Amortised memory analysis using the *depth* of data structures

Brian Campbell Brian.Campbell@ed.ac.uk

Laboratory for Foundations of Computer Science

September 9, 2008

Principles of Hofmann-Jost-style analyses

- Type system which *certifies* bounds;
- annotations describe bounding function in terms of input sizes:

x : bool tree[2], y : bool tree[3], 5
$$\vdash e$$
 : bool tree[2], 1
2 × |x| + 3 × |y| +5 | 2 × |result| + 1

Side conditions guarantee bounding functions sound.

Inference by collecting conditions together and solve resulting LP.

Heap memory example

The andtrees function computes the pointwise 'and' of two boolean trees (up to the smaller tree):

- means andtrees t1 t2 uses no more than |t1| units of space.
- The typings (and bounds) are not unique. |t2| is also sufficient.

Heap memory example

The andtrees function computes the pointwise 'and' of two boolean trees (up to the smaller tree):

let x = andtrees y z in ...

- Signatures also 'translate' requirements:
- If ... requires |x| + 4 units, then 2 × |y| + 4 is sufficient for both allocation and |x| + 4 later.

- means andtrees t1 t2 uses at most |t1| (or |t2|) units of stack space.
- Stack space is reusable.
- But now we want to use the depth to get a better bound (i.e., |t1|_d).

Developing an analysis with maximums

Previously we just added all the contributions from the context:

I:bool tree [k], r:bool tree [k], v:bool,
$$n \vdash e : ...$$

 $|I| \times k + |r| \times k + 0 + n$

Now we introduce a second context former to denote 'max' (;):

(*I*:bool tree [k]; r:bool tree [k];v:bool), $n \vdash e : ...$ max{ $|I|_d \times k$, $|r|_d \times k$, 0}+n

- Note that contexts are now trees.
- Treat tree types as 'folded up' version of above context.
- So *t*:bool tree [k] denotes $|t|_d \times k$.

Inspired by O'Hearn's Bunched Typing.

Unfolding trees in the context

 $\Gamma()$ is a context with a 'hole'.

t:bool tree[k]

Unfolding trees in the context

 $\Gamma()$ is a context with a 'hole'.

$$\begin{array}{c} \Gamma(\cdot) \vdash e_1 \colon T, k' \\ \hline \Gamma((l: \text{bool tree}[k]; r: \text{bool tree}[k]; v: \text{bool}), k) \vdash e_2 \colon T, k' \\ \hline \Gamma(t: \text{bool tree}[k]) \vdash \text{match } t \text{ with } \begin{array}{c} \text{leaf} \to e_1 \\ | \text{ node}(l, v, r) \to e_2 \colon T, k' \\ (\text{TREEMATCH}) \end{array} \\ \hline \rightarrow \quad l \swarrow r \\ rl \swarrow r \\ rl \checkmark rr \end{array}$$

(!:bool tree[k]; r:bool tree[k]; v:bool), k

THE STACK ANALYSIS TYPE SYSTEM

Unfolding trees in the context

 $\Gamma()$ is a context with a 'hole'.

$$\begin{array}{c} \Gamma(\cdot) \vdash e_1 : T, k' \\ \hline \Gamma((l: \text{bool tree}[k]; r: \text{bool tree}[k]; v: \text{bool}), k) \vdash e_2 : T, k' \\ \hline \Gamma(t: \text{bool tree}[k]) \vdash \text{match } t \text{ with } \begin{array}{c} \text{leaf} \rightarrow e_1 \\ | \text{ node}(l, v, r) \rightarrow e_2 : T, k' \\ & (\text{TREEMATCH}) \end{array} \\ \hline \end{array}$$

(l: bool tree[k]; ((rl: bool tree[k]; rr: bool tree[k]; rv: bool), k); v: bool), k

New rules

We need to be able to manipulate contexts to get the right shape. Hence new rules such as:

$$\frac{\Gamma(\Delta') \vdash e: T, n' \quad \Delta \cong \Delta'}{\Gamma(\Delta) \vdash e: T, n'} \quad (\equiv)$$

$$\begin{array}{ll} \Gamma, (\Delta; \Delta') \cong (\Gamma, \Delta); (\Gamma, \Delta') & (distribution) \\ \Gamma \cong \Gamma; \Gamma & (max-contraction) \\ \Gamma \cong q\Gamma, (1-q)\Gamma & q \in [0, 1] & (plus-contraction) \end{array}$$

All preserve the bounding functions derived from the context.

Also: weakening and a max-to-plus approximate conversion.

Function signatures are also 'structured'.

means andtrees t1 t2 uses at most |t1|_d or |t2|_d units of stack space.

Function signatures are also 'structured'.

- means andtreesmax t1 t2 uses at most max{|t1|_d, |t2|_d} units of stack space.
- We can now also type a version of andtrees which returns false for all the nodes which are only in one of the arguments.

Function signatures are also 'structured'.

Extra benefit from maxima

```
let maybetail(1,b) =
  match l with cons(h,t)' ->
    if b then t else l
```

In heap analysis need to sum requirements because of use of contraction at match. Doubles the bound unnecessarily.

- In depth type system we can use max-contraction.
- So requirement goes $|I| \Rightarrow \max\{|I|, |I|\} \Rightarrow \max\{|t|, |I|\}$.
- Context goes $I : \text{list} \Rightarrow I : \text{list}; I : \text{list} \Rightarrow t : \text{list}; I : \text{list}$

let expressions

let $x = e_1$ in e_2

- ▶ Overall bound is max{bound for *e*₁, bound for *e*₂}.
- But we also need to translate bound for e₂.

Instead replace subcontext for x with that needed to produce it, Γ_1 :

$$\frac{\Gamma_1 \vdash e_1 : T_1, n_1 \qquad \Gamma(x : T_1, n_1) \vdash e_2 : T, n'}{\Gamma(\Gamma_1) \vdash \text{let } x = e_1 \text{ in } e_2 : T, n'} \qquad \text{(Let)}$$

(Only sound for stack discipline.)

Stack space inference

- Would like to take advantage of linear programming again
- But new context manipulation rules are not syntax-directed

We add an extra stage to the inference process:

```
source program (plain types)
↓
additional terms for context manipulation
↓
bound (using linear programming)
```

Assume context structure given for function signatures to make problem more tractable.

Basic ideas for inference

- Work from the leaves of the expression outwards.
- At every stage, keep track of a generated context derived from subexpressions and the typing rule.

$$\frac{\Gamma \vdash e_1 \mapsto \Gamma_1 \qquad \Gamma \vdash e_2 \mapsto \Gamma_2}{\Gamma \vdash \text{if } x \text{ then } e_1 \text{ else } e_2 \mapsto \Gamma_1; \Gamma_2; x : \text{bool}}$$

Need to add context manipulation at two points:

- 1. where binding occurs, to deal with contraction, etc;
- 2. to make the generated context match the function signature.

The full analysis

- Have algebraic data types, not just trees.
- Can specify the form of bounds:

in terms of depth, total size, or a mixture.

Bounds w.r.t. total size useful when depth analysis fails.

 Resource polymorphism (different function signatures at different points).

Implementation in Standard ML.

Further work

- Nested types don't behave that well. Have done some work on separating contents and structure
- Inferring the structure of function signatures.
- Reduce complexity of inference.
- Deal with construction of log-depth trees.
- Try heap space version.