Amortised memory analysis using the depth of
data structures

Brian Campbell
Brian.Campbell@ed.ac.uk

Laboratory for Foundations of Computer Science

September 9, 2008

19

mailto:Brian.Campbell@ed.ac.uk

Principles of Hofmann-Jost-style analyses

» Type system which certifies bounds;

» annotations describe bounding function in terms of input sizes:

x : bool tree[2], y : bool tree[3], 5 F e: bool tree[2],1
2x x|+ 3xly] 45 2 X |result| + 1

» Side conditions guarantee bounding functions sound.

Inference by collecting conditions together and solve resulting LP.

Heap memory example

The andtrees function computes the pointwise ‘and’ of two
boolean trees (up to the smaller tree):

t t t
f/ \f f 4 \t f 4 \f
7\ / /
t f t t
bool tree [I] ~ x bool tree [0], 0 — bool tree [0],
bool tree [0] ~ x bool tree [1|, 0 — bool tree [0],

» means andtrees t1 t2 uses no more than [t1| units of
space.

» The typings (and bounds) are not unique. [t2] is also
sufficient.

HoOFMANN-JOST HEAP MEMORY ANALYSIS

0
0

19

Heap memory example

The andtrees function computes the pointwise ‘and’ of two
boolean trees (up to the smaller tree):

t t t
f 4 \f f 4 \t f 4 \f
7\ / /
t f t t
bool tree [2] X bool tree [0], 4 — bool tree [1], 4

let x = andtrees y z in ...
» Signatures also ‘translate’ requirements:

> If ... requires |x| + 4 units, then 2 x |y| + 4 is sufficent for
both allocation and |x| + 4 later.

HOFMANN-JOST HEAP MEMORY ANALYSIS

19

Example with stack space

t t t
f/ \f f / \t f/ \f
7N\ / /
t f t t
bool tree [I] ~ x bool tree [0], 0 — bool tree [1], 0
bool tree [0] X bool tree [1|, 0 — bool tree [1], 0

» means andtrees tl t2 uses at most |t1]| (or [t2|) units of
stack space.

» Stack space is reusable.

» But now we want to use the depth to get a better bound (i.e.,

[t1]q).

EXAMPLE FOR STACK SPACE

19

Developing an analysis with maximums

Previously we just added all the contributions from the context:

I:bool tree [k]|, r:bool tree [k|, v:bool, nte: ...
U xk + Jrixk + 0 +n

Now we introduce a second context former to denote ‘max’ (;):

(I:bool tree [k]; r:bool tree [k|;v:bool), nte: ...
max{ |llaxk , Jrlaxk , 0 }+n

» Note that contexts are now trees.
» Treat tree types as ‘folded up’ version of above context.
» So t:bool tree [k| denotes |t|q X k.

Inspired by O'Hearn's Bunched Typing.

THE STACK ANALYSIS TYPE SYSTEM

6

19

Unfolding trees in the context

() is a context with a ‘hole’.

M)k e :T,K
['((/:bool tree[k]|; r:bool tree[k|; v:bool), k) - ex: T, Kk’
I(t:bool tree[k]) - match t with leaf — ¢
| node(/,v,r) — ex: T, K
(TREEMATCH)

R //t\r
rl/ \rr

t:bool tree[k]|

THE STACK ANALYSIS TYPE SYSTEM

19

Unfolding trees in the context

() is a context with a ‘hole’.

M)k e :T,K
['((/:bool tree[k]|; r:bool tree[k|; v:bool), k) - ex: T, Kk’
I(t:bool tree[k]) - match t with leaf — ¢
| node(/,v,r) — ex: T, K
(TREEMATCH)

//t\r
rl/ \rr

—

(/:bool tree[k]; r:bool tree[k]; v:bool), k

THE STACK ANALYSIS TYPE SYSTEM

19

Unfolding trees in the context

() is a context with a ‘hole’.

M)Fe:T,K
['((/:bool tree[k]; r:bool tree[k|; v:bool), k) - ey: T, k'
I(t:bool tree[k]) F match t with leaf — ¢
| node(/,v,r) — e: T, K
(TREEMATCH)

t
// \r
r//\rr

—

</:boo| tree[k]; ((r/:bool tree[k|; rr:bool tree[k|; rv:bool), k); v:booI),

THE STACK ANALYSIS TYPE SYSTEM

k

19

New rules

We need to be able to manipulate contexts to get the right shape.
Hence new rules such as:

A)ke:T,n A=A

MA)Ye:T,n
F(A;A) = (T, A); (ML, A (distribution)
r=r;r (max-contraction)
r=gqlr,(1—q)l qel0,1] (plus-contraction)

All preserve the bounding functions derived from the context.

Also: weakening and a max-to-plus approximate conversion.

THE STACK ANALYSIS TYPE SYSTEM

10/19

Example with stack space

Function signatures are also ‘structured’.

t t t
f/ \f f/ \t f/ \f
7\ / /
t f t t
bool tree[1] ~; bool tree[0] — bool tree[1]
bool tree[0] ; bool tree[l] — bool tree[1]

> means andtrees tl t2 uses at most |t1|y or [t2]4 units of
stack space.

THE STACK ANALYSIS TYPE SYSTEM

11/19

Example with stack space

Function signatures are also ‘structured’.

t t t
f 4 \f f 4 \t f 4 \f
7\ / N
t f t t f
bool tree[1] ~; bool tree[l] — bool tree[1]

> means andtreesmax tl t2 uses at most max{|t1|y4, [t2]4}
units of stack space.

» We can now also type a version of andtrees which returns
false for all the nodes which are only in one of the arguments.

THE STACK ANALYSIS TYPE SYSTEM 12/19

Example with stack space

Function signatures are also ‘structured’.

t t t
f 4 \f f 4 \t f 4 \f
7\ / /
t f t t
bool tree[1] ~ ; bool tree[l] — bool tree[1]
Y(f)=T— T,k k > stack(f k+ kg > K
(F)=T =T,k > stack(f) 12 K
M[x1, ..., xp/namesof (IN)], k = f(x1,...,xp) : T,k
THE STACK ANALYSIS TYPE SYSTEM

13 /19

Extra benefit from maxima

let maybetail(l,b) =
match 1 with cons(h,t)’ ->
if b then t else 1

In heap analysis need to sum requirements because of use of
contraction at match. Doubles the bound unnecessarily.

» In depth type system we can use max-contraction.
> So requirement goes |/| = max{|/|,|/|} = max{|t], |/|}.
» Context goes /: list = /[: list; | : list = t : list; / : list

THE STACK ANALYSIS TYPE SYSTEM 14 /19

let expressions

let x = €1 in &

» Overall bound is max{bound for e;, bound for e;}.

» But we also need to translate bound for e>.

Instead replace subcontext for x with that needed to produce it, '1:

ke I(Ve T, n
M) kFletx=eine:T,n

(LET)

(Only sound for stack discipline.)

THE STACK ANALYSIS TYPE SYSTEM

15/19

Stack space inference

» Would like to take advantage of linear programming again

» But new context manipulation rules are not syntax-directed

We add an extra stage to the inference process:

source program (plain types)

!

additional terms for context manipulation

|

bound (using linear programming)

Assume context structure given for function signatures to make
problem more tractable.

THE STACK SPACE INFERENCE 16 /19

Basic ideas for inference

» Work from the leaves of the expression outwards.

> At every stage, keep track of a generated context derived from
subexpressions and the typing rule.

F}—elHl'l r|—62l—>r2
" if x then ey else e — [1;5; x:bool

Need to add context manipulation at two points:
1. where binding occurs, to deal with contraction, etc;

2. to make the generated context match the function signature.

THE STACK SPACE INFERENCE 17 /19

The full analysis

» Have algebraic data types, not just trees.
» Can specify the form of bounds:
in terms of depth, total size, or a mixture.
Bounds w.r.t. total size useful when depth analysis fails.
» Resource polymorphism (different function signatures at
different points).

Implementation in Standard ML.

THE STACK SPACE INFERENCE

18 /19

Further work

v

Nested types don't behave that well. Have done some work
on separating contents and structure

Inferring the structure of function signatures.

>
» Reduce complexity of inference.

» Deal with construction of log-depth trees.
>

Try heap space version.

FURTHER WORK 19/19

	Hofmann-Jost Heap Memory Analysis
	Example for stack space
	The Stack Analysis Type System
	The Stack Space Inference
	Further Work

