
Chapter 17

Prediction of linear memory
usage for first-order
functional programs
Brian Campbell1
Category: Research Paper

Abstract: Hofmann and Jost have presented a type inference system for a pure
first-order functional language which uses linear programming to give linear up-
per bounds on heap memory usage with respect to the input size. We present an
extended analysis which infers bounds for heap and stack space requirements, and
which uses more expressive post-evaluation bounds to model a common pattern
of stack space use.

17.1 INTRODUCTION

Knowing strict upper bounds on the memory usage of a program can guarantee
that it will operate without exhausting the available resources. This is particu-
larly important in highly constrained environments, such as smart cards, espe-
cially where failures are difficult or expensive to recover from. Hofmann and Jost
have presented a type-based approach [6] which can automatically infer such up-
per bounds for the heap memory usage of a wide range of programs where that
usage is linear in the size of the input.

However, their analysis does not include stack memory, so some forms of ex-
cessive memory consumption may go unnoticed. In this paper we extend their
system to infer linear bounds on the stack, heap or total memory used by pro-
grams, and incorporate tail call optimisation in a flexible manner. Of particular

1Laboratory for Foundations of Computer Science, University of Edinburgh,
Brian.Campbell@ed.ac.uk. This research was partially supported by the MRG
project (IST-2001-33149).

XVII–1

XVII–2 CHAPTER 17. PREDICTION OF MEMORY USAGE

P := let B | let B P
B := D | D and B
D := f (x1, . . . ,xp) = e f

e := ∗ | true | false | x | f (x1, . . . ,xp) | let x = e1 in e2 | if x then et else e f

| (x1,x2) | match x with (x1,x2)→ e

| inl(x) | inr(x) | match x with inl(xl)→ el p inr(xr)→ er

| nil | cons(xh,xt) | match x with nil → en p cons(xh,xt)→ ec
| match′ x with nil → en p cons(xh,xt)→ ec

FIGURE 17.1. Syntax

interest is the temporary nature of stack memory usage, which would cause dif-
ficulties with a straightforward adaption of the heap analysis. We have overcome
this by allowing more precise estimates of free memory after an expression has
been executed by relating it to both the size of the result and the size of variables
in the context. This requires some care when part of the result appears in the
context.

Finally, we show the soundness of the new analysis with respect to the opera-
tional semantics of the language.

17.2 THE LANGUAGE

The language is a simple first-order call-by-value functional programming lan-
guage. For consistency, it is the one considered by Hofmann and Jost. The syntax
for programs is given in Figure 17.1, where f is a function name, ∗ is the value
of unit type, x and xi are variable names and the ei are subexpressions. Programs,
P, take the form of a number of function definitions, D, arranged in mutually
recursive groups, B.

Note the use of variables rather than subexpressions in many places; this corre-
sponds to requiring that the program is in a ‘let-normal’ form, similar to A-normal
form [5], to make the evaluation order explicit and allow the typing rules to be
simpler. However, partial compilation of programs of interest is required to put
them into that form before we can obtain bounds. Indeed, Jost’s implementation
of the heap space inference uses an intermediate language produced from a high
level language as part of the Mobile Resource Guarantees project [10].

To reason about heap space we require some mechanism to limit the lifetime
of heap allocated data, so we mark places in the code where deallocation could
safely occur. In this language only list elements are heap allocated and we dis-
tinguish between (potentially) destructive match expressions and benign, ‘read-
only’, match′ ones. There is more than one possible implementation of heap

17.2. THE LANGUAGE XVII–3

management using these marks, but we do not need to pick one. The only sub-
tlety is that it must prevent memory fragmentation from inflating memory usage.
See Hofmann and Jost’s paper [6] for more discussion on this point.

We presume the existence of some external analysis which ensures that match
is used safely so that no data is deallocated while live references to it exist, a
property called benign sharing. Aspinall and Hofmann’s usage aspects [1] or
Konečný’s DEEL typing [11] are suitable systems. They also provide a conser-
vative estimate of the set of variables that do not overlap on the heap with the
result of a given expression in the program. We will make use of this separation
property in Section 17.4.

The types are T := 1 | bool | T⊗T | T +T | L(T) for unit, boolean, pairs, sums
and lists, respectively. The analysis will annotate the types to indicate resource
requirements. The language can be extended with richer first-order types such as
integers and arbitrary algebraic datatypes without affecting the results. Function
signatures are of the form T1, . . . ,Tp → T .

A simple example of a program in this language is a function to negate a list
of booleans:

let notlist(l) =
match’ l with nil -> nil | cons(h,t) ->

let hh = if h then false else true in
let tt = notlist t in cons(hh,tt)

The function uses match’ so that the argument, l, is left intact. As a result, the
function needs extra heap memory equal to the space occupied by the argument.
Using the destructive match instead would allow it to run without requiring extra
heap space, but that would only be suitable if the input list is never used again.
Regardless of the variant used, the function requires stack space proportional to
the length of the argument.

17.2.1 Operational Semantics

Values v in the operational semantics consist of unit, booleans, pairs, variants
(inl(v) and inr(v) for value v) and heap locations l ∈ loc for lists. An environment
S maps variables to values, and a store σ maps locations to (value, location) pairs
for each list element. A special location null is presumed which can represent nil.
The operational semantics is given in Figures 17.2 and 17.3, with judgements of
the form

m,S,σ ` f ,t e v,σ ′,m′

meaning that with m units of free memory, the environment S and the store σ , the
expression e (from function f , in tail position if t is true) can be evaluated to value
v, with the new store σ ′ and m′ units of free memory. The evaluation of a whole
program is realized by the evaluation of a chosen ‘initial’ function f (x1, . . . ,xp)
on some arguments v1, . . . ,vp,

m, [x1 7→ v1, . . . ,xp 7→ vp],σ `initial,false e f v,σ ′,m′,

XVII–4 CHAPTER 17. PREDICTION OF MEMORY USAGE

where e f is the body of f .
The operational semantics uses two auxiliary functions to define the memory

requirements. The first, size(v), gives the amount of heap memory required to
store a value v. In the present setting only list elements are heap allocated, so v is
always the pair of a list element’s contents and the location of the next element.
Secondly, stack(f ,g, t) gives the size of stack frame required to call function f
from g, in tail position iff t is true. (We assume a fixed frame size for the evalua-
tion of each function, although the system could be adapted to change the frame
size when evaluating expressions involving binding.)

Definitions of these functions depend on the concrete implementation, and
precise values could be obtained from the compiler. In the examples here we will
take the simpler approach of assigning uniform sizes—essentially counting the
number of objects or stack frames rather than their exact sizes. Heap space can be
considered alone by fixing stack(f ,g, t) to be zero everywhere, and stack space
by fixing size(v) to be zero.

Some common choices for stack(f ,g, t) are to assign every function f a single
frame size, frame(f), and set

stack(f ,g, t) = frame(f) for all g, t,

to model a compiler with no tail call optimisation, and

stack(f ,g, t) =
{

frame(f) if t = false
frame(f)− frame(g) otherwise

for general tail call optimisation.
Thus tail-calls are modelled by a combination of the tail position flags and the

stack function. Thanks to the use of let-normal form, only the E-LET rule and
E-FUN rule have premises with different flags to their conclusion because only
the E-LET rule can introduce a subexpression that is not in tail position.

We will also require an unmetered form of the operational semantics, where
the resource amounts are dropped from all of the rules. Judgements then take the
form S,σ ` e v,σ ′.

We also need to formalise the guarantees that we expect a benign sharing
analysis to give. For E-MATCHCONS the ‘dead’ location should not be accessible
from the ‘live’ variables that the subexpression may use,

l /∈R(σ ,S[h 7→ vh][t 7→ vt] � FV(e2)),

and for E-LET the parts of the heap needed for e2 should not be altered by match
expressions in e1,

σ �R(σ ,S � FV(e2)) = σ0 �R(σ ,S � FV(e2)),

where R(σ ,S) is the set of locations in σ reachable from S.
The separation property can also be formalised. For any expression e in the

program, the benign sharing analysis should provide a set of variables Ve ⊆ FV(e)

17.3. OVERVIEW XVII–5

m,S,σ `g,t ∗ ∗,σ ,m
(E-UNIT) c ∈ {true, false}

m,S,σ `g,t c c,σ ,m
(E-BOOL)

m,S,σ `g,t x S(x),σ ,m
(E-VAR)

S(x1) = v1 . . . S(xp) = vp m, [y1 7→ v1, . . . ,yp 7→ vp],σ ` f ,true e f v,σ ′,m′

the yi are the symbolic arguments in the definition of f
m+ stack(f ,g, t),S,σ `g,t f (x1, . . . ,xp) v,σ ′,m′+ stack(f ,g, t)

(E-FUN)
m,S,σ `g,false e1 v0,σ0,m0 m0,S[x 7→ v0],σ0 `g,t e2 v,σ ′,m′

m,S,σ `g,t let x = e1 in e2 v,σ ′,m′ (E-LET)

S(x) = true m,S,σ `g,t et v,σ ′,m′

m,S,σ `g,t if x then et else e f v,σ ′,m′ (E-IFTRUE)

S(x) = false m,S,σ `g,t e f v,σ ′,m′

m,S,σ `g,t if x then et else e f v,σ ′,m′ (E-IFFALSE)

v = (S(x1),S(x2))
m,S,σ `g,t (x1,x2) v,σ ,m

(E-PAIR)

S(x) = (v1,v2) m,S[x1 7→ v1][x2 7→ v2],σ `g,t e v,σ ′,m′

m,S,σ `g,t match x with (x1,x2)→ e v,σ ′,m′ (E-PAIRELIM)

S(x) = v
m,S,σ `g,t inl(x) inl(v),σ ,m

(E-INL)

S(x) = v
m,S,σ `g,t inr(x) inr(v),σ ,m

(E-INR)

FIGURE 17.2. Operational semantics

that do not overlap with the result of e. More precisely, given an evaluation

S,σ ` e v,σ ′

in the program we have R(σ ,S � Ve)∩R(σ ′,v) = /0. These properties may be
derived from (for example) the correctness theorem of [11].

17.3 OVERVIEW

We now present an overview of the Hofmann-Jost heap space analysis and our
extensions to bound the stack space requirements.

The Hofmann-Jost system assigns hypothetical amounts of free memory to
data structures in proportion to their sizes. Conditions are imposed on the assign-
ments so that the total amount at any point in an evaluation would be sufficient
for all allocations and assignments of these amounts to newly constructed data. In
particular, the amount assigned to the initial arguments will be an upper bound of
the total heap memory requirements of the entire program.

XVII–6 CHAPTER 17. PREDICTION OF MEMORY USAGE

S(x) = inl(v0) m,S[xl 7→ v0],σ `g,t el v,σ ′,m′

m,S,σ `g,t match x with inl(xl)→ el p inr(xr)→ er v,σ ′,m′ (E-MATCHINL)

S(x) = inr(v0) m,S[xr 7→ v0],σ `g,t er v,σ ′,m′

m,S,σ `g,t match x with inl(xl)→ el p inr(xr)→ er v,σ ′,m′ (E-MATCHINR)

m,S,σ ` nil null,σ ,m
(E-NIL)

v = (S(h),S(t)) l /∈ dom(σ)
m+ size(v),S,σ `g,t cons(h, t) l,σ [l 7→ v],m

(E-CONS)

S(x) = null m,S,σ `g,t e1 v,σ ′,m′

m,S,σ `g,t match x with nil→ e1 p cons(h, t)→ e2 v,σ ′,m′ (E-MATCHNIL)

S(x) = l σ(l) = (vh,vt)
m+ size((vh,vt)),S[h 7→ vh][t 7→ vt],σ\l `g,t e2 v,σ ′,m′

m,S,σ `g,t match x with nil→ e1 p cons(h, t)→ e2 v,σ ′,m′

(E-MATCHCONS)
S(x) = null m,S,σ `g,t e1 v,σ ′,m′

m,S,σ `g,t match′ x with nil→ e1 p cons(h, t)→ e2 v,σ ′,m′ (E-MATCH′NIL)

S(x) = l σ(l) = (vh,vt)
m,S[h 7→ vh][t 7→ vt],σ `g,t e2 v,σ ′,m′

m,S,σ `g,t match′ x with nil→ e1 p cons(h, t)→ e2 v,σ ′,m′

(E-MATCH′CONS)

FIGURE 17.3. Operational semantics continued

This is an amortized analysis, using the physicist’s view of amortization de-
scribed by Tarjan [12]. Following Tarjan, we call these hypothetical amounts of
free memory potential. The Hofmann-Jost analysis assigns potential to data struc-
tures using type annotations, and side conditions on the typing rules ensure that
the assignments are sufficient for any allocations.

The Hofmann-Jost system annotates typings and function signatures with non-
negative rational values2 in two places. First, we add ‘before’ and ‘after’ amounts
to typing judgements and function signatures to represent constant amounts of po-
tential. The constraints on these will mirror the operational semantics, requiring
the ‘before’ annotation at an allocation to be at least as large as the amount to
be allocated, and the ‘after’ annotation to be correspondingly lower. Similarly, a
relative increase in the annotations is permitted when typing a deallocation.

Second, we place annotations on list types to denote ‘per-element’ amounts
of potential. So a list x of type L(T,k) represents a free memory requirement of
k×|x| units, and at a cons(h,x) expression we require that the ‘after’ annotation

2Fractional annotations can arise naturally in this system. For example, if we require a
cell for every second element of a boolean list l, then l will have the type L(bool, 1

2).

17.3. OVERVIEW XVII–7

must be k extra units lower to compensate for the longer list. Then wherever an
element is taken from a list with that type using match, the constraints in the
typing allow k more units in the constant memory annotation. More intuitively,
the cons reserves k units of free memory per element, and the match releases it
again for use.

In this way we can represent affine memory requirements. For example, the
notlist function might be given the function signature

notlist : L(bool,3),0→ L(bool,2),0,

which says that if it is invoked with a boolean list x and 3×|x|+0 cells of memory
are free, then all of the allocations in the function will succeed, and some boolean
list y will be returned along with 2×|y|+0 free cells for later use. Note that this
typing is not unique, we consider other values for the annotations below.

Allocating a constant length list can transform a ‘constant’ amount of potential
into a ‘per-element’ one. For example, in

·,9 ` cons(false,cons(false,cons(false,nil))) : L(bool,2),0

we consume 3 cells for allocation, then the remaining 6 = 3× 2 satisfy the ‘per-
element’ annotation of the list, 2.

To infer these annotations the typing rules give linear constraints that their
values must satisfy. We can use standard linear programming techniques to solve
these constraints to find a minimal set of satisfying annotations.

The straightforward part of adapting the Hofmann-Jost analysis to include
stack space in the bounds is to adjust the constraints to require extra potential
at each function call for the stack space required. To model tail call optimisation
we reproduce the tail position information from the operational semantics in the
typing rules. Note that it would be sound to use a more conservative stack(f ,g, t)
function in the type system than a particular implementation requires. This allows
the analysis to provide coarser upper bounds which covers multiple implementa-
tions of the language.

However, the temporary nature of stack memory usage is not handled well
by the straightforward adaptions above. A simple example involves the non-tail-
recursive list length function,

let length(l) =
match’ l with nil -> 0

| cons(h,t) -> let n = length(t) in 1+n

where one stack frame per element (i.e. |l| frames) is required. This stack memory
is free again after the function returns, but only a constant amount of potential can
be assigned to the result because there is no annotation on the result’s type that is
capable of representing |l| frames. Hence, should we attempt to use the function
twice on the same argument,

let twicelength(l) =
let n1 = length(l) in let n2 = length(l) in n1+n2

XVII–8 CHAPTER 17. PREDICTION OF MEMORY USAGE

then the analysis sums the requirements of the two length l calls. So the best
stack memory bound on twicelength is twice the actual usage. While this
example is contrived, reuse of variables (and the corresponding requirement for
stack space) occurs frequently, such as when consulting a lookup table repeatedly.

For a more subtle example consider the function

let andlists(l1, l2) =
match’ l1 with nil -> nil | cons(h1,t1) ->
match’ l2 with nil -> nil | cons(h2,t2) ->

let h = if h1 then h2 else false in
let t = andlists(t1, t2) in cons(h,t)

which computes the pairwise boolean ‘and’ of two lists. The size of either list
would be an appropriate upper bound on the stack space required, because the
actual amount used is the size of the shorter list. A straightforward adaption
of Hofmann-Jost as outlined above can infer this without difficulty. (In these
examples we estimate only the stack memory because the problem affects stack
space analysis more acutely, so let size≡ 0 and stack(f ,g, t) = 1 for all f ,g, t.)

Now consider using andlists twice, with the same first argument:

let andlists2(l1, l2, l3) =
let r1 = andlists(l1, l2) in
let r2 = andlists(l1, l3) in (r1, r2)

The actual stack bound is min{|l1|,max{|l2|, |l3|}}+1 frames. We do not han-
dle maxima in our analysis (this is considerably more involved, and the topic of
future work), but we would still expect to be able to infer a bound of |l1| frames.
However, a straightforward adaption would again simply sum the requirements
because the post-evaluation potential for the first call can only be expressed in
terms of the result, r1. Ideally, we ought to be able to reuse the potential initially
assigned to l1 at the second function call.

We achieve this reuse by adding a second ‘give-back’ annotation to list types
which indicates an amount to be passed to the ‘normal’ annotation of a future use
of the variable. The above functions will then have types whose constraints allow
the following solutions:

length : L(T,1 1),0→ int,0
twicelength : L(T,1 1),1→ int,1
andlists : L(bool,1 1),L(bool,0 0),0→ L(bool,0 0),0

andlists2 : L(bool,1 1),L(bool,0 0),L(bool,0 0),1
→ L(bool,0 0)⊗L(bool,0 0),1

These signatures mean that if any of these functions is given a list l as the first
argument, then 1× |l| stack frames are sufficient for evaluation, and that those
1× |l| stack frames will be free afterwards3. As the free memory afterwards is

3Plus one more for twicelength and andlists2, due to the extra function call.

17.4. THE TYPE SYSTEM XVII–9

expressed as an annotation on l, its reuse will be taken into account when typing
a subsequent occurrence of l.

To use these extra annotations, we provide an alternative to the Hofmann-Jost
rule for contraction which takes advantage of the ‘give-back’ annotation. We
choose to adapt the LET rule to ensure that the uses of the variables involved (∆)
occur sequentially. We also change the rules for match so that their constraints
not only ‘release’ the potential for each list element, but also ‘reserve’ the give-
back potential.

17.4 THE TYPE SYSTEM

To formalise the system, we need a precise notion of the meaning of the annota-
tions. The annotated types are

Ta := 1 | bool | Ta⊗Ta | (Ta,kl)+(Ta,kr) | L(Ta,k k′),

where kl , kr, k and k′ are constraint variables. Sum types are also annotated to
reflect different resource requirements depending upon the choice made, but are
not assigned a give-back annotation because the separation condition we use to
ensure soundness requires the values involved to be heap allocated. To link the
annotations to amounts of memory, we define a function which sums the annota-
tions over every reachable value:

ϒ : heap×val×Ta → Q+,

ϒ (σ ,∗,1) = ϒ (σ ,c,bool) = ϒ (σ ,null,L(T,k k′)) = 0,

ϒ (σ ,(v1,v2),T1⊗T2) = ϒ (σ ,v1,T1)+ϒ (σ ,v2,T2),
ϒ (σ , inl(v),(Tl ,kl)+(Tr,kr)) = kl +ϒ (σ ,v,Tl),
ϒ (σ , inr(v),(Tl ,kl)+(Tr,kr)) = kr +ϒ (σ ,v,Tr),

ϒ (σ , l,L(T,k k′)) = ϒ (σ ,σ(l),T ⊗L(T,k k′))+ k,

and extend it to environments:

ϒ (σ ,S,Γ) = ∑
x∈dom(Γ)

ϒ (σ ,S(x),Γ (x)).

For example, if x is a list of booleans, then ϒ (σ ,S(x),L(bool,k k′)) is k times
the length of x.

Similarly, we define a counterpart to measure the potential for the give-back

XVII–10 CHAPTER 17. PREDICTION OF MEMORY USAGE

Γ ,n `g,t
Σ
∗ : 1,n′ | {n≥ n′}

(UNIT) c ∈ {true, false}
Γ ,n `g,t

Σ
c : bool,n′ | {n≥ n′}

(BOOL)

x ∈ dom(Γ)

Γ ,n `g,t
Σ

x : Γ (x),n′ | {n≥ n′}
(VAR)

f /∈ F Σ(f) = (T1, . . . ,Tp,k → T,k′)
Φ = {n≥ k + stack(f ,g, t),n− k + k′ ≥ n′}

Γ ,x1 : T1, . . . ,xp : Tp,n `g,t
Σ

f (x1, . . . ,xp) : T,n′ | Φ
(FUN)

Γ1,∆1,n `g,false
Σ

e1 : T0,n0 | Φ1 Γ2,∆2,x : T0,n0 `g,t
Σ

e2 : T,n′ | Φ2
∆ = ∆1 � ∆2 | Φ3 Values for ∆ are separate from the result of e1

Γ1,Γ2,∆ ,n `g,t
Σ

let x = e1 in e2 : T,n′ | Φ1∪Φ2∪Φ3
(LET)

Γ ,n `g,t
Σ

et : T,n′ | Φ1 Γ ,n `g,t
Σ

e f : T,n′ | Φ2

Γ ,x : bool,n `g,t
Σ

if x then et else e f : T,n′ | Φ1∪Φ2
(IF)

Γ ,x1 : T1,x2 : T2,n `g,t
Σ

(x1,x2) : T1⊗T2,n′ | {n≥ n′}
(PAIR)

Γ ,x1 : T1,x2 : T2,n `g,t
Σ

e : T,n′ | Φ

Γ ,x : T1⊗T2,n `g,t
Σ

match x with (x1,x2)→ e : T,n′ | Φ
(PAIRELIM)

FIGURE 17.4. Typing rules for expressions

annotations:

ϒ
′ : heap×val×Ta× loc→ Q+

ϒ
′(σ ,∗,1, l) = ϒ

′(σ ,c,bool, l) = ϒ
′(σ ,null,L(T,k k′), l) = 0

ϒ
′(σ ,(v1,v2),T1⊗T2, l) = ϒ

′(σ ,v1,T1, l)+ϒ
′(σ ,v2,T2, l)

ϒ
′(σ , inl(v),(Tl ,kl)+(Tr,kr), l) = ϒ

′(σ ,v,Tl , l)
ϒ
′(σ , inr(v),(Tl ,kl)+(Tr,kr), l) = ϒ

′(σ ,v,Tr, l)

ϒ
′(σ , l′,L(T,k k′), l) = ϒ

′(σ ,σ(l′),T ⊗L(T,k k′), l)+
{

k′ if l′ = l
0 otherwise

The amount is measured per heap location l so that we can use the heap separation
condition in the LET case of the proof.

Throughout, we adopt the convention that for any type L(T,k k′) we add the
constraint k ≥ k′ to prevent unused variables in the context receiving unbounded
give-back annotations. This reduces the amount of clutter in the type system.

The typing rules for expressions in the basic system are given in Figures 17.4
and 17.5, and use the size and stack functions from the operational semantics,
except that size now operates on types rather than values. This assumes that all
values of the same type require the same storage. As before, heap or stack space
can be considered on its own by setting one of the functions to zero everywhere.

17.4. THE TYPE SYSTEM XVII–11

Γ ,x : Tl ,n `g,t
Σ

inl(x) : (Tl ,kl)+(Tr,kr),n′ | {n≥ kl +n′}
(INL)

Γ ,x : Tr,n `g,t
Σ

inr(x) : (Tl ,kl)+(Tr,kr),n′ | {n≥ kr +n′}
(INR)

Γ ,xl : Tl ,nl `g,t
Σ

el : T,n′ | Φl Γ ,xr : Tr,nr `g,t
Σ

er : T,n′ | Φr
Φ = Φl ∪Φr ∪{nl = n+ kl ,nr = n+ kr}

Γ ,x : (Tl ,kl)+(Tr,kr),n `g,t
Σ

match x with inl(xl)→ el p inr(xr)→ er : T,n′ | Φ

(SUMELIM)

Γ ,n `g,t
Σ

nil : L(T,k),n′ | {n≥ n′}
(NIL)

Γ ,h : T, t : L(T,k),n `g,t
Σ

cons(h, t) : L(T,k),n′ | {n≥ k +n′+ size(T ⊗L(T,k))}
(CONS)

Γ ,n `g,t
Σ

en : T ′,n′ | Φn Γ ,h : T, t : L(T,k k′),nc `g,t
Σ

ec : T ′,n′c | Φc
Φ = Φn∪Φc∪{nc = n+ k + size(T ⊗L(T,k)),n′c = n′+ k′}

Γ ,x : L(T,k k′),n `g,t
Σ

match x with nil→ en p cons(h, t)→ ec : T ′,n′ | Φ

(LISTELIM)
Γ ,n `g,t

Σ
en : T ′,n′ | Φn Γ ,h : T, t : L(T,k k′),nc `g,t

Σ
ec : T ′,n′c | Φc

Φ = Φn∪Φc∪{nc = n+ k,n′c = n′+ k′}
Γ ,x : L(T,k k′),n `g,t

Σ
match′ x with nil→ en p cons(h, t)→ ec : T ′,n′ | Φ

(LISTELIM′)
Γ ,a : T1,b : T2,n `g,t

Σ
e : T ′,n′ | Φ T = T1⊕T2 | Φ ′

Γ ,x : T,n `g,t
Σ

e[x/a,x/b] : T ′,n′ | Φ ∪Φ ′ (SHARE)

FIGURE 17.5. Typing rules for expressions (continued)

Typing judgements for expressions take the form

Γ ,n `g,t
Σ

e : T,n′ | Φ

where Γ is the typing context, n is an amount of potential before evaluation (in
addition to that from the type annotations), n′ is the corresponding amount after
evaluation, T is the annotated type of e, Σ contains the function signatures, g is
the function in which the expression appears, t is the tail position flag and Φ is
the set of constraints on annotations that must hold for a valid typing.

The function signatures now take the form T1, . . . ,Tp,k → T,k′ where Ti and
T are the annotated types for the arguments and the result and k and k′ are extra
amounts of potential required and released (analogous to n and n′ above).

The typing rules for function definitions are given in Figure 17.6. They check
that mutually recursive blocks of functions and entire programs are well typed,
with functions conforming to their function signatures in Σ . A program P is well-
typed if we can derive `Σ P⇒Φ for some Φ .

There are two rules for contraction. The SHARE rule is equivalent to its coun-

XVII–12 CHAPTER 17. PREDICTION OF MEMORY USAGE

Σ(f) = (T1, . . . ,Tp,k → T,k′) x1 : T1, . . . ,xp : Tp,k ` f ,true
Σ

e f : T,k′ | Φ

`Σ f (x1, . . . ,xp) = e f ⇒Φ

`Σ D⇒Φ `Σ B⇒Φ ′

`Σ D and B⇒Φ ∪Φ ′
`Σ B⇒Φ

`Σ let B⇒Φ

`Σ B⇒Φ `Σ P⇒Φ ′

`Σ let B P⇒Φ ∪Φ ′

FIGURE 17.6. Typing rules for function definitions

1 = 1⊕1 | /0 bool = bool⊕bool | /0

T = T1⊕T2 | Φ T ′ = T ′
1 ⊕T ′

2 | Φ ′

T ⊗T ′ = (T1⊗T ′
1)⊕ (T2⊗T ′

2) | Φ ∪Φ ′

T = T1⊕T2 | Φ T ′ = T ′
1 ⊕T ′

2 | Φ ′

Φ0 = Φ ∪Φ ′∪{k = k1 + k2,k′ = k′1 + k′2}
(T,k)+(T ′,k′) = (T1,k1)+(T ′

1 ,k
′
1)⊕ (T2,k2)+(T ′

2 ,k
′
2) | Φ0

T = T1⊕T2 | Φ

L(T,k) = L(T1,k1)⊕L(T2,k2) | Φ ∪{k = k1 + k2}

FIGURE 17.7. Rules for splitting annotations

terpart in Hofmann-Jost. It splits the potential between two uses of the variable.
Informally, we require this splitting because the total bound on the free memory
required with respect to some variable x is the sum of the bounds with respect to
each individual use of x. The auxiliary rules in Figure 17.7 formalise this splitting,
which ensures that the types’ annotations sum pairwise to the combined type. For
example, the judgement

L(bool,k) = L(bool,k1)⊕L(bool,k2) | {k = k1 + k2}

allows L(bool,3) = L(bool,2)⊕L(bool,1), splitting three units per element be-
tween two uses of the list. The rule can also be used to reduce an annotation so
that two types match.

The second (new) form of contraction is part of the LET rule. This allows the
potential given-back in e1 to be used in e2. The 4-place relation ·= · � · | · given
in Figure 17.8 formalises the use of the give-back annotations. For example, the
judgement

x : L(bool,k k′) = x : L(bool,k1 k′1)� x : L(bool,k2 k′2)
| {k ≥ k1,k− k1 + k′1 ≥ k2,k′2 ≥ k′}

means that at the first use of x, k′1 out of the k1 annotation is only needed tem-
porarily, so it can be reused at the second occurrence of x (as part of k2).

The separation condition for ∆ and the result of e1 in LET is required to ensure
that no give-back potential is assigned to both e1’s result and ∆1. For example, the

17.4. THE TYPE SYSTEM XVII–13

1 = 1� 1 | /0 bool = bool� bool | /0

T = T1 � T2 | Φ T ′ = T ′
1 � T ′

2 | Φ ′

T ⊗T ′ = (T1⊗T ′
1)� (T2⊗T ′

2) | Φ ∪Φ ′

T = T1 � T2 | Φ T ′ = T ′
1 � T ′

2 | Φ ′ Φ ′′ = {k = k1 + k2,k′ = k′1 + k′2}
(T,k)+(T ′,k′) = (T1,k1)+(T ′

1 ,k
′
1)� (T2,k2)+(T ′

2 ,k
′
2) | Φ ∪Φ ′∪Φ ′′

T = T1 � T2 | Φ Φ ′ = {k ≥ k1,k− k1 + k′1 ≥ k2,k′2 ≥ k′}
L(T,k k′) = L(T1,k k′1)� L(T2,k2 k′) | Φ ∪Φ ′

∀x ∈ dom(∆). ∆(x) = ∆1(x)� ∆2(x) | Φx

∆ = ∆1 � ∆2 | ∪x∈dom(∆) Φx

FIGURE 17.8. Rules for contraction in let expressions

identity function let identity l = l can be given the function signature

identity : L(bool,1 1),0→ L(bool,1 1),0.

If we did not require separation we could use the potential assigned to l twice
in an expression let x = identity l in ... x ... l ..., once
for x and once for l (via the ‘give-back’ annotation), and the space bound would
be too low.

We presumed in Section 17.2 the availability of ‘benign sharing’ analyses that
can give a conservative estimate of the set of variables satisfying the separation
condition. For instance, Konečný’s DEEL typing [11] can be used. Thus we can
use this set during type inference to decide which variables from the context to
put into ∆ . Then we construct ∆1 and ∆2 from ∆ using fresh constraint variables
and derive the set of constraints Φ3 from the rules for �.

We also need to adapt other rules so that the give-back annotations reflect
free memory at runtime which is not accounted for by other annotations. The
LISTELIM′ rule adds the ‘normal’ list annotation to the constant annotation when
typing the cons subexpression because we are extracting an element from x. Our
replacement rule also requires the amount for the ‘give-back’ annotation to be
returned afterwards for a later use of x: We also adapt LISTELIM in the same
way.

17.4.1 Soundness

The soundness of this analysis with respect to the operational semantics can now
be given. The intuition is that any well typed expression can be executed with
the amount of free memory predicted by the annotations (n+ϒ (σ ,S,Γ)), and the
annotations also conservatively predict the free memory afterwards. Moreover,
execution will not consume any extra free memory (q) that may be available.

XVII–14 CHAPTER 17. PREDICTION OF MEMORY USAGE

Note that ϒ (σ ,S,Γ) is defined when the variables in Γ have corresponding
values in S and σ that are of the correct type. The max{0, . . .} is present in
the ‘after’ bound to prevent newly allocated data structures interfering with the
potential calculation.

Theorem 17.1. If an expression e in a well-typed program has a typing

Γ ,n `g,t
Σ

e : T,n′ | Φ

with an assignment of nonnegative rationals to constraint variables which satisfies
the constraints generated for the whole program, and an evaluation

S,σ ` e v,σ ′,

which satisfies the benign sharing conditions, and ϒ (σ ,S,Γ) is defined, then for
any q ∈ Q+ and m ∈ IN such that m≥ n+ϒ (σ ,S,Γ)+q we have

m,S,σ `g,t e v,σ ′,m′

where m′ ≥ n′+∑l∈loc max{0,ϒ ′(σ ,S,Γ , l)−ϒ ′(σ ′,v,T, l)}+ϒ (σ ′,v,T)+q.

Proof. (Sketch.) We proceed by simultaneous induction on the evaluation and
typing derivations. The evaluation terminates, so the derivation of the evaluation
must be finite. The SHARE rule is the only one which has no counterpart in the
operational semantics, so we consider it separately.

SHARE. We have Γ = Γ0,x : T and S = S0[x 7→ vx] for some Γ0 and S0 where
vx = S(x), so

m≥ n+ϒ (σ ,S,Γ)+q = n+ϒ (σ ,S0[a 7→ vx,b 7→ vx],(Γ0,a : T1,b : T2))+q

by the linearity of ϒ with respect to ⊕. Thus by substitution of a and b for x in
the appropriate parts of the execution derivation, we can apply the induction
hypothesis and obtain the result by the linearity of ϒ ′.

LET. Using the definition of ϒ ,ϒ ′ and � it can be shown that

ϒ (σ ,S,∆)≥ϒ (σ ,S,∆1)),

ϒ (σ ,S,∆)−ϒ (σ ,S,∆1)+ ∑
l∈loc

ϒ
′(σ ,S,∆1, l)≥ϒ (σ ,S,∆2) and

ϒ
′(σ ,S,∆2, l)≥ϒ

′(σ ,S,∆ , l).

The first is used to apply the induction hypothesis to e1. The remainder
ϒ (σ ,S,∆)−ϒ (σ ,S,∆1) is kept aside for e2 by incorporating it into the con-
stant q.
To form the precondition for applying the induction hypothesis to e2 we note
that ϒ ′(σ0,v0,T0, l) = 0 for all l ∈ R(σ ,S � dom(∆1)) can be deduced from
the separation condition R(σ ,S � dom(∆))∩R(σ0,v0) = /0. So

∑
l∈loc

max{0,ϒ ′(σ ,S,∆1, l)−ϒ
′(σ0,v0,T0, l)}= ∑

l∈loc

ϒ
′(σ ,S,∆1, l),

17.5. RELATED AND FURTHER WORK XVII–15

after which the second property using the amount left aside is sufficient. Then
using the third property the result of the induction hypothesis for e2 can be
transformed to show the result for the let.

The other cases take two forms. Those with a subexpression (IF, PAIRELIM,
SUMELIM, LISTELIM, LISTELIM′) adjust the context as necessary, extracting
part of the amount from an annotation if matching something, then invoke the
induction hypothesis. The others (UNIT, BOOL, VAR, PAIR, INL, INR, NIL,
CONS) use ϒ (σ ,v,A) ≥ ∑l∈locϒ ′(σ ,v,T, l) to deal with unused parts of the con-
text and then follow from simple arithmetic manipulations. Function application
(FUN) mixes the two forms. ut

We can extend the result to the whole program:

Corollary 17.2. Suppose a well typed program has an initial function f , and ar-
guments for f are given as values v1, . . . ,vp with an initial store σ . If

Σ(f) = T1, . . . ,Tp,k → T ′,k′

then any execution of f (v1, . . . ,vp) will require at most

ϒ (σ , [x1 7→ v1, . . . ,xp 7→ vp],(x1 : T1, . . . ,xp : Tp))+ stack(f)+ k

units of memory, for any assignment of nonnegative rationals to constraint vari-
ables which satisfies the generated constraints.

The soundness result can be extended to non-terminating programs, by adjust-
ing the operational semantics to allow the execution to be terminated at any point.
The proof then shows that any such partial execution also respects the inferred
memory bound. Moreover, if the tail call optimisation extension is not used, then
obtaining a stack space bound also gives us a bound on the call depth, guarantee-
ing termination. The ‘resource polymorphism’ extension suggested by Hofmann
and Jost which allows functions to have different signatures at different points in
the program can also be applied. A full proof of the soundness theorem for the
analysis with these extensions and a slightly larger language can be found in [2].

An implementation of the give-back system with tail-recursion analysis has
been produced4, based upon Jost’s lfd infer [10]. This system has only a
small linear increase in the number of constraints and variables in the linear pro-
grams used, and so should enjoy similar efficiency to Jost’s system.

17.5 RELATED AND FURTHER WORK

There are other examples of the use of type systems to provide guarantees on
memory usage. Pareto and Hughes [8] gave a system based on sized-types which
can be used to check heap and stack memory bounds expressed in Presburger
arithmetic, using explicit regions to handle deallocation. Crary and Weirich [4]

4Available from http://homepages.inf.ed.ac.uk/bcampbe2/tfp08/.

XVII–16 CHAPTER 17. PREDICTION OF MEMORY USAGE

present a flexible type system to certify execution time. Both of these system
check bounds, but do not infer them, although Chin and Khoo’s work have used
transitive closure and widening operations to infer sizes in the form of Presburger
formulae on the input’s size [3].

Jost has extended the basic analysis in [6] to include higher-order functions
along with a some other improvements [9], and one potential avenue of further
work is to merge that with the enhancements presented in this paper. Hofmann and
Jost have also presented a type system (without inference) for checking resource
bounds of object-orientated programs [7].

Another area of interest is to introduce annotations which give resource bounds
in terms of the depth of data structures, rather than their total size. Ongoing work
in this area involves representing several alternate annotations in contexts, for ex-
ample, one for each branch of a tree. This should be especially useful for inferring
stack bounds of programs using tree structured data. It may also express bounds
that are the maximum of two other bounds, which would be useful for examples
like andlists2 in Section 17.3.

17.6 CONCLUSION

We have shown how to add stack bounds to Hofmann and Jost’s analysis, and
a mechanism for obtaining better overall bounds by using more expressive post-
evaluation calculation of potential. This is particularly important for obtaining
good stack space bounds because of its temporary nature.

REFERENCES

[1] D. Aspinall, M. Hofmann, and M. Konečný. A type system with usage aspects.
Journal of Functional Programming, 18(2):141–178, 2008.

[2] B. Campbell. Type-based amortized stack memory prediction. PhD thesis, University
of Edinburgh, 2008.

[3] W.-N. Chin and S.-C. Khoo. Calculating sized types. Higher Order and Symbolic
Computation, 14(2-3):261–300, 2001.

[4] K. Crary and S. Weirich. Resource bound certification. In Proceedings of the
27th ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages
(POPL), pages 184–198, New York, NY, USA, 2000. ACM Press.

[5] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with
continuations. In Proceedings of the ACM SIGPLAN 1993 Conference on Program-
ming Language Design and Implementation (PLDI), pages 237–247. ACM Press,
1993.

[6] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order func-
tional programs. In Proceedings of the 30th ACM Symposium on Principles of Pro-
gramming Languages (POPL), New Orleans, 2003. ACM Press.

[7] M. Hofmann and S. Jost. Type-based amortised heap-space analysis (for an object-
oriented language). In P. Sestoft, editor, Proceedings of the 15th European Sympo-

17.6. CONCLUSION XVII–17

sium on Programming (ESOP), Programming Languages and Systems, volume 3924
of LNCS, pages 22–37. Springer-Verlag, 2006.

[8] J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded space:
towards embedded ML programming. In Proceedings of the 4th ACM SIGPLAN
International Conference on Functional Programming, pages 70–81. ACM Press,
1999.

[9] S. Jost. ARTHUR: A resource-aware typesystem for heap-space usage reasoning.
http://www.tcs.informatik.uni-muenchen.de/ jost/publication.html, 2004.

[10] S. Jost. lfd infer: an implementation of a static inference on heap space usage. In
Proceedings of Second Workshop on Semantics, Program Analysis and Computing
Environments for Memory Management (SPACE), 2004.

[11] M. Konečný. Functional in-place update with layered datatype sharing. In Typed
Lambda Calculi and Applications (TLCA): 6th International Conference, volume
2701 of Lecture Notes in Computer Science, pages 195–210. Springer-Verlag, 2003.

[12] R. E. Tarjan. Amortized computational complexity. SIAM Journal on Algebraic and
Discrete Methods, 6(2):306–318, 1985.

