version (what the compiler actually does)
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CompCert and testing

Untrustworthy OCaml  Formal development in Coq

C — CompCert C — Clight T/[XQ—’ ASM — Machine code

Coq sections get ‘extracted’ to OCaml for execution.

There's a formal proof in the middle,
but the edges are a bit worrying.
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CompCert and testing

Untrustworthy OCaml  Formal development in Coq

C — CompCert C — Clight T/K\Q—’ ASM — Machine code

C— — Tjr\o-’ — Machine code

Normal testing tries all of the code.
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CompCert and testing

Untrustworthy OCaml  Formal development in Coq

C — CompCert C — Clight %., ASM — Machine code

CompCert C — Clight —C/\ - ASM

Proofs exercise the formal development.

» Tactical interactive theorem proving helps you notice bad
definitions
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CompCert and testing

Untrustworthy OCaml  Formal development in Coq

C — CompCert C — Clight %" ASM — Machine code

C — CompCert C

With an executable semantics we can test the first part.
» Holes in the specification can mask holes in the proof
» Also get to play ‘spot the undefined behaviour’ game

> In CerCo all the languages are executable

16
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Constructing the executable semantics

CompCert provides us with a head start:

» the memory model is executable,

> local and global environments are defined in terms of
functions,

» the semantics of operators such as +, ==, etc are defined by
functions,

> an error monad is available for failing.

In particular, environments are used by the compiler, so they are
also fairly efficient.
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Constructing the executable semantics

Syntax directed relations are easy to make functions from:

Inductive lred: expr -> mem -> expr -> mem —> Prop :=
| red_var_local: forall x ty m b,
elx = Some(b, ty) —->
lred (Evar x ty) m

(Eloc b Int.zero ty) m

Definition exec_lred (e:expr) (m:mem) : res (expr * mem)
match e with
| Evar x ty =>

match en'!x with

| Some (b, ty’) => match type_eq ty ty’ with

| left _ => 0K (Eloc b Int.zero ty, m)
| right _ => Error (msg "type mismatch")
end
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Constructing the executable semantics — non-determinism

We encode strategies as functions
expr -> kind * expr * (expr -> expr)

and require that it really does give a subexpression and context.

Doesn't cover all strategies:

» Implementations could use contextual information,
randomness. . .

» various methods can solve this, but not terribly important here
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Constructing the executable semantics — stuck
subexpressions

The non-deterministic semantics check for stuck subexpressions.
» picks up non-terminating programs with undefined behaviour

» example where £ does not terminate:

£ + (10 / %) with x = 0

» should be able to get stuck after substituting x

> but without check we can always reduce £ ()

Scary quantification turns out to have a nice recursive equivalent

Definition not_stuck (e: expr) (m: mem) : Prop :=
forall k C e’ ,
context k RV C -> e = C e’ -> not_imm_stuck k e’ m.
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Soundness and completeness

We want to know that the executable semantics does the same
thing as the original semantics.

» (mostly boring) inductive proofs

» Coq's Function feature for generating induction principles
tailored to particular functions is great, but still a bit limited

Caveats apply to completeness:
» Limitations on strategies — cheat by single-stepping
» No I/O (CerCo uses a resumption monad for 1/0.)
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Strategies and the deterministic semantics
Two variants have been implemented:
1. a simple left-most inner-most strategy,

2. the actual strategy implemented by the compiler
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Strategies and the deterministic semantics
Two variants have been implemented:
1. a simple left-most inner-most strategy,

2. the actual strategy implemented by the compiler

(safe only)
Non-deterministic Deterministic
(strategy)
(no stuck expression check)
Executable

Completeness proof interesting:
» Deterministic semantics has big-step for ‘simple’ expressions

» Proof shows that this really does correspond to
non-deterministic
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OCaml driver code

Complete the interpreter with some untrustworthy OCaml:

1. Repeat the Coq step function until the program stops or fails.

2. Add optional code to work around bugs

» don't need to fix them properly
» don't need to prove anything

3. Also good for hacks: memcpy, printf, ...
Implement things outside of CompCert's model of C.
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Testing — function pointers

The example that | originally wanted to try.
int zero(void) { return 0; }
int main(void) {
int (*f) (void) = zero;

return £();

}

$ ../compcert-git-badfn/cexec fnptr-simple.c
stuck expression: function value hasn’t a function type

The function call rule requires f to evaluate directly to a function,
not a pointer.
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Testing — function pointers

The example that | originally wanted to try.

int zero(void) { return 0; }
int main(void) {
int (*f) (void) = zero;

return £();

}

Fixing this is easy — the compiler already had the correct type
check!

And the proof scripts got shorter.
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Testing — Csmith

Random program generator by Yang et al from U. Utah.
» Targets ‘'middle-end’ bugs
» Regular testing only found bugs in untrustworthy OCaml code

» Random code didn’t find any errors in semantics
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Testing — Csmith

Random program generator by Yang et al from U. Utah.
» Targets ‘'middle-end’ bugs
» Regular testing only found bugs in untrustworthy OCaml code

» Random code didn’t find any errors in semantics

... but the non-random code of safe mathematics functions. . .
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Testing — Csmith

... but the non-random code of safe mathematics functions. . .

int8_t lshift_func_int8_t_s_s(int8_t left, int right)
{
return
((left < 0) |1
(((int)right) < 0) ||
(((int)right) >= 32) ||
(left > (INT8_MAX >> ((int)right)))) ?

left :

(left << ((int)right));
}

Semantics is missing arithmetic conversion for 7;.

But the compiler works on this example, because ‘all’ integers are
32 bits.
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Testing — Csmith

Semantics is missing arithmetic conversion for 7;.

But the compiler worked on that example, because ‘all’ integers are
32 bits.

double f(int x, int a, double b) {
return x 7 a : b;

}
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Testing — Csmith

Semantics is missing arithmetic conversion for 7;.

But the compiler worked on that example, because ‘all’ integers are
32 bits.

double f(int x, int a, double b) {
return x 7 a : b;

}

The compiler is missing the conversion too:

$ ../compcert-git/ccomp conditional.c
Error during RTL type inference: type mismatch
In function main: RTL type inference error

We made a failing test-case from a working one.
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Testing — gcc-torture

An executable subset of GCC's C test suite, pre-filtered by another
executable semantics project (kcc from U. lllinois).
Lots of fun:

» lack of initialisation

1. only in the semantics, and
2. not in the compiler in OCaml

v

a little array/pointer confusion (OCaml)

v

incomplete array type mismatches (both, kind of)

v

Missing trivial cases for cast (semantics, fixed already)

v

pointer comparisons (semantics, intentional limitation)
bad line numbers in errors (OCaml)
» not helped by OCaml’s non-deterministic evaluation order. ..

v
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Related work

CompCert response
> bugs fixed, sometimes before | found them

» fresh interpreter implementation

* inspired by this work, but different: finds all possible redexes,
turns out smaller and neater; doesn't explicitly do deterministic
semantics

Lots of other executable semantics exist
> kcc, CompCertTSO, some JVMs, . ..

» often the natural way to use a system (e.g., ACL2)
Milner and Weyhrauch 1972

More fun things you can do
» Add 1/0, full program evaluation

» Check for coverage
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Conclusions

Took an existing verified compiler,

>

>

added an executable version of the semantics,

found bugs through testing,
* including a bug in the formalized front-end
* even though the original test-case is compiled properly

useful for illustrating limitations of the semantics,
especially ones you didn’t know about,

showed that the semantics cope with a large group of tests,

showed a connection between the original deterministic and
non-deterministic semantics.
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