
Good Memories: Enhancing Memory Performance for Precise Flow Tracking 
 
 

Boris Grot, William Mangione-Smith 
University of California, Los Angeles 
Department of Electrical Engineering 

{bgrot, billms}@ucla.edu 
 

 
Abstract 

 
Flow tracking is an integral aspect of many 

network-related applications, including intrusion 
detection, network administration, per-flow billing, 
and network engineering.  While some applications do 
not require precise tracking of every packet or flow 
and successfully employ statistical sampling or 
approximations to achieve an acceptable level of 
accuracy, many others, especially in the security 
domain, do not have such flexibility.  Faced with 
rapidly growing number of networked devices, 
increasing Internet usage, and rising network 
bandwidth, precise flow tracking has become a very 
difficult problem with system memory as the main 
bottleneck.   

In this paper, we look at memory performance when 
tracking a large number of flows, show that finding an 
existing flow in memory often requires multiple key 
comparisons, and examine ways to reduce the number 
of comparisons for existing flows and avoid them 
altogether for the majority of new flows.  Additionally, 
we propose a novel scheme called Predictive 
Placement that reduces the number of searches 
requiring three or more comparisons from 4.87% with 
a linked list implementation to just 0.0027% of all 
lookups.  These results are based on our simulations 
with widely used long packet traces from CAIDA.  Our 
approach relies on a Bloom filter derivative that 
encodes each element’s location using multiple 
bitmaps.  The accuracy of the scheme depends on the 
number of bitmaps employed and on their load factor. 
 
1. Introduction 
 

Traffic measurement and monitoring is necessary 
for managing today’s high-speed links.  Tracking 
flows is one crucial aspect of such management, and 
has applications in network security, administration, 
engineering, and accounting (in the form of usage-

based billing) [1].  A number of recent works have 
investigated approximate and statistical approaches to 
flow tracking at high link speeds, focusing on counting 
the number of flows [2], measuring flow volumes 
[6][8], identifying the “elephants” [1] and 
“superspreaders” [17], and classifying flows [7].  
Unfortunately, while many network-related tasks can 
tolerate small errors and approximations, others can 
not.   

Network intrusion detection is one such application 
which requires precise flow tracking, as certain attacks 
(i.e., stealthy port scans, TCP connection hijacking, 
evasion by fragmentation), can only be detected by 
keeping exact and complete per-flow state [3].  In fact, 
most, if not all, of today’s Network Intrusion Detection 
Systems (NIDS) keep per-connection state [4]. 

The current crop of NIDS aims to protect enterprise 
and campus-wide networks from attacks.  For instance, 
product literature for NetScreen-IDP 1000 [18], a top-
of-the-line intrusion detection and prevention system 
from Juniper Networks, specifies maximum 
throughput of 1 GB/s and a maximum number of 
supported sessions of 500,000 with 4 GB of memory1.  
However, our tests using traces of real traffic showed 
periods of over 700,000 flows simultaneously live with 
data rates well below 1Gb/s, indicating that NetScreen 
might be overwhelmed by the number of connections, 
and an attack might go unnoticed.  Another study [15] 
reported a day-time average (not peak) of over 450,000 
flows on a very modest 155 Mb/s (OC-3) link.  Thus, 
keeping track of a sufficient number of flows is a 
challenge even at moderate data rates. 

This challenge will likely be exacerbated going 
forward, as NIDS are pushed deeper into the network, 
where they are exposed to more flows (allowing them 
to better identify, and react to, attacks) and higher link 
speeds [3].  In order for these systems to maintain real-
                                                           
1

It is not known whether the limitation in the number of 
simultaneous sessions is due to system scalability issues or memory 
capacity 



time performance, flow identification and matching to 
tracked flows will have to scale with the growing 
demands.  In fact, McKeown, et al, identify this 
classification as “the most expensive and complex 
step” of a flow monitoring system, requiring “a one-to-
one mapping between a fixed set of packet fields (the 
5-tuple made of protocol number and source and 
destination addresses and port numbers) and the 
memory portion that contains the flow record” [16]. 

The contribution of this work is in investigating 
ways to reduce the number of comparisons that a 
packet entering the system must undergo before being 
mapped to a correct flow.  After an overview of our 
experimental setup, we examine the conventional 
approach to tracking flows, consider the performance 
impact of inserting new flows at the head of their 
respective hash bucket versus appending them at the 
tail, evaluate the use of a Bloom filter for avoiding 
memory accesses for new flows, and present a novel 
scheme for matching packets to existing flows so as to 
significantly reduce the number of key comparisons 
that must be made. 
 
2. Methodology 
 

We conducted our study using three anonymized 
traces from an OC-48 link [19].  Each trace file is 
around 9 GB and represents a 60-minute snapshot of 
the network.  Two of the traces were collected in 
August of 2002, while the third one was collected in 
January 2003.  Table 1 lists some of the details for 
each trace.   

Since the goal of the study is to enable applications 
that rely on precise flow tracking to meet the demands 
of high-bandwidth networks, we chose to support a 
reasonably large number of flows.  Assuming 512 MB 
of system memory and a 64-byte flow descriptor (large 
enough to store the 5-tuple key, time stamp, and some 
application-specific data), we arrived at 8 million 
flows.  This leaves plenty of room for scaling by 
adding more memory, as the effective bandwidth in 
our traces never exceeds 500 Mb/s. 

One of the first steps in looking up a flow is 
producing a hash of its key (see Section 3); hence, an 
efficient hashing function is crucial.  Such a function 
must be easy to implement in hardware, be sufficiently 
fast in operation, and approach a uniform random 
mapping.  The ability to change the function over the 
lifetime of the hardware would also be very desirable, 
as it would make the system less vulnerable to exploits 
targeting specific memory locations or access patterns. 

The function we chose has all of the above 
properties and is defined [10] as 

 
Hq(x) = (x1 * q1) ^ (x2 * q2) ^ … ^ (xi * qi), 
 

where ‘*’ denotes bit-wise AND while ‘^’ denotes 
bit-wise XOR operations.  Here, xi is the ith bit of the 
key, and qi is a bit string stored in register i.  Thus, to 
obtain a 32-bit hash value from a 64-bit key, we would 
need 64 registers, each 32 bits wide.  It is worth 
pointing out that the hash function itself is not fixed in 
hardware, as changing it requires simply initializing 
the register array to a different value. 

Flow aging is another issue that has drastic 
implications on system performance.  A flow that has 
not seen any packets after a certain time should be 
evicted from memory to make space for new flows and 
reduce the length of the search for incoming packets.  
A long timeout value may unnecessarily fill the 
memory with a large number of dead flows.  A short 
timeout, on the other hand, may result in premature 
evictions of long-lived flows, leading to inaccuracies 
in the collected data or, in intrusion detection 
applications, to undetected attacks.  Several studies 
[15][16] have noted that a timeout value of around 60 
seconds offers a good balance between accuracy and 
memory requirements, leading us to adopt it for our 
experiments.  In practice, the exact timeout value 
should be determined based on each application’s 
needs and the underlying network’s characteristics.   

Note that if a newly arrived packet maps to an 
expired flow that has not yet been evicted, the flow 
will get “revived” as its last-accessed time stamp will 
get updated.  On the other hand, if the flow has been 
deleted, a new flow will get allocated for the packet.  
In this case, the flow will effectively be counted twice.  
This effect is reflected in Table 1, which lists the 
number of flow allocation events over the duration of 
each trace, rather than a count of unique flows in the 
file.   

In our current simulation environment, the memory 
scrub task is modeled as a method call that takes zero 
simulation time; however, in a real system such a 
process could be implemented as a low-priority 
background task, gradually walking over the memory 
space when the memory and the bus are otherwise idle. 

An important concern that must be addressed is 
whether the memory subsystem will have sufficient 
bandwidth to handle the expected traffic.  For instance, 
the latest DDR2 DRAM chips are able to support 533 
MT/s (millions of transfers per second) at 64 bits per 
transfer.  Intel’s 915G chipset paired with this type of 
memory achieves single-channel peak bandwidth of 
4.25 GB/s [22].  Assuming a 1 Gb/s link carrying a 
constant stream of 64 byte packets (worst case scenario 
which maximizes the memory workload) and 64 byte 



flow descriptors, the memory configuration described 
above has enough bandwidth to handle over 30 64-
byte accesses per packet.  The number drops to just 3.4 
accesses on a 10 Gb/s link; however, memory 
throughput can be scaled by adding additional 
channels. Thus, a quad-channel configuration could 
support 17 GB/s peak transfer rate, enough for over 13 
64-byte transactions for every minimum-sized packet 
received.   

A recent study of memory controller performance in 
server environment [23] found that an out-of-order 
controller subjected to a representative server 
workload was able to achieve sustained throughput of 
over 5 GB/s with a DDR2 memory subsystem rated at 
6.4 GB/s peak bandwidth, which is only 22% lower 
than the theoretical peak rate.  This leads us to 
conclude that a memory subsystem with sufficient 
bandwidth for flow tracking at high data rates is, 
indeed, practical.  
  
3. Evaluation 
 

The common approach to tracking flows is to 
compute a hash of several fields from the packet 
header and use the resulting value to index a memory 
holding the full key and the desired data.  Since 
multiple flows are likely to produce the same hash 
value, a linked list of descriptors is kept in memory.  
Such an approach is used by the FreeBSD TCP/IP 
stack, which maintains a hash table with each element 
(hash node) pointing to a linked list [20].  The hash 
key is usually taken to be a 5-tuple composed of the 
source and destination IP addresses, source and 
destination port numbers, and the protocol field. 

As discussed in Section 2, we simulated a memory 
with a maximum capacity of 8 million flows.  Since 
one of the best ways to reduce the number of hash 
collisions is to increase the size of the hash space, we 
logically partitioned the memory into 512 K hash 
buckets with a maximum list length of 16 elements 
Although the maximum list length does not have to be 
limited, potentially leading to some very long lists, this 
is highly undesirable as the worst-case search length 

becomes intolerable.  The latter is simply disastrous in 
a latency-sensitive environment such as a core- or 
edge-based network element.  On the other hand, 
fixing the list length to a very small value will likely 
lead to collisions and dropped flows, as new flows will 
compete with existing flows for list space..  

Thus, in case a new flow must be added to a list 
which has reached its maximum length, our approach 
is to first try to locate an expired entry in the list and 
remove it; if no element in the list has timed out, the 
element closest to timing out is evicted instead. 
 
3.1 List Insertion Position 
 

The first set of experiments we conducted compared 
insertion of a new flow at the head of the linked list 
versus at the tail (traversals always start at the head).  
The choice is not obvious.  On one hand, it is well 
known that the majority of the flows are short-lived 
and carry only a small fraction of the total traffic on a 
link.  For instance, one study found that nearly 80% of 
all flows are active less than one second, after which 
they go completely silent [14].  This characteristic 
would suggest that inserting new flows at the tail 
would be a good strategy, as they are likely to be short-
lived and should not increase the access latency for 
long-lived flows.  On the other hand, network traffic 
exhibits fairly good temporal locality; specifically, 
packet trains, defined as two or more back-to-back 
packets belonging to the same flow, have been 
observed for a number of server workloads [20], 
suggesting that inserting at the head of the linked list 
would better exploit this temporal locality. 

Figure 1 plots the number of key comparisons for 
the three traces using head and tail insertion.  Since 
each comparison requires reading the flow descriptor 
from memory, the number of comparisons is 
effectively the number of independent memory 
accesses.  The trend is clear:  insertion at the head 
produces fewer comparisons over the duration of the 
traces than insertion at the tail.  The savings produced 
by inserting at the head of the list are 14.89%, 12.83%, 
and 9.89% for Traces 1, 2 and 3, respectively, with an 

Table 1: Trace characteristics 

Trace Name Number of 
packets 

Number of 
flows 

Avg 
number  
of live 
flows 

Max 
number of 
live flows 

1 20020814-090000-0-anon.pcap 272,551,909 16,194,780 427,528 559,971 
2 20030115-100000-1-anon.pcap 236,556,354 14,613,711 405,478 714,166 
3 20020814-110000-0-anon.pcap 314,235,548 15,502,808 409,062 550,950 

 



average of 12.42% fewer comparisons.  Thus, we do 
not further consider end-of-list insertion and adopt a 
linked list-based implementation with head-of-list 
insertion as our baseline. 
 

 
3.2. Distribution of Search Lengths 
 

Figure 2 plots the number of searches of a given 
length using head-of-list insertion – note that the y-axis 
is logarithmic.   

 

 
Figure 2: Number of linked list traversals of a given 

length 

As expected, the greatest majority of all lookups 
require only one or two comparisons.  However, over 
40 million packets in the three traces combined – 
nearly 5% of the total packet count – result in three 
comparisons or more, with a few requiring up to 11 
comparisons.  Recall that our memory is partitioned 
into 512 K buckets, so given that we rarely see over 
500 K flows simultaneously live in our system, such 
long comparison sequences might seem surprising at 

first.  But with several hundred million packets 
processed per trace, and given occasional spikes in 
traffic, these events do in fact occur.  As such, the rest 
of the study focuses not just on reducing the number of 
key comparisons required to match a packet to a flow, 
but specifically on eliminating these long search 
sequences. 

 
3.3. Avoiding List Traversal for New Flows 
 

One obvious source of maximum-length list 
traversals are new flows.  Consider what happens 
when a packet from a new flow arrives:  as usual, 
memory is indexed using the hash of the packet’s key, 
the linked list pointed to by the source node is 
reviewed from beginning to end, and only after failing 
to find a matching flow is a new flow descriptor 
allocated. 

In our traces, the ratio of packets without a 
matching flow to the total number of packets processed 
is fairly small – only 6% of packets require a new flow 
to be allocated.  However, since each new flow is 
accompanied by a complete traversal of the associated 
list, we wanted to study the impact that new flows have 
on the number of key comparisons. 
 
3.3.1. Identifying New Flows Using Oracle 
Knowledge 
 

Table 2 shows the number of key comparisons that 
could be avoided using oracle knowledge of whether a 
given flow is in memory.  Note that the actual 
reduction in the number of comparisons is somewhat 
small – around 3.3% on average.  This is explained by 
the fact that we are using a fairly large and sparsely 
populated memory – exactly what one would like to 
have to reduce the number of hash collisions.  In fact, 
most of the time, the number of tracked flows is just 
over 400,000 in a memory with capacity for 8 million 
flow descriptors, with the implication that a new flow 
often maps to an empty list.  Hence, in many cases, no 
key comparisons need to be made when a new flow is 
inserted.  

The intuitive conclusion supported by our 
simulations with a smaller – and higher utilized – 
memory is that greater memory utilization will 
significantly increase the number of comparisons 
caused by unmatched flows.  So despite the fact that 
potential savings in the number of memory accesses 
are quite modest under the presented setup, the fact 
that each new flow is a longest sequence lookup with 

Number of traversals of a given length

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1 2 3 4 5 6 7 8 9 10 11

Search length

O
cc

ur
an

ce
s

Trace 1

Trace 2

Trace 3

Key comparisons using head & tail insertion

0

100

200

300

400

500

Trace 1  Trace 2  Trace 3

K
ey

 c
om

pa
ris

on
s 

(m
ill

io
ns

)

Head Tail

Figure 1: Head vs. tail insertion: number of key 
comparisons 



respect to its associated list length motivated us to try 
to reduce the impact of such worst-case offenders. 
 

Table 2: Reduction in key comparisons using oracle 
knowledge of whether a flow is in memory 

Trace Actual key 
comparisons 

Avoidable 
using oracle 
knowledge 

Longest 
Search  
Length 

1 338,517,750 12,335,783 11 
2 291,025,359 10,522,455 10 
3 399,490,102 11,328,868 9 

 
3.3.2. Identifying New Flows Using A Bloom Filter 
 
Bloom Filter Theory 
 

A Bloom filter [5] uses an array of bits to represent 
a set of elements.  Each member is represented by k 
bits, where each bit is indexed by a separate hash 
function.  If one or more of the k bits corresponding to 
an element is ‘0’, the element is guaranteed not to be a 
member of the set.  If, on the other hand, all k bits are 
set, the element belongs to the set with the probability 
of 1 – f, where f is the false positive ratio.  In effect, a 
Bloom filter is a compact representation of a set, 
allowing queries for membership that sometimes yield 
a false positive, but never a false negative. 

Figure 3 shows an example of a small Bloom filter 
that represents each element using three bits (k = 3).  In 
(a), an empty Bloom filter is depicted.  Figure 2 (b) 
shows a hit in the Bloom filter for some key X, after X 
has been inserted into the filter.  X is hashed using 
three different hash functions, whose outputs are used 
to index the Bloom filter.  Since the values at all three 
accessed locations are ‘1’, the filter produces a hit.  
Note that a hit in the Bloom filter is not a definite ‘yes’ 
but is more akin to a ‘maybe’.  This is similar to 
conventional hashing, where two hash values that 
match might have been computed from the same key, 

but a comparison of the keys is required to confirm a 
match.  Part (c) shows a miss in the Bloom filter.  Even 
though two of the three bits are set, there is no chance 
that Y is an element of the given set. 

Now, the relationship between the false positive 
rate, f, and the number of bits used for each element, k, 
is expressed by the following formula: 

 
f = (1 – e-nk/m)k   (1) 
 
where m is the size of the Bloom filter (in bits) and 

n is the number of member elements.  Thus, the 
product n*k is the number of bits occupied by the n 
members of the Bloom filter.  It can be shown that f is 
minimized with respect to k when 

 
k = (m/n) ln 2 (2) 
 

which corresponds to the false positive ratio  
 
f = (1/2)k (3) 
 
In fact, comparing this result to (1), we see that the 

false positive ratio is minimized with respect to k when 
approximately half of the bits are set.  Since in a 
network setting we have no control over how many 
elements are in the set (i.e., how many flows we are 
tracking), the filter should be sized so that it gives an 
acceptable false positive ratio in the worst possible 
case. 

 
Our Implementation 

In our setting, the worst case represents tracking 8 
million flows, so the Bloom filter should have around 
16 million bits for a reasonable false positive rate 
when the memory is at full capacity.  Since the Bloom 
filter is supposed to identify new flows to avoid the 
long-latency search through the entire list, its accuracy 
is most important when the memory is highly utilized 
and lists are long.   

 
0 
0 
0 
0 
0 
0 
0 
0 

Maybe x

0 
1 
0 
0 
1 
0 
0 
1 

 Miss y

0 
1 
0 
0 
1 
0 
0 
1 

(a) (b) (c)  
Figure 3: An empty Bloom filter (a); a hit in the Bloom filter (b); a definite miss (c) 



A value for f around 10-20% seems to be 
appropriate, given that in our traces only 6% of all 
packets do not match an existing flow.  This means 
that in practice, the Bloom filter should produce a false 
positive for just 0.6-1.2% of all packets when tracking 
the maximum number of flows, since only new flows 
can result in a false positive.  Of course, a more lightly 
loaded Bloom filter would be expected to have an even 
higher accuracy.  Thus, we use three hash functions 
(k = 3) with the theoretical f of 12.5% 

One problem with a conventional Bloom filter is 
that it is impossible to remove an element from the set, 
since doing so requires clearing all the bits associated 
with that element.  Because bits can be shared among 
multiple set members (it is the combination of all k bits 
which uniquely identifies a member), clearing all bits 
associated with an element is not an option.  For this 
reason, we employ a counting Bloom filter [9], which 
is implemented with a vector of counters, rather than 
bits.  Thus, adding an element requires incrementing 
all k counters, while evicting it results in the counters 
being decremented. 

With the Bloom filter in place, each arriving packet 
generates the following sequence of events:  the 5-
tuple key is hashed using three different hash 
functions, whose outputs serve as indices into the 
Bloom filter array.  The three counters at the indexed 
locations are read out and their values are compared to 
‘0’.  If all counters are greater than ‘0’, then the given 
flow is likely found in main memory and a search 
through the appropriate linked list is initiated.  
However, if one or more counters are ‘0’, the packet is 
immediately tagged as a new flow, its corresponding 
counters in the Bloom filter are incremented, and a 
flow descriptor is inserted at the head of the 
appropriate linked list.   

 For faster access, the Bloom filter array can be 
implemented in SRAM.  Assuming 8 bit counters, a 
Bloom filter with 16 million entries would require 128 
Mb.  This is somewhat large for a single SRAM part; 
fortunately, the Bloom filter array can be divided into 
disjoint sub-arrays, so that each hash function 
addresses its own physical memory.  An additional 
benefit of this approach is that all memories can be 
accessed in parallel. 

 
Bloom Filter Performance Evaluation 

 
Table 3 summarizes our finding.  As expected, our 

Bloom filter has a very high accuracy rate, as 
evidenced by the percentage of new flows correctly 
identified.  Equally important is the fact that nearly all 
the savings offered by an oracle predictor are being 
realized, eliminating virtually all key comparisons for 
new flows.  The false positive rate is extremely low 
due to three factors: appropriate Bloom filter sizing, its 
low occupancy ratio, and relative infrequency of 
occurrence of new flows. 

Unfortunately, despite its excellent ability to 
correctly identify new flows and eliminate the 
associated memory accesses, the Bloom filter offers 
little help in terms of reducing the total number of long 
list traversals.  Figure 4 shows the effect of the Bloom 
filter on the number of key comparisons.  The two 
spikes in Trace 1 correspond to a reduction in searches 
of length 9 from four occurrences to one, and the 
elimination of the sole occurrence of a 10-long search.  
However, for the three traces, most searches of length 
greater than 1 see a very modest reduction of around 
4% in the number of occurrences. 
 

% Reduction in Searches of a Given Length

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

Search Length

R
ed

uc
tio

n 
(%

)

Trace 1
Trace 2
Trace 3

 
Figure 4: Percent reduction in list traversals of a 

given length 

Table 3: Bloom filter performance 

Trace 
# 

False 
positive % 

% of new flows correctly 
identified 

# of key comparisons 
eliminated 

Realized % of 
oracle’s potential 

1 0.0019% 99.96% 12,328,818 99.95% 
2 0.0022% 99.97% 10,517,355 99.95% 
3 0.0016% 99.97% 11,323,073 99.95% 

 



3.4. Predictive Placement 
 

The biggest shortcoming of the Bloom filter is its 
limited utility.  While it helps eliminate lookups for 
new flows that enter the system, all subsequent packets 
belonging to a flow must go through the conventional 
lookup process.  Furthermore, the memory 
requirements of a Bloom filter are relatively high, 
especially in light of its limited usefulness.  
Additionally, the ability to “blindly” insert new flow 
descriptors has a price, as linked list lengths must be 
explicitly tracked to ensure that a given list has not 
reached its maximum length and a new flow may be 
added.  

Ideally, we would like a way to not only predict 
whether a given flow is already being tracked, but also 
to locate it in memory without doing all, or most, 
comparisons associated with a linked list traversal.  A 
good solution should have a reasonable memory 
footprint with the ability to trade accuracy for memory 
overhead. 

 
Predictive Placement Overview 
 

Consider a memory partitioning scheme which 
allocates a fixed number of contiguous locations to 
each hash bucket, in effect forming a two-dimensional 
array.  Hence, each hash value is effectively a pointer 
to a one-dimensional array in memory.  Furthermore, 
consider a bitmap with the same number of bits as 
there are array elements, logically organized as the 
memory array and indexed with the same hash 
function.  Thus, each entry in the array has a 
corresponding bit set in the bitmap.  A simple way to 
determine if a given element X is in memory is to 
compute a hash of its key and check the bits in its 
respective hash bucket in the bitmap.  If none of the 
bits are set, X is definitely not in memory.  
Alternatively, if some of the bits are set, then each bit 

represents a potential memory location where X may 
reside.  In the former case, the bitmap obviates the 
need for a memory access, while in the latter it 
provides a list, in the form of a bit vector, of possible 
locations for X.  If the bit vector has non-zero entries, 
then verifying X’s existence requires checking the 
memory array at indices corresponding to these entries.  
Figure 5 (a) and (b) depicts the two cases just 
described. 

So what, if any, benefits are there to this 
organization compared to a conventional linked list 
approach?  In reality, the two are quite similar, as the 
list of potential locations for X produced by the bitmap 
is hardly different from a linked list which must be 
traversed one entry at a time.  One potential benefit of 
the bitmap approach is that fetches of multiple 
candidate locations can be overlapped, something 
that’s normally not possible with a conventional linked 
list.  This is because obtaining a pointer to a given 
element in a linked list first requires fetching its 
predecessor, whereas a bitmap can be used to 
determine the exact offsets at which memory must be 
read.  However, we will not take this advantage into 
consideration in this study, although the potential 
benefit is not insignificant and is something we are 
currently exploring. 

Now, instead of using one bitmap as described 
above, consider using two.  The goal is to eliminate at 
least some of the bits in the candidate bit vector as 
potential locations of X.  As before, the bitmaps are 
logically organized like the main memory, with each 
hash bucket mapping to a fixed number of contiguous 
bits.  One bitmap is still indexed with the same hash 
function as the memory, providing a one-to-one 
mapping between non-zero bits and allocated memory 
entries.  We call this bitmap the primary filter.  The 
second bitmap, which we will refer to as the secondary 
filter, is indexed by a completely different hash 
function.   

  
(a) (b) 

Figure 5: Replacing a linked list with an array. (a) shows an empty hash bucket; since none of the bits are set, 
X is definitely not an element of the set.  (b) shows a non-empty hash bucket with three potential candidates at 

offsets 1, 4, and 5 



Under the new organization, X might reside in 
memory if and only if both bitmaps contain a ‘1’ in the 
same position.  Thus, a membership query consists of a 
bitwise AND operation on the respective hash buckets 
in the primary and secondary filters, followed by an 
OR of the result vector.  If the OR operation produces 
a ‘1’, a potential hit, which we call a maybe, is 
registered and memory locations corresponding to non-
zero entries in the result vector are fetched.  Figure 6 
shows an example of a membership query. 

 

 
Figure 6: Replacing a linked list with an array and 

multiple bit maps.   A potential hit (‘Maybe’) 
occurs when both primary and secondary arays 

have 1’s in the same position. 

Insertion of a new element into the memory is 
similarly easy and requires finding bits with a value of 
‘0’ in the same position in both bitmaps.  An insert 
operation sets both bits to ‘1’, while a remove 
operation clears the bits.  Note that in the case of 
insert, the selected memory location is guaranteed to 
be empty due to a one-to-one mapping between the 
primary filter and the memory. 

 
Additional Considerations 
 

One issue that must be considered in using 
Predictive Placement is that of a bucket in either the 
primary or the secondary filter becoming full.  In the 
former case, a full bucket indicates that a given 
memory array is at its maximum capacity.  As 
discussed in Section 3, dealing with this situation 
requires walking over the entries in the bucket and 
replacing either an expired entry or another element 
via some LRU-like approach.   

The case of a secondary filter filling up is a little 
trickier.  Since inserting an element requires setting a 

bit and removing it results in the bit getting cleared, 
sharing bits among multiple elements is not an option.  
Of course, the situation is identical to that of a 
conventional Bloom filter.  The solution there was to 
use counters instead of bits, and that’s what we chose 
to do here.  Thus, each hash bucket in the secondary 
filters is actually a vector of counters.  We get 
excellent results using just two bits per counter.  It is 
important to note that counters are only required for 
the secondary filters, since the primary filter is a one-
to-one mapping with memory. 

With this minor modification, let’s consider the 
memory requirements of Predictive Placement.  As 
before, memory is organized into 512 K hash buckets 
with a fixed number of contiguous memory locations 
per bucket.  Since our lists are limited to 16 entries, 
each hash bucket has exactly this number of available 
slots.  Primary and secondary filters mirror the 
memory organization; with 512 K 16-bit buckets, the 
primary filter requires only 8 Mb of storage.  Due to 
the use of counters, secondary filters require 2 bits per 
entry, so their memory footprint is 16 Mb.  Thus, a 
primary filter with two secondary filters needs only 40 
Mb of storage – quite reasonable given today’s SRAM 
technology.  Even more pleasant is the fact that each 
filter naturally lands itself to being in a separate 
physical device; in fact, increasing accuracy simply 
requires adding another secondary filter SRAM.  

Another issue that must be discussed is the worst-
case performance of our approach.  The extreme case 
is that of the memory being completely full, with every 
bit in the primary filter set and every counter in every 
secondary filter greater than 0.  Clearly, in this 
situation, the filters will return a maybe answer for 
every query.  Hence, worst-case performance of 
Predictive Placement is comparable to that of a linked 
list approach, since every query will require an in-
order traversal over the appropriate hash bucket.  
Indeed, like any other hashing-based scheme, 
including the Bloom filters, our approach requires data 
structures to be under-utilized for satisfactory 
performance.  And like a Bloom filter, our design 
offers a trade-off between space requirements and 
accuracy.   

 
Evaluation 
 

We tested our approach using a primary filter with 
1, 2, and 3 secondary filters, where each secondary 
filter is indexed with a different hash function. 
Generally, we anticipate that accuracy will improve 
with a higher number of secondary filters as aliasing 
between different elements is reduced. 



Figure 7 compares the number of searches of a 
given length for a linked list using head-of-list 
insertion against our Predictive Placement approach.  
As expected, each additional filter used in the 
Predictive Placement scheme provides a noticeable 
improvement in prediction accuracy.  Pred 2, the 
simplest implementation with just one secondary filter, 
eliminates all searches of length 7 and above and 
provides an order of magnitude reduction in the 
number of searches of length 3 and above.  In fact, the 
number of occurrences of these searches is cut from 
over 40 million in a linked list implementation (4.87% 
of all lookups) to 6.7 million (0.8%) when using Pred 
2.  Adding an additional secondary filter (Pred 3) 
results in the elimination of length 6 traversals and 
drops the number of searches requiring 3 comparisons 
or more to approximately 461 thousand (0.06%).   

Pred 4, which uses three secondary filters, not only 
completely eliminates all searches of length 5 and 
above, but reduces the number of length 4 traversals 
from well over a million to under 100 for all three 
traces.  The total number of searches of length 3 or 
more is just 22 thousand or 0.0027% of all lookups. 

Table 4 provides a detailed breakdown of the 
number of searches of each length for Trace 3 using a 
linked list and Predictive Placement schemes.  Notice 
that with Predictive Placement, the number of 
traversals of length greater than 1 drops, while the 

number of traversals of length equal to 1 increases.  
This, of course, is the desired outcome, as it indicates 
that long searches are replaced by lookups that match 
on the first comparison. 

 

Number of Key Comparisons vs Oracle

0

50

100

150

200

250

300

350

Trace 1 Trace 2 Trace 3

C
om

pa
ris

on
s 

(m
ill

io
ns

)

Linked List Pred 2 Pred 3 Pred 4 Oracle

 
Figure 8:  Number of key comparisons for Traces 1, 
2, and 3 using a Linked List and Predictive 
Placement with 2, 3, and 4 filters against an Oracle 
predictor 

We also compared the performance of our approach 
to an oracle predictor.  Unlike the oracle introduced is 
Section 3.3, this predictor not only recognizes new 

Trace 1

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000
1,000,000,000

1 2 3 4 5 6 7 8 9 10 11 12
Search Length

O
cc

ur
an

ce
s

Linked list
Pred 2
Pred 3
Pred 4

 

Trace 2

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000
1,000,000,000

1 2 3 4 5 6 7 8 9 10 11 12

Search Length

O
cc

ur
re

nc
es

Linked List
Pred 2
Pred 3
Pred 4

 
Trace 3

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000
1,000,000,000

1 2 3 4 5 6 7 8 9 10 11 12

Search Length

O
cc

ur
an

ce
s

Linked List
Pred 2
Pred 3
Pred 4

 
 

Figure 7: Number of list traversals of a given length for a Linked List implementation and Predictive Placement 
with 2, 3, and 4 filters (primary + 1 or more secondary filters) for Trace 1, Trace 2, and Trace 3 



flows and avoids the associated lookups, but always 
finds an existing flow on the first try.  Results are 
presented in Figure 8.  A separate calculation shows 
that Pred 4 is within 0.6% of the total number of key 
comparisons required by the oracle predictor for all 
three traces. 
 
4. Related Work 
 

A number of recent works have employed Bloom 
filters for network-related tasks.  Several of these used 
Bloom filters or similar data structures for measuring 
flow volumes [1][6][8][21].  These approaches do not 
require precise flow tracking, have limited utility, and 
are generally not 100% accurate due to the false 
positives produced by the Bloom filter.   

Chang, Feng, and Li utilized a Bloom filter to assist 
in packet classification [7].  Classified packets were 
added to the Bloom filter to avoid future classification, 
while unclassified packets went through the regular 
classification process.  This is similar to our use of a 
Bloom filter to avoid linked list traversals for new 
flows.  Their work also explored encoding information 
into a Bloom filter for the purpose of packet routing.  
However, unlike flow tracking, routing requires a 
static mapping between a given flow and an output 
port.  Our work uses a modified Bloom filter structure 
to efficiently find an empty memory location to which 
a new flow may be written and supply a list of 
candidate locations in which an existing flow may be 
found.  

 One possible alternative to linked lists is closed 
hashing.  Open hashing, sometimes referred to as 
chaining, resolves collisions by keeping a linked list 
pointed to by an entry in the hash table.  This is the 
technique used in our study.  Closed hashing, on other 
hand, resolves hash collisions by probing additional 
locations in the table, often through the use of a 
separate collision resolution function.  Double hashing 
is an example of this approach, and its use in flow 
monitoring applications has been suggested by 

McKeown et al [16].  While closed hashing has good 
theoretical average-case performance for lightly-
loaded hash tables, it is unsuitable in an environment 
with frequent deletions, since these tend to increase the 
average search length [11].  Closed hashing also does 
not permit optimizations such as head-of-list insertion. 

Another well-known technique for improving 
lookup performance is caching.  Most cache-related 
studies in the networking domain have focused on 
improving the performance of route lookup and packet 
classification, with reported cache hit rates ranging 
from 60% to over 90% [12][13].  In fact, we consider 
our work orthogonal to caching for several reasons.  In 
network intrusion detection, for instance, caching 
cannot be relied on to satisfy any fraction of memory 
requests, since it makes the system susceptible to 
attacks against the cache with the goal of degrading 
memory subsystem performance.   

Additionally, caching in the traditional sense 
implies a fixed tag and data arrangement, where the tag 
is a portion of the memory address at which the data 
resides.  However, in a conventional flow tracking 
application, given a newly arrived packet, the memory 
address of its corresponding flow is typically not 
known.  This implies that the key used to identify a 
flow should itself serve as the tag.  But different 
applications might require different definitions of a 
flow, leading to different key size requirements.  For 
example, an application collecting per-flow statistics 
on a network node might use a five-tuple (104 bits) for 
flow identification, whereas an algorithm for 
identifying distributed port scans may very well use 
destination IP addresses (32 bits) as the flow id.  
Naturally, data size requirements for these applications 
would also be expected to vary widely, leading to 
difficulties implementing a conventional cache in an 
adaptable multi-purpose architecture.  Our approach 
helps eliminate long probes to memory regardless of 
whether a cache is employed in the system, enabling a 
wide range of latency- and bandwidth-sensitive 
applications requiring flow tracking. 
 

Table 4: Number of searches of a given length for Trace 3 

  1 2 3 4 5 6 7 8 9 
Linked 
List 232,766,358 59,009,640 11,482,698 2,904,605 437,253 64,288 8,860 374 105 
Pred 2 278,819,287 20,403,004 1,991,816 146,140 7,373 248 0 0 0 
Pred 3 293,674,215 5,538,158 137,026 2,473 44 0 0 0 0 
Pred 4 297,687,903 1,156,562 5,758 30 0 0 0 0 0 

 



5. Conclusion 

In this paper, we evaluated techniques for reducing 
the number of key comparisons required to find a 
matching flows in applications requiring precise flow 
tracking.  We established that head-of-list insertion 
reduces the number of key comparisons required to 
find a matching flow by an average of 12.4% for the 
three traces when compared to insertion at the tail of a 
linked list.  Using a memory 16 times larger than the 
average number of live flows in the system and head-
of-list insertion, we witnessed frequent occurrences of 
searches involving more than one key comparison.  
Almost 5% of all packets required three key 
comparisons or more, with maximum observed search 
lengths exceeding eight comparisons in all three traces.  

We evaluated the use of a Bloom filter to eliminate 
lookups for new flows entering the system.  The 
reduction in the number of key comparisons turned out 
to be a modest 3.3%, with most searches of length 
greater than 1 seeing a 4% decrease in the number of 
occurrences. 

We then introduced our Predictive Placement 
approach, which uses multiple filters to reduce the 
number of candidate locations that must be searched.  
The filters use a Bloom-like data structure to encode 
not only membership but also the location of every 
element.  Using a primary filter and one secondary 
filter, we succeeded in removing all searches requiring 
more than six comparisons and reduced the number of 
searches of length 3 and above to approximately 0.8% 
of all lookups.  A Predictive Placement design with 
three secondary filters completely eliminated searches 
with over four comparisons and reduced the number of 
probes of length 3 or more to just 0.0027%.  In fact, 
the number of key comparisons required by this 
scheme was within 0.6% of an oracle predictor which 
always finds an existing flow in exactly one lookup 
and avoids lookups altogether for new flows. 
 
6. References 
 
[1] C. Estan and G. Varghese. New Directions in Traffic 
Measurement and Accounting.  Proc. of the ACM 
SIGCOMM 2002, pp. 323-336, October 2002. 
 
[2] C. Estan, G. Varghese and M. Fisk. Bitmap algorithms 
for counting active flows on high speed links. Proc. of the 
2003 ACM SIGCOMM conference on Internet measurement 
(IMC-03), pp. 153-166, ACM Press, October 2003. 
 
[3] K. Levchenko, R. Paturi, and G. Varghese. On the 
Difficulty of Scalably Detecting Network Attacks. Proc. of 

the Eleventh ACM Conference on Computer and 
Communication Security, October 2004. 
 
[4] R. R. Kompella, S. Singh and G. Varghese. On Scalable 
Attack Detection in the Network. Proc of the 4th ACM 
SIGCOMM conference on Internet measurement, pp. 187-
200, 2004. 
 
[5] B. H. Bloom. Space/Time Trade-offs in Hash Coding 
with Allowable Errors. Communications of the ACM, 13(7), 
pp. 422-426, July 1970. 
 
[6] A. Kumar, J. Xu, L. Li and J. Wang. Space-code bloom 
filter for efficient traffic flow measurement. Proceedings of 
the 3rd ACM SIGCOMM conference on Internet 
measurement, pp. 167-172, 2003. 
 
[7] F Chang, W. Feng, and K. Li. Approximate Caches for 
Packet Classification. Proc. IEEE INFOCOM 2004, March 
2004. 
 
[8] S. Cohen and Y. Matias. Spectral bloom filters. Proc. of 
the 2003 ACM SIGMOD International Conference on 
Management of Data 2003, San Diego, California, June 09–
12, 2003, pp. 241-252, ACM Press, 2003. 
 
[9] L. Fan, J. Almeida and A. Z. Broder. Summary Cache: A 
Scalable Wide-Area Web Cache Sharing Protocol. 
IEEE/ACM Transactions on Network, 8(3), pp. 281-293, 
2000. 
 
[10] M. V. Ramakrishna, E. Fu, and E. Bahcekapili. Efficient 
Hardware Hashing Functions for High Performance 
Computers. IEEE Transactions on Computers, pp. 1378-
1381, December 1997 
 
[11] Weiss, M.A., Data structures and algorithm analysis in 
C++. 1994. 
 
[12] P. Newman, G. Minshall, and L. Huston.  IP Switching 
and Gigabit Routers. IEEE Communications Magazine,  
January 1997. 
 
[13] J. Xu, M. Singhal  and J. Degroat. A novel cache 
architecture to support layer-four packet classification at 
memory access speeds. Proc. of INFOCOM 2000, pp. 1445-
1454, March 2000. 
 
[14] N. Brownlee. Some Observations of Internet Stream 
Lifetimes.  Passive and Active Measurement Workshop, 
2005. 
 
[15] J. Apsidorf, K.C. Claffy, K. Thompson, and R. Wilder. 
OC3MON: Flexible, Affordable, High Performance Statistics 
Collection. Proc. of the 10th USENIX conference on System 
administration, pp. 97-112, September 1996. 
 



[16] G. Iannaccone, C. Diot, I. Graham and N. McKeown. 
Monitoring very high speed links. ACM Sigcomm Internet 
Measurement Workshop, November 2001. 
 
[17] S. Venkataraman, D. Song, P. Gibbons, and A. Blum. 
New Streaming Algorithms for Fast Detection of 
Superspreaders.  Network and Distributed System Security 
Symposium, February 2005 
 
[18] Juniper Networks NetScreen-IDP 10/100/500/1000. 
http://www.juniper.net/products/intrusion/dsheet/110010.pdf 
 
[19] CAIDA. Anonymized OC48 traces. 
http://www.caida.org/data/. 
 
[20] L. Zhao, S. Makineni, R. Illikkal, R. Iyer, L. Bhuyan. 
Efficient Caching Techniques for Server Network 

Acceleration. Advanced Networking and Communications 
Hardware Workshop (ANCHOR 2004), June 2004. 
 
[21] D. Nguyen, J. Zambreno and G. Memik. Flow 
Monitoring in High-Speed Networks using Two Dimensional 
Hash Tables. Proc. of Field-Programmable Logic and its 
Applications (FPL), Aug.-Sep. 2004. 
 
[22] Intel 915G/915GV/910GL Express Chipset Memory 
Configuration Guide.  Intel White Paper.  September 2004. 
 
[23] C. Natarajan, B. Christenson, F. Briggs.  A Study of 
Performance Impact of Memory Controller Features in 
Multi-Processor Server Environment.  Proc. of the 3rd 
workshop on Memory Performance Issues: in Conjunction 
with the 31st International Symposium on Computer 
Architecture, 2004. 
 

 




