
Folding stack memory usage prediction into heap

Brian Campbell
Brian.Campbell@ed.ac.uk

http://homepages.inf.ed.ac.uk/s9746934/

Laboratory for Foundations of Computer Science
The University of Edinburgh1

April 2, 2005

1
This research was supported by the MRG project (IST-2001-33149) which is funded by the EC under the

FET proactive initiative on Global Computing.

1 / 13

mailto:Brian.Campbell@ed.ac.uk
http://homepages.inf.ed.ac.uk/s9746934/


Aim

Hofmann and Jost presented a type-based system for providing
linear bounds on the heap usage of programs in a first-order
call-by-value functional programming language. (POPL’03)

Establishing upper bounds on the memory use of programs is
useful for ensuring the reliability of programs, especially in
environments where resources are scarce.

I But need to bound the total memory use.

A simple transformation resembling a Continuation Passing Style
transformation can do this. More importantly, it shows up
problems that become more acute for stack space usage.

2 / 13



Roadmap

In this talk:

I A brief overview of Hofmann-Jost system.

I Discuss the transformation used to include stack space in the
heap space prediction.

I Use some examples to show problems encountered with stack
usage.

I Discuss further work to deal with these problems.

3 / 13



Background

Hofmann and Jost extended the basic type system with:

I positive rational type annotations, representing the amount of
free heap memory expected for each constructor in the value;

I side conditions to ensure that providing enough free memory
for the annotations is sufficient for execution; and

I the use of explicit ‘destruction’ hints in the code (which can
be checked or inferred separately).

Annotations are inferred using the side conditions as constraints to
produce a linear program.

Implemented as part of the Mobile Resource Guarantees project.
Analysis is on an intermediate language generated by the compiler.
Stages such as monomorphisation to make the analysis simpler.

4 / 13



Example of heap analysis

double and triple are functions which repeat elements in a list.

If l is [1;2;3],

double l = [1;1;2;2;3;3], requiring 3 heap cells;
triple l = [1;1;1;2;2;2;3;3;3], requiring 6 heap cells;

Both reuse some of the memory from the supplied list.

Hofmann-Jost can assign the types

double : 0, list[int,1] -> list[int,0], 0
triple : 0, list[int,2] -> list[int,0], 0

Only the allocated memory is counted—no allowance is made for
memory fragmentation. Here we simplify the situation by
allocating the same amount of memory for any constructor.

5 / 13



Example of heap analysis II

To type triple (double l) the result type of double needs to
be larger to match triple’s argument type:

double : 0, list[int,5] -> list[int,2], 0
triple : 0, list[int,2] -> list[int,0], 0

The 5 annotation breaks up as

1 for the new element,

2 for the annotation for the new element, and

2 for the annotation for the old element.

So the required type annotations may depend on how the values
will be used later on the program—the whole program should be
analysed at once.

6 / 13



Transformation

To predict the total memory usage for a program, we transform it
to make the stack frames explicit data structures.

type stack = !End | LeftDone of tree * stack
| RightDone of int * stack

type tree = !Leaf | Node of tree * int * tree
let countnodes t

s

= match t with
Leaf -> 0

| Node(l, ,r) -> (countnodes l)
+ (countnodes r)
+ 1

and unwind v s = match s with
End -> v

| LeftDone(r,s’)@ -> leftdone v r s’
| RightDone(c,s’)@ -> rightdone v c s’

7 / 13



Transformation

A new data type is introduced to hold the stack data. A constructor
holding the live local variables is added for each application.

type stack = !End | LeftDone of tree * stack
| RightDone of int * stack

type tree = !Leaf | Node of tree * int * tree
let countnodes t s = match t with

Leaf -> 0
| Node(l, ,r) -> (countnodes l (LeftDone(r,s)))

+ (countnodes r (RightDone(v,s)))
+ 1

and unwind v s = match s with
End -> v

| LeftDone(r,s’)@ -> leftdone v r s’
| RightDone(c,s’)@ -> rightdone v c s’

8 / 13



Transformation

The functions are split up so that all function applications are now
tail calls. A unwind function uses the stack information to call the
new functions.

type stack = !End | LeftDone of tree * stack
| RightDone of int * stack

type tree = !Leaf | Node of tree * int * tree
let countnodes t s = match t with

Leaf -> unwind 0 s
| Node(l, ,r) -> (countnodes l (LeftDone(r,s)))

and leftdone v r s = (countnodes r (RightDone(v,s)))
and rightdone v c s = unwind (v + 1 + c) s
and unwind v s = match s with

End -> v
| LeftDone(r,s’)@ -> leftdone v r s’
| RightDone(c,s’)@ -> rightdone v c s’

9 / 13



The transformation as part of compilation

The transformed code can be used

I to predict the total memory usage of the original program, or

I in place of the original program.

The latter corresponds to producing defunctionalised Continuation
Passing Style code as part of the compilation.

Original
source

Monomorphised,
let−normal form

Continuation Passing
Style

Target code

Heap−only analysis

Total analysis

Compilation

10 / 13



Examples and problems

The tree node counting example shown before has type

0, tree[int,1] -> int, 0

because one stack frame is required for each level in the tree, and
one per node is the lowest annotation that can be given.

This grossly overestimates the
requirements; here only the
depth of the tree is important,
not its overall size.

The type is also incapable of showing that the tree’s annotation
can be used again. With this analysis, the function would have to
return the tree to keep the annotation.

11 / 13



Examples and problems II

A functional implementation of heap sort yields the same type

1, list[int,0] -> list[int,0], 1

for both the heap usage and the total usage! Only a constant
overhead is needed because

I Memory for data structures is deallocated during recursion.

I Everything is allocated in fixed-size blocks.

For heap-allocated stack frames this corresponds to the actual
memory usage.

For a separate stack and heap, memory may not be interchangable.
More useful to consider them as separate resources.

With variable-sized allocation the type annotations increase. But
only logarithmic space is required.

12 / 13



Further work

Adapt Hofmann-Jost system to measure stack usage directly,
dealing with

I ‘giving back’ annotations
(type system designed and soundness proof obtained),

I annotations referring to the depth of a data structure, rather
than the size,

I logarithmic annotations so that balanced trees get good
bounds,

I (some) tail call optimisation,

and gaining closer correspondence between the analysis and the
original source code.

Many of the extensions would also increase the accuracy of
corresponding heap space situations.

13 / 13


