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Heap memory example

The andtrees function computes the pointwise ‘and’ of two
boolean trees (up to the smaller tree):
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bool tree

[2]

× bool tree

[0], 0

→ bool tree

[1], 0

I means andtrees t1 t2 uses no more than |t1| units of
space.

I The typings (and bounds) are not unique. |t2| is also
sufficient.
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bool tree [2] × bool tree [0], 4 → bool tree [1], 4

let x = andtrees y z in ...

I Signatures also ‘translate’ requirements:

I If . . . requires |x |+ 4 units, then 2× |y |+ 4 is sufficent for
both allocation and |x |+ 4 later.
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Hofmann-Jost rules

n ≥ size(bool tree node) + k + n′

l :bool tree[k], r :bool tree[k], v :bool, n ` node(l , v , r) : bool tree[k], n′

(Node)

means that if we have

|l | × k + |r | × k + n

units of free memory then we can allocate the node and end up with

|node(l , v , r)| × k + n′ = (1 + |l |+ |r |)× k + n′.
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Hofmann-Jost inference

n ≥ size(bool tree node) + k + n′

l :bool tree[k], r :bool tree[k], v :bool, n ` node(l , v , r) : bool tree[k], n′

(Node)

I Collect constraints from typing rules;

I Solve linear program, minimising the bound.
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Hofmann-Jost as an amortized analysis

n ≥ size(bool tree node) + k + n′

l :bool tree[k], r :bool tree[k], v :bool, n ` node(l , v , r) : bool tree[k], n′

(Node)

The type annotations define potential functions

ΥΓ(l , r) = |l | × k + |r | × k + n

for the context, and for the result:

ΥR(R) = |R| × k + n′.

Constraint ensures that the allocation is accounted for by a drop in
potential. (See Physicist’s view in Tarjan 1985)
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Example with stack space
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bool tree [1] × bool tree [0], 0 → bool tree [1], 0
bool tree [0] × bool tree [1], 0 → bool tree [1], 0

I means andtrees t1 t2 uses at most |t1| (or |t2|) units of
stack space.

I Stack space is reusable.

I But now we want to use the depth to get a better bound (i.e.,
|t1|d).
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Developing an analysis with maximums

Previously we just added all the ‘potential’ from the context:

l :bool tree [k], r :bool tree [k], v :bool, n ` . . .
|l | × k + |r | × k + 0 +n

Now we introduce a second context former to denote ‘max’ (;):

(l :bool tree [k]; r :bool tree [k];v :bool), n ` . . .
max{ |l |d × k , |r |d × k , 0 }+n

I Treat tree types as ‘folded up’ version of above context.

I So t :bool tree [k] has potential of |t|d × k.

I Note that contexts are now trees.

Inspired by O’Hearn’s Bunched Typing.
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Bunched Contexts

Γ := · | x :T | Γ, Γ | Γ; Γ | k

ΥΓ(S , ·) = 0

ΥΓ(S , x :T ) = ΥT(S(x),T )

ΥΓ(S , (Γ1, Γ2)) = ΥΓ(S , Γ1) + ΥΓ(S , Γ2)

ΥΓ(S , (Γ1; Γ2)) = max{ΥΓ(S , Γ1),ΥΓ(S , Γ2)}
ΥΓ(S , k) = k

So (x :T1, k); y :T2 has potential

max{|x |d + k, |y |d}.
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Unfolding trees in the context

Γ() is a context with a ‘hole’.

Γ(·) ` e1 :T , k ′

Γ((l :bool tree[k]; r :bool tree[k]; v :bool), k) ` e2 :T , k ′

Γ(t :bool tree[k]) ` match t with leaf → e1

| node(l , v , r) → e2 :T , k ′

(TreeMatch)

→ t
�

l
@

r
�

rl
@

rr

t :bool tree[k]
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Folding trees in the context

k ′ ≥ k + k ′′

(l :bool tree[k]; r :bool tree[k]; v :bool), k ′ ` node(l , v , r) :bool tree[k], k ′′

(Node)
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(l :bool tree[k]; ((rl :bool tree[k]; rr :bool tree[k]; rv :bool), k); v :bool), k

The Stack Analysis Type System 17 / 38



New rules

We need to be able to manipulate contexts to get the right shape.
Hence new rules such as:

Γ(∆′) ` e : T , n′ ∆ ∼= ∆′

Γ(∆) ` e : T , n′ (≡)

Γ, (∆; ∆′) ∼= (Γ,∆); (Γ,∆′) (distribution)

Γ ∼= Γ; Γ (max-contraction)

Γ ∼= qΓ, (1− q)Γ q ∈ [0, 1] (plus-contraction)

All preserve the ‘potential’ (i.e. give the same potential function).
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Example with stack space

Function signatures are also ‘structured’.
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bool tree[1] ; bool tree[0] → bool tree[1]
bool tree[0] ; bool tree[1] → bool tree[1]

I means andtrees t1 t2 uses at most |t1|d or |t2|d units of
stack space.

I We can now also type a version of andtrees which keeps all
the nodes which are only in one of the arguments.
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I means andtreesmax t1 t2 uses at most max{|t1|d , |t2|d}
units of stack space.
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Example with stack space

Function signatures are also ‘structured’.
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bool tree[1] ; bool tree[1] → bool tree[1]

bool tree[0] ; bool tree[1] → bool tree[1]

Σ(f ) = Γ → T , k1 k ≥ stack(f ) k + k1 ≥ k ′

Γ[x1, . . . , xp/namesof(Γ)], k ` f (x1, . . . , xp) : T , k ′ (Fun)
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Extra benefit from maxima

let maybetail(l,b) =
match l with cons(h,t)’ ->
if b then t else l

In heap analysis need to sum requirements because of use of
contraction at match. Doubles the bound unnecessarily.

I In depth type system we can use max-contraction.

I So requirement goes |l | ⇒ max{|l |, |l |} ⇒ max{|t|, |l |}.
I Context goes l : list ⇒ l : list; l : list ⇒ t : list; l : list
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What about let?

Γ1 ` e1 :T1 Γ2, x :T1 ` e2 :T2

Γ1, Γ2 ` let x = e1 in e2 :T2
(Boring Let)

We don’t necessary want to sum requirements, and we do want to
preserve tree structure.

I Really want to use a small subcontext Γ1 inside Γ2(Γ1),
replace with x : T1.

I This kind of thing appears in Bunched Typing too.

I Prepared to forget about bounding heap space.
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Local context replacement

For stack space we always get back the memory that we put in.
So we have the same amount of ‘free memory’ at e2 as the start of
the let expression.
Thus we can change the form of potential function so long the
values it produces cannot increase.

Γ1 ` e1 : T1, n1 Γ(x :T1, n1) ` e2 : T , n′

Γ(Γ1) ` let x = e1 in e2 : T , n′ (Let)

I Relies on stack discipline.

I Heap allocation is harder:
If we have Γ1; Γ2 and allocate in e1, then we might not have
enough left for Γ2.
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Local replacement example

let x = node(l , r , v) in e2

Say e2 requires max{|x |d + |y |d, 5}.

(x :bool tree[1]; y :bool tree[1]), 5 ` e2 :T , k

The typing of e1 can ‘translate’ the x part of the bound:

(l :bool tree[1]; r :bool tree[1]; v :bool), 1 ` node(l , r , v) :bool tree[1], 0

So replace x in e2’s context:

((l :bool tree[1]; r :bool tree[1]; v :bool), 1, y :bool tree[1]), 5 ` e2 :T , k

max{max{|l |d, |r |d}+ 1 + |y |d, 5}

But for heap part of the 5 units may be used up in the allocation.
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Stack space inference

I Would like to take advantage of linear programming again

I But new context manipulation rules are not syntax-directed

We add an extra stage to the inference process:

source program (plain types)
↓

additional terms for context manipulation
↓

bound (using linear programming)

Assume context structure given for function signatures to make
problem more tractable.
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Basic ideas for inference

I Work from the leaves of the expression outwards.

I At every stage, keep track of a generated context derived from
subexpressions and the typing rule.

Γ ` e1 7→ Γ1 Γ ` e2 7→ Γ2

Γ ` if x then e1 else e2 7→ Γ1; Γ2; x :bool

Need to add context manipulation at two points:

1. where binding occurs, to deal with contraction, etc;

2. to make the generated context match the function signature.
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Expanding contexts

We can simplify the problems by distributing over ‘;’ as far as
possible to get a maximum-of-sums context:

((((a, b); c), d); e), f ∼= (((a, b); c), d , f ); (e, f )
∼= (a, b, d , f ); (c , d , f ); (e, f )

max{max{a + b, c}+ d , e}+ f = max{a + b + d + f , c + d + f , e + f }

(Potentially exponential, but contexts are small. May be possible
to reduce amount of expansion.)
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Binding

We can pick out the plus-bunches of the expanded context
involving the bound variable and factor them out:

Γ1; . . . ; Γn; (x :T, Γn+1); . . . ; (x :T, Γm) ` e : T , n′

↓
Γ1; . . . ; Γn; (x :T, (Γn+1; . . . ; Γm)) ` distribute(n + 1, e) : T , n′

I Add contraction rules as necessary.

I The multivariable case is similar, but may require more
approximation.
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Generated contexts vs function signatures

I Expand both ends;

I pick out bunch(es) in the expanded signature containing all
the variables of each generated bunch;

I weaken away any extras;

duplicating the signature’s bunches as necessary.

Generated context (a; b), (c ; d)

(expanded) ∼= (a, c); (a, d); (b, c); (b, d)
(rearrange) ∼= (a, b, c , e); (a, b, d , e); (a, b, c , e); (a, b, d , e)

(max-contract)

∼=

(a, b, c , e); (a, b, c , e); (a, b, d , e); (a, b, d , e)
(expanded)

∼=

(a, b, c , e); (a, b, d , e)

function signature

∼=

a, b, ((c , e); (d , e))

Weakening bridges the gap between lines 2 and 3.
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Generated contexts vs function signatures

I Expand both ends;

I pick out bunch(es) in the expanded signature containing all
the variables of each generated bunch;

I weaken away any extras;

duplicating the signature’s bunches as necessary.

Nasty case:

Generated a, b

Signature a; b

Use rule corresponding to max{x , y} ≥ 1
2(x + y).

Sound, but sometimes imprecise.
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Fixed amounts of potential in contexts

Fixed amounts may appear anywhere in the context, but are not
explicitly introduced by binding.

I When expanding contexts to the maximum-of-plus form, we
can ensure that every plus-bunch has exactly one fixed amount

(x11 :T11, . . . , k1); . . . ; (xn1 :Tn1, . . . , kn)

I When partitioning the expanded context for a binding, add
context manipulation terms so that the resulting fixed
amounts can come from the binding or the subcontexts:

Γ1; . . . ; Γn; (x :T, Γn+1, kn+1); . . . ; (x :T, Γm, km)

↓
Γ1; . . . ; Γn;

(
x :T, k, ((Γn+1, k

′
n+1); . . . ; (Γm, k ′

m))
)

The typing rules require that k + k ′
i ≥ ki .
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Finishing inference

source program (plain types)
↓

additional terms for context manipulation – variables
↓

additional terms for context manipulation – fixed potential
↓

bound (using linear programming)

I Now collect constraints and solve LP as before.

I (Rough) SML implementation.
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The full analysis

I Have algebraic data types, not just trees.

I Can specify the calculation of potential: depth, total size,
mixture
Bounds w.r.t. total size useful when depth analysis fails.

I Resource polymorphism (different function signatures at
different points).
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Further work

I Nested types don’t behave that well. Have done some work
on separating contents and structure

I Inferring the structure of function signatures.

I Reduce complexity of inference.

I Try heap space version.
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