
Amortised memory analysis using the depth of
data structures

Brian Campbell
Brian.Campbell@ed.ac.uk

Laboratory for Foundations of Computer Science

September 9, 2008

1 / 19

mailto:Brian.Campbell@ed.ac.uk

Principles of Hofmann-Jost-style analyses

I Type system which certifies bounds;

I annotations describe bounding function in terms of input sizes:

x : bool tree[2], y : bool tree[3], 5 ` e : bool tree[2], 1

2× |x | + 3× |y | +5 | 2× |result|+ 1

I Side conditions guarantee bounding functions sound.

Inference by collecting conditions together and solve resulting LP.

2 / 19

Heap memory example

The andtrees function computes the pointwise ‘and’ of two
boolean trees (up to the smaller tree):

t
�

f
@

f
�

t
@

f

t
�

f
@

t
�

t

t
�

f
@

f
�

t

bool tree [1] × bool tree [0], 0 → bool tree [0], 0
bool tree [0] × bool tree [1], 0 → bool tree [0], 0

I means andtrees t1 t2 uses no more than |t1| units of
space.

I The typings (and bounds) are not unique. |t2| is also
sufficient.

Hofmann-Jost Heap Memory Analysis 3 / 19

Heap memory example

The andtrees function computes the pointwise ‘and’ of two
boolean trees (up to the smaller tree):

t
�

f
@

f
�

t
@

f

t
�

f
@

t
�

t

t
�

f
@

f
�

t

bool tree [2] × bool tree [0], 4 → bool tree [1], 4

let x = andtrees y z in ...

I Signatures also ‘translate’ requirements:

I If . . . requires |x |+ 4 units, then 2× |y |+ 4 is sufficent for
both allocation and |x |+ 4 later.

Hofmann-Jost Heap Memory Analysis 4 / 19

Example with stack space

t
�

f
@

f
�

t
@

f

t
�

f
@

t
�

t

t
�

f
@

f
�

t

bool tree [1] × bool tree [0], 0 → bool tree [1], 0
bool tree [0] × bool tree [1], 0 → bool tree [1], 0

I means andtrees t1 t2 uses at most |t1| (or |t2|) units of
stack space.

I Stack space is reusable.

I But now we want to use the depth to get a better bound (i.e.,
|t1|d).

Example for stack space 5 / 19

Developing an analysis with maximums

Previously we just added all the contributions from the context:

l :bool tree [k], r :bool tree [k], v :bool, n ` e : . . .
|l | × k + |r | × k + 0 +n

Now we introduce a second context former to denote ‘max’ (;):

(l :bool tree [k]; r :bool tree [k];v :bool), n ` e : . . .
max{ |l |d × k , |r |d × k , 0 }+n

I Note that contexts are now trees.

I Treat tree types as ‘folded up’ version of above context.

I So t :bool tree [k] denotes |t|d × k .

Inspired by O’Hearn’s Bunched Typing.

The Stack Analysis Type System 6 / 19

Unfolding trees in the context

Γ() is a context with a ‘hole’.

Γ(·) ` e1 :T , k ′

Γ((l :bool tree[k]; r :bool tree[k]; v :bool), k) ` e2 :T , k ′

Γ(t :bool tree[k]) ` match t with leaf → e1

| node(l , v , r)→ e2 :T , k ′

(TreeMatch)

→ t
�

l
@

r
�

rl
@

rr

t :bool tree[k]

The Stack Analysis Type System 7 / 19

Unfolding trees in the context

Γ() is a context with a ‘hole’.

Γ(·) ` e1 :T , k ′

Γ((l :bool tree[k]; r :bool tree[k]; v :bool), k) ` e2 :T , k ′

Γ(t :bool tree[k]) ` match t with leaf → e1

| node(l , v , r)→ e2 :T , k ′

(TreeMatch)

t
�

→ l
@

r
�

rl
@

rr

(l :bool tree[k]; r :bool tree[k]; v :bool), k

The Stack Analysis Type System 8 / 19

Unfolding trees in the context

Γ() is a context with a ‘hole’.

Γ(·) ` e1 :T , k ′

Γ((l :bool tree[k]; r :bool tree[k]; v :bool), k) ` e2 :T , k ′

Γ(t :bool tree[k]) ` match t with leaf → e1

| node(l , v , r)→ e2 :T , k ′

(TreeMatch)

t
�

l
@

r
�

→ rl
@

rr(
l :bool tree[k];

(
(rl :bool tree[k]; rr :bool tree[k]; rv :bool), k

)
; v :bool

)
, k

The Stack Analysis Type System 9 / 19

New rules

We need to be able to manipulate contexts to get the right shape.
Hence new rules such as:

Γ(∆′) ` e : T , n′ ∆ ∼= ∆′

Γ(∆) ` e : T , n′ (≡)

Γ, (∆; ∆′) ∼= (Γ, ∆); (Γ, ∆′) (distribution)

Γ ∼= Γ; Γ (max-contraction)

Γ ∼= qΓ, (1− q)Γ q ∈ [0, 1] (plus-contraction)

All preserve the bounding functions derived from the context.

Also: weakening and a max-to-plus approximate conversion.

The Stack Analysis Type System 10 / 19

Example with stack space

Function signatures are also ‘structured’.

t
�

f
@

f
�

t
@

f

t
�

f
@

t
�

t

t
�

f
@

f
�

t

bool tree[1] ; bool tree[0] → bool tree[1]
bool tree[0] ; bool tree[1] → bool tree[1]

I means andtrees t1 t2 uses at most |t1|d or |t2|d units of
stack space.

I We can now also type a version of andtrees which returns
false for all the nodes which are only in one of the arguments.

The Stack Analysis Type System 11 / 19

Example with stack space

Function signatures are also ‘structured’.

t
�

f
@

f
�

t
@

f

t
�

f
@

t
�

t

t
�

f
@

f
�

t
@

f

bool tree[1] ; bool tree[1] → bool tree[1]

bool tree[0] ; bool tree[1] → bool tree[1]

I means andtreesmax t1 t2 uses at most max{|t1|d , |t2|d}
units of stack space.

I We can now also type a version of andtrees which returns
false for all the nodes which are only in one of the arguments.

The Stack Analysis Type System 12 / 19

Example with stack space

Function signatures are also ‘structured’.

t
�

f
@

f
�

t
@

f

t
�

f
@

t
�

t

t
�

f
@

f
�

t

bool tree[1] ; bool tree[1] → bool tree[1]

bool tree[0] ; bool tree[1] → bool tree[1]

Σ(f) = Γ→ T , k1 k ≥ stack(f) k + k1 ≥ k ′

Γ[x1, . . . , xp/namesof(Γ)], k ` f (x1, . . . , xp) : T , k ′ (Fun)

The Stack Analysis Type System 13 / 19

Extra benefit from maxima

let maybetail(l,b) =
match l with cons(h,t)’ ->

if b then t else l

In heap analysis need to sum requirements because of use of
contraction at match. Doubles the bound unnecessarily.

I In depth type system we can use max-contraction.

I So requirement goes |l | ⇒ max{|l |, |l |} ⇒ max{|t|, |l |}.
I Context goes l : list⇒ l : list; l : list⇒ t : list; l : list

The Stack Analysis Type System 14 / 19

let expressions

let x = e1 in e2

I Overall bound is max{bound for e1, bound for e2}.
I But we also need to translate bound for e2.

Instead replace subcontext for x with that needed to produce it, Γ1:

Γ1 ` e1 : T1, n1 Γ(x :T1, n1) ` e2 : T , n′

Γ(Γ1) ` let x = e1 in e2 : T , n′ (Let)

(Only sound for stack discipline.)

The Stack Analysis Type System 15 / 19

Stack space inference

I Would like to take advantage of linear programming again

I But new context manipulation rules are not syntax-directed

We add an extra stage to the inference process:

source program (plain types)
↓

additional terms for context manipulation
↓

bound (using linear programming)

Assume context structure given for function signatures to make
problem more tractable.

The Stack Space Inference 16 / 19

Basic ideas for inference

I Work from the leaves of the expression outwards.

I At every stage, keep track of a generated context derived from
subexpressions and the typing rule.

Γ ` e1 7→ Γ1 Γ ` e2 7→ Γ2

Γ ` if x then e1 else e2 7→ Γ1; Γ2; x :bool

Need to add context manipulation at two points:

1. where binding occurs, to deal with contraction, etc;

2. to make the generated context match the function signature.

The Stack Space Inference 17 / 19

The full analysis

I Have algebraic data types, not just trees.

I Can specify the form of bounds:

in terms of depth, total size, or a mixture.

Bounds w.r.t. total size useful when depth analysis fails.

I Resource polymorphism (different function signatures at
different points).

Implementation in Standard ML.

The Stack Space Inference 18 / 19

Further work

I Nested types don’t behave that well. Have done some work
on separating contents and structure

I Inferring the structure of function signatures.

I Reduce complexity of inference.

I Deal with construction of log-depth trees.

I Try heap space version.

Further Work 19 / 19

	Hofmann-Jost Heap Memory Analysis
	Example for stack space
	The Stack Analysis Type System
	The Stack Space Inference
	Further Work

