Folding stack memory usage prediction into heap

Brian Campbell*

The static prediction of programs’ memory usage has many potential ap-
plications in their development and use. In particular, in environments where
resources are scarce, such as mobile telephones, a definite upper bound can
guarantee that the application will not crash due to a lack of memory.

Hofmann and Jost have presented a system for determining linear bounds on
heap memory usage for suitable programs in a first order call-by-value functional
language. Here we consider obtaining a bound on the total memory usage by
transforming programs to put information on the heap that would normally be
stored on the stack. We also examine the difficulties remaining with this system,
and ways in which static prediction could be extended to deal with them.

1 Background

The system Hofmann and Jost presented [3] works on a small first order func-
tional programming language LF, using a type system in which the types for
data type constructors and functions are annotated by rational numbers which
provide an upper bound on the free memory required to execute the program.
For example, a function to return the supplied list of integers with each element
repeated might be given the type,

double : O, intlist[O|int,#,1] -> intlist[O|int,#,0], O;
a b c d e f

where a gives the number of free cells required by application of the function
and f the number released afterwards (both zero in this case), b and ¢ give
the number of free cells required per nil and cons constructor present in the
argument (one per cons), and d and e the number of free cells released afterwards
per nil and cons constructor in the result (none here, the memory was used
to construct the result). The annotations can be automatically inferred from
constraints in the type system.

The system normally only handles self-contained parts of the program (usu-
ally the entire program) because the derived types depend upon how the values
are subsequently used. For example, the type given above for the result of the
double function releases no free memory per element of the list (that is, per cons
constructor). This would not be suitable for using the result as an argument to
a function requiring free memory proportional to the length of the list, such as
another application of double. Instead, the inference would provide a higher

*Laboratory for Foundations of Computer Science, School of Informatics, The University
of Edinburgh, EH9 3JZ, Scotland. Brian.Campbell@ed.ac.uk. This research was supported
by the MRG project (IST-2001-33149) which is funded by the EC under the FET proactive
initiative on Global Computing.

value for the e annotation, and also for the ¢ annotation in order to balance the
books.

To allow memory to be reused pattern matches can be marked as destructive
(indicated by @_ in the example in section 2), which means that the memory the
constructor occupies can be freed for reuse once the match has taken place. It
is assumed that the placement of such marks will never cause a live value to be
deallocated (a condition referred to as benign sharing). This can be guaranteed
by using a separate analysis to check or generate them [2]. It is also assumed that
heap fragmentation will not be a problem (for example, by using a compacting
garbage collector, or using fixed size cells chosen to be large enough for any
constructor).

When inferring the types the annotations are first given as variables. The
typing rules provide constraints that these variables must meet so that the
computation will be able to satisfy its memory requirements from the amounts
given in the annotations. These constraints form a linear program and solutions
to that program provide suitable values for the type annotations.

Should the program have superlinear requirements, or be complex enough
that the conservative typing rules cannot capture the linear memory usage, then
the generated linear program will be infeasible.

To reduce the complexity of implementing the system a more complete lan-
guage, Camelot [4], is used for programming, and the analysis performed once
the compiler has reduced the language to an LF-like intermediate form. This
allows processes such as monomorphisation to take place before the heap use
analysis.

2 Transformation

We wish to include the stack space in the bounds inferred using the Hofmann-
Jost system. Using a transformation on the program’s source code we can make
the information stored on the stack into explicit data structures, and then split
up the functions so that all function applications become tail calls. The only
information not represented by a data structure are the local variables on the
top stack frame, whose maximum memory usage could easily be determined
by the compiler, or by direct examination of the code. Hence a bound on the
total memory usage of both the transformed and original code can be inferred
by using Hofmann-Jost on the transformed program. As with the heap-only
analysis, the transformation is applied to self-contained parts of the program.

The central idea of the transformation is the introduction of a new data
type to hold the stack data. Fach constructor will correspond to a function
application in the original source code; the choice of constructor is like the
return address in a real stack. An extra ‘end’ constructor is also added to mark
the top of the stack so that the end of the top-level function call can be detected.

An extra argument of this type is added to each function, and then for each
function application we:

1. add a new constructor to the ‘stack’ type to contain every (live) local
variable including unnamed temporaries and the remainder of the stack;

2. add a corresponding argument, made using the new constructor, to the
application;

3. separate out the remaining code in the current function into a new function
which takes the contents of the passed-in stack value and the application’s
result value as its arguments.

When separating out the code in stage 3, sections common to several function
calls can be gathered together. Similarly, tail call optimisation can be taken
into account by not applying the above steps when there is no remaining code
in the calling function.

Finally we introduce a ‘stack unwinding’ function for each type returned by
a function in the original program, which should be called whenever a value of
that type is returned without a further function call. This function examines
the top value on the stack and calls the appropriate function to continue the
computation. The unwind functions can always destructively match the top
value because the stack is never shared. Note that all the functions are now
mutually recursive.

The process is similar in nature to the transformation to Continuation Pass-
ing Style that some compilers use, for example SML/NJ [1]. The ‘stack’ values
(along with the unwind functions) take the place of the continuations’ closures
avoiding the use of higher order functions. This can be seen as performing the
analysis on a lower-level intermediate language than before.

The transformation has been tested by hand on several examples of Camelot
code. We consider two below.

Example 1 A simple function counts all the nodes in a binary tree:

type ’a tree = !Leaf | Node of ’a tree * ’a * ’a tree

let countnodes t = match t with
Leaf -> 0
| Node(l,_,r) —> (countnodes 1) + 1 + (countnodes r)

'Leaf indicates that the Leaf constructor can be represented without allocating
space (by, say, a null reference). The Hofmann-Jost system gives the type

countnodes: 0, tree_1[0|#,int,#,0] -> int, O;

indicating that no free heap memory is required, or known to be released.

The transformation splits up each of the recursive calls, retaining the re-
mainder of each encountered Node in the ‘stack’. We add an extra function
countnodes?2 to provide the same interface as before.

type ’a tree = !Leaf | Node of ’a tree * ’a * ’a tree
type ’a stack = !End | LeftDone of ’a tree * ’a stack
| RightDone of int * ’a stack

let countnodes t s = match t with
Leaf -> unwind_int O s
| Node(l,_,r) -> countnodes 1 (LeftDone(r,s))
and leftdone v r s = countnodes r (RightDone(v,s))
and rightdone v ¢ s = unwind_int (v + 1 + ¢) s
and unwind_int v s = match s with
End -> v

| LeftDone(r,s’)@_ -> leftdone v r s’
| RightDone(c,s’)@_ -> rightdone v c s’
let countnodes2 t = countnodes t End

Now the overall type is
countnodes2: 0, tree_1[0|#,int,#,1] -> int, O;
requiring one free cell space per node to hold the ‘stack’.

A much larger example that has been experimented with is an implemen-
tation of the heap sort algorithm. The untransformed program requires (and
releases) only a constant amount of extra space when using fixed-size memory
allocation, because the memory for the argument list can be reused for the tree
and then for the result. With variable-size memory allocation one extra cell is
required and released to account for the difference in size between list elements
and tree nodes. Perhaps surprisingly, in both cases the transformed version
requires only two more cells of memory overall. The Hofmann-Jost analysis of
the transformed program treats the stack in the same way as any other heap-
allocated structure, so the broken up data structures can be reused to provide
memory for the stack frames. Thus the stack space requirements are not re-
flected in the difference between the inferred bounds on the original and the
transformed programs.

3 Problems and further work

When a function requires additional heap space in an untransformed program,
that space is normally used for the result or is accounted for in the free space
annotation of the result type. In some transformed functions there is no op-
portunity to do either of these. For instance, the derived type for countnodes
requires an extra cell of memory per node to keep track of its position in the tree,
but only returns an integer. Hence the memory is not used in the result, but
the function’s type can only show that a constant amount of the free memory
is returned afterwards because the annotations cannot express anything more.

Thus later uses of the tree cannot reuse the free memory that was required
for countnodes. The system has lost track of it after the function call. A
similar problem is encountered with accumulating arguments where the memory
requirements are also duplicated unnecessarily, and the type system loses track
of half of the free space.

The overestimates for stack space can also be more severe in the transformed
program. The countnodes function only uses logarithmic stack memory when
the tree is balanced, but the linear analysis is incapable of determining this
and budgets a linear amount instead. Again, the types used in the system are
incapable of even expressing the desired effect, but this is potentially harder to
solve because it would be necessary to be able to handle conversions between
simple types, like lists, and ones with special structure, like balanced trees.

However, the main problem with this analysis is that it only reflects the
memory usage when the heap and stack memory are interchangeable, because
the results may rely on the memory for dead heap structures being reused for
stack space, as in heap sort above. Most systems with a separate stack and
heap cannot easily move memory between the two, so in general the inferred

requirements are only strict upper bounds on systems where stack data is stored
directly on the heap.

An alternative would be to compile the transformed code as this must have
the desired behaviour. However, some appealing architectures do not support
tail call optimisation which is necessary to keep the remaining ‘real’ stack space
(which is still used for local variables) constant. One such architecture is the
Java Virtual Machine, which is the target for the Camelot compiler.

Moreover, the analysis would be of greater use to the programmer if it were
more closely related to the source program, because it would allow more direct
interpretation of the derived types. For example, all functions in a transformed
program have the same return type, regardless of whatever result they actually
produce.

To alleviate these difficulties more recent work has been directed to devel-
oping a modified version of the type system which analyses stack space re-
quirements alone. The typing rules are changed to reserve space for function
applications rather than the use of data type constructors, but the system of
annotations to measure those requirements remains intact. The other problems
noted above are still present, and are being tackled through alterations to the
type system. In addition, the rules need to model tail call optimisation.

The correspondence between the problems in the original system using the
transformation and the adapted system for stack alone suggests that solutions
for the adapted system could also yield improvements in equivalent situations
when considering heap space alone.

4 Summary

The transformation provides a first glimpse of a type system based on Hofmann
and Jost’s heap space analysis for predicting the total memory usage of first-
order functional programs. Using separate, but related, analyses of the heap
and stack usage should give a more natural overall system and provide better
feedback to the programmer. However, some of the limitations of the current
system are more acute when studying stack use, and require further attention.

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, 1992.

[2] David Aspinall and Martin Hofmann. Another type system for in-place
update. In Programming Languages and Systems: 11th European Symposium
on Programming, volume 2305 of Lecture Notes in Computer Science, pages
36-52. Springer-Verlag, 2002.

[3] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order
functional programs. In Proc. 30th ACM Symp. on Principles of Program-
ming Languages, New Orleans, 2003.

[4] Kenneth MacKenzie and Nicholas Wolverson. Camelot and Grail: resource-
aware functional programming on the JVM. In Trends in Functional Pro-
graming, volume 4, pages 29—46. Intellect, 2004.

