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ABSTRACT
Today’s cloud based online services are underpinned by distributed
key-value stores (KVS). Such KVS typically use a scale-out architec-
ture, whereby the dataset is partitioned across a pool of servers, each
holding a chunk of the dataset in memory and being responsible
for serving queries against the chunk. One important performance
bottleneck that a KVS design must address is the load imbalance
caused by skewed popularity distributions. Despite recent work on
skew mitigation, existing approaches offer only limited benefit for
high-throughput in-memory KVS deployments.

In this paper, we embrace popularity skew as a performance
opportunity. Our insight is that aggressively caching popular items
at all nodes of the KVS enables both load balance and high through-
put – a combination that has eluded previous approaches. We in-
troduce symmetric caching, wherein every server node is provi-
sioned with a small cache that maintains the most popular objects
in the dataset. To ensure consistency across the caches, we use
high-throughput fully-distributed consistency protocols. A key re-
sult of this work is that strong consistency guarantees (per-key
linearizability) need not compromise on performance. In a 9-node
RDMA-based rack and with modest write ratios, our prototype
design, dubbed ccKVS, achieves 2.2× the throughput of the state-of-
the-art KVS while guaranteeing strong consistency.
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1 INTRODUCTION
Today’s online services like search, e-commerce and social network-
ing are underpinned by cavernous Key-value stores (KVS). Such
KVS’ must provide high throughput in order to serve millions of
user requests simultaneously, while meeting online response time
requirements. In order to sustain these performance objectives, the
∗The first two authors contributed equally to this work.
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dataset is typically maintained in memory and is sharded across
multiple servers using techniques such as consistent hashing [25].

Although sharding data among individual servers enables mas-
sive parallelism, such a design can suffer from hot spots. This is
because the popularity distribution of objects is highly skewed,
typically following power law distributions [5, 21, 37, 43]. In other
words, in the presence of skew, the server(s) serving the most pop-
ular objects will become saturated, thus becoming a bottleneck and
limiting the throughput of the entire KVS.

The skew problem is well-established, and a number of tech-
niques have been proposed tomitigate it. The techniques can be clas-
sified into two categories. The first class of techniques [16, 22, 32]
uses a dedicated cache for storing popular keys to filter the skew.
The second class of techniques (FaRM [14] and RackOut [37]) miti-
gate skew by evenly distributing read requests across all servers
of the KVS regardless of the object’s location. For low latency, the
servers use an RDMA-enabled interconnect to access objects that
reside at other servers. In essence, this class of techniques exposes a
non-uniform memory access (NUMA) shared memory abstraction
across the servers of the KVS.

The first approach is not scalable because the limited compu-
tational resources of a single cache node may not be able to keep
up with the load. In contrast, the second approach is scalable in
its processing capability, but is network bound because the vast
majority of accesses is serviced by remote nodes.

In this paper, we view skew as an opportunity and leverage it to
improve KVS performance. Taking inspiration from the effective-
ness of caches in shared memory multiprocessors, we propose a
Scale-Out ccNUMA architecture which augments each server node
in a distributed KVS deployment with a small cache of hot items.
Because item popularity is a function of the entire dataset and not
of individual shards, all cache instances maintain an identical set
of objects, which are the most popular objects in the dataset. Such
a symmetric cache not only ensures a high hit rate, but also relieves
the clients from knowing which caches maintain what objects, and
avoids the need for costly metadata to track sharers on the KVS
side.

Replicating data in multiple caches raises the problem of ensur-
ing consistency in the presence of writes. While eventually consis-
tent [8] systems are thought to be beneficial performance-wise, they
are difficult to reason about and can cause unexpected behavior
for both developers and users. Meanwhile, stronger consistency
models require all sharers to agree on the order of writes; some
models even require writes to be performed synchronously. We ask
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the question of whether aggressive replication through caching of
popular objects can be achieved with strong consistency guarantees
and high throughput.

To answer this question, we study non-blocking, fully distributed
consistency protocols that leverage logical timestamps to achieve
two strong consistency guarantees: per-key sequential consistency
(SC) and per-key linearizability (Lin). We then develop ccKVS – a
distributed RDMA-based KVS that employs a Scale-Out ccNUMA
architecture, featuring symmetric caching with consistency guar-
antees enforced via the two protocols.

Our evaluation on a 9-node rack-based cluster shows that in
comparison with a state-of-the-art KVS (Section 7), ccKVS achieves
2.5× (2.2×) improvement in throughput for a workload with 1%
writes while satisfying SC (Lin).
Summarizing, our contributions are as follows:
• We introduce Symmetric Caching: a novel and transparent
caching strategy that replicates the most popular objects in all
caches, thus enabling high throughput and load balance, while
eliminating the costly requirement of tracking sharers. (Section 4)

• In order to keep the caches consistent, we employ two fully dis-
tributed protocols that equally spread the cost of consistency
actions by enabling writes to be performed directly in any replica.
The first of the protocols guarantees per-key Sequential Con-
sistency; the second guarantees per-key Linearizability, which
we verify for safety and deadlock freedom in a model checker.
(Section 5)

• We build ccKVS: an RDMA-based KVS that implements sym-
metric caching with our fully distributed protocols and achieves
a throughput improvement of 2.5× (2.2×) over a state-of-the-
art RDMA KVS for a workload with modest write ratios while
satisfying SC (Lin). (Section 8)

2 MOTIVATION
2.1 Skew and Load Imbalance
Prior research characterizing data access patterns in real-world
settings has shown that popularity of individual items in a dataset
often follows a power-law distribution [5, 6, 21, 37, 39, 44]. In such
a distribution, a small number of hot items receives a dispropor-
tionately high share of accesses, while the majority of the dataset
observes relatively low access frequency. The resulting skew can
be accurately represented using a Zipfian distribution, in which an
item’s popularity, y, is inversely proportional to its rank r :y r−α .
The exponent α is a function of the dataset and access pattern, and
has been shown to lie close to unity. The most common value for
α in recent literature is 0.99 [14, 20, 22, 32, 38], with 0.90 and 1.01
also frequently used and cited in KVS research [4, 16].

An important implication of popularity skew is the resulting
load imbalance across the set of servers maintaining the dataset. As
shown in Figure 2a, the server(s) responsible for the hottest keys
may experience several times more load than an average server
storing a slice of the dataset [37]. For instance, Figure 1 shows an
example deployment of 128 servers and a data-serving workload
with an access skew of α = 0.99. As seen in the figure, the server
storing the hottest key receives over 7x the average load in the
system.
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Figure 1: Load imbalance in a cluster of 128 servers caused
by skewed workload with α = 0.99.
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Figure 2: Design space for skew mitigation techniques.
2.2 Existing Solutions for Skew Mitigation
Figures 2b and 2c depict two approaches for skew mitigation that
have emerged in recent literature: caching and the NUMA abstrac-
tion.
Caching: Noting that a small fraction of the keys are responsible
for the load imbalance, recent work has suggested using a dedicated
cache to filter the skew from the access stream before it hits the
data serving nodes (Figure 2b). Various flavours of the idea have
been proposed, which are: (i) placing a cache at the front-end load
balancer [16]; (ii) using a programmable switch to steer requests for
hot objects to the cache node [32]; and (iii) using a programmable
switch as a cache node [22].
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These caching approaches suffer from two important limitations.
First, they usually target storage clusters where the back-end nodes
are limited by performance of the storage I/O [32]. Thus, a powerful
server with an in-memory object cache is sufficient to keep up with
the load. The same is not true if the data store is in-memory, in
which case the high request rate it can sustain would overwhelm a
single cache node. Secondly, these approaches do not offer a viable
strategy to scale the cache beyond a single node to accommodate
larger deployments. True, simple partitioning of hot keys across
servers is one way to scale to multiple cache nodes; in the limit,
however, this strategy is fundamentally limited by the ability of the
cache node with the hottest key to keep up with the load.
NUMA abstraction: Pioneered in FaRM [14] and leveraged in
RackOut [38], this approach offers a NUMA-like shared memory
abstraction across the servers storing the dataset via remote access
primitives over a low-latency RDMA-enabled network, as shown
in Figure 2c. More specifically, the one-sided RDMA reads allow
any server to directly access the memory of any other server in the
deployment. The design exploits this remote access capability to
offer a black-box abstraction to the outside world – a client can send
a request to any node in the deployment without regard to the data’s
location. By allowing requests for any object to be evenly distributed
across the entire deployment, load imbalance is mitigated in the
face of a skewed access distribution.

The key limitation of this approach is that the vast majority of
requests require remote access. Indeed, the fraction of requests
satisfied locally is inversely proportional to the number of servers
in a deployment. Subsequent work (FaSST [24]) improved on the
network performance by replacing the one-sided primitives with
two-sided RDMA communication, reducing the overall network
overhead of the approach. Novakovic et al. [36] demonstrated that
integrated on-chip NICs can further enhance performance by low-
ering the remote access latency. Nevertheless, network bandwidth
has persisted as the main performance limiter of the NUMA shared
memory abstraction [24].

To summarize, existing skew mitigation techniques either (1) use
a powerful cache node to filter the skew from the access stream
before it hits the storage nodes, or (2) exploit a NUMA-like shared
memory abstraction that relies on remote access primitives to dis-
tribute the load across all servers. The first approach is processing
bound because a single cache node may not be able to keep with
the load, which makes it applicable mainly in a disk-based cluster
environment. Meanwhile, the latter approach is scalable in its pro-
cessing capability, but is network bound because the vast majority
of requests requires a remote access.

3 Scale-Out ccNUMA
The central thesis of this work is that a small cache of hot items at
each data serving node can effectively shave the skew while scaling
cache throughput with the number of servers. Figure 2d demonstrates
the proposed approach, which combines the best features of caching
and the NUMA abstraction in an architecture we call Scale-Out
ccNUMA. As shown in the figure, Scale-Out ccNUMA augments
each node in a pure NUMA deployment with a cache of hot objects.
Whenever a client request hits in a server’s cache, that node can

immediately return the data, thus avoiding a remote access to the
node containing the corresponding shard.

Intuitively, the proposed approach has the following benefits:
• Compared to existing cache proposals that have a centralized

cache at a load balancer or a network switch [16, 22, 32] and are
thus limited by the throughput of that cache, the per-node cache
naturally scales its throughput with the size of the deployment.
Moreover, the per-node cache avoids the need for heterogeneous
or exotic hardware required by prior work, such as more pow-
erful server in the cache node [16, 32] and/or programmable
network switches [22, 32]. Avoiding hardware heterogeneity in
a datacenter setting is beneficial from a cost, maintenance and
engineering (programmability) perspective.

• Compared to a pure NUMA abstraction (e.g., FaRM [14], Rack-
Out [37], FaSST [24]), adding a cache to each node can signifi-
cantly lower the incidence of remote accesses. As Figure 3 shows,
for a zipfian skew with an exponent a = 0.99 and a cache storing
as little as 0.1% of the hottest data, 65% of requests will hit in the
cache. Thus, only the remaining 35% of the accesses (i.e., cache
misses) may require remote access.
Critically, the use of caching does not compromise the black-box
abstraction presented by the NUMA shared memory architec-
ture. Thus, any client can send a request to any server in the
deployment without the knowledge of the data’s location. By
load balancing the requests across the nodes and avoiding the
majority of remote accesses, co-locating a cache with each node
naturally improves the scalability of the shared memory archi-
tecture.
Despite the benefits, the proposed approach introduces a signifi-

cant challenge in requiring the caches to be consistent with respect
to each other whenever a write occurs. The consistency challenge
can further be broken down into two components.

The first is how to determine which caches store what items.
This is necessary to find the set of replicas, which is needed for
consistency-preserving actions (e.g., an invalidation or an update).
Consistency protocols used in scalable multi-processors use a direc-
tory to track replicas; however, the node holding the directory can
potentially become a performance bottleneck. While a directory
can be distributed, a skewed access distribution would naturally
make certain directory nodes more loaded than others, potentially
negating the benefits of caching.

The second challenge relates to write-serialization, which is
an important consistency requirement: all sharers must agree on
the order of writes. Scalable multi-processors accomplish this by
physically serializing at the directory, which again can cause a
bottleneck in our setting.

Finally we note that in addition to the consistency challenges,
Scale-Out ccNUMA also introduces the need for update based pro-
tocols. Protocols used in scalable multi-processors tend to employ
invalidating protocols, meaning that a writer will invalidate all
sharers, which then must re-read the item to bring it back into
the cache. This strategy is aimed for parallel workloads where, for
example, a variable can be updated multiple times before being
read by another thread. In contrast, with read-intensive workloads
that are the target of this work, an item that was updated will very
likely be read in the nearest future at other nodes. This motivates
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Figure 3: Effectiveness of caching under popularity skew.

the need for an updating protocol, since it proactively pushes the
updated object to all of the caches.

In the next two sections, we describe a cache organization, fol-
lowed by two consistency protocols that address the challenges
outlined above.

4 SYMMETRIC CACHE
We exploit a simple insight in designing a scalable cache archi-
tecture that helps address the concerns outlined in the previous
section. Specifically, we observe that the most popular items are,
by their very nature, the most likely ones to be accessed; hence,
despite the fact that there are multiple cache nodes, they should
all cache the same set of items – the most popular ones. This idea,
which we call symmetric caching, is illustrated in Figure 2d.

Despite its apparent simplicity, the symmetric cache architecture
turns out to be extremely powerful, as it naturally resolves a num-
ber of challenges. For one, because all caches keep the same set of
items, there is no need to inform clients of which node caches what
items. Thus, clients can leverage the black-box abstraction and send
requests to any node in the data serving deployment, with proba-
bility of a cache hit being dependent solely on the requested key
and not the choice of the node. This ensures both a load balanced
request distribution and a high cache hit rate.

Another advantage of the symmetric cache is that a node can
find out which, if any, nodes cache an item just by querying its local
cache; if an item is found there, then all nodes have it; otherwise,
none do. Such ability to query a local cache to learn the status of an
item naturally avoids the need for a directory, whose role in cache-
coherent multiprocessors is to track the set of caches that have a
copy of a cache block. By not having a directory through which
consistency actions would need to serialize, the symmetric cache
eliminates a potential serialization bottleneck and enables fully
distributed consistency protocols, described in the next section.

An important feature of symmetric caching is that the caches
are write-back. This means that writes to an item residing in the
symmetric cache do not update the underlying KVS until the item is
evicted from the cache. This feature is critical in avoiding a through-
put degradation at the home node of a popular item, whenever
writes follow a skewed distribution. Because all caches maintain

the same set of items in the cache, on eviction, only the node con-
taining the shard with the evicted key needs to check if the item
has been modified and, if so, update the underlying KVS.

In order for the symmetric cache to be effective, it is essential to
be able to identify the most popular items with minimal overhead.
This problem has been well-researched with highly-efficient solu-
tions proposed in recent work. A particularly attractive approach
for symmetric caching is one proposed by Li et al. [32], which re-
lies on memory-efficient top-k algorithms [11, 35] to dynamically
learn the popularity distribution. In the algorithm proposed by
Li et al. [32], each server maintains a key-popularity list with k
entries, approximating the popularity of the k hottest keys, and a
frequency counter that keeps track of recently visited keys, such
that newly popular keys can be detected. The scheme uses an epoch-
based approach, whereby the key-popularity list gets updated and
propagated to the cache at the end of each epoch. Finally, request
sampling is used to alleviate the performance impact of updating
the frequency counter upon each request.

Conveniently, because symmetric caching exposes a NUMA ab-
straction, whereby clients spread their requests across all servers,
each server sees the same access distribution as do the other servers
in the deployment. Therefore, in our setting (and in contrast to [32]),
it is sufficient for just a single server to act as the cache coordinator,
responsible for identifying the most popular items and informing
the other nodes. Centralizing the process of classifying an item
as popular not only reduces the overhead of tracking hot items,
but also naturally alleviates the burden of reaching a consensus
on which items are popular, thus simplifying the entire process.
While our evaluation does not consider shifts in popularity skew,
we expect the set of most popular keys to evolve slowly, with only a
handful of keys removed/added to the cache every few seconds [32].

5 ENFORCING CACHE CONSISTENCY
With symmetric caching, whilst we are able to serve a significant
chunk of read requests (the cache hits) locally, ensuring consistency
in the presence of writes is challenging. To ensure this, a consistency
protocol must propagate writes that hit in one cache to all of the
caches. What determines when and how writes are propagated is
the consistency model.

A plethora of weaker consistency models abound under the
umbrella of eventual consistency. The only requirement is that all
replicas must eventually converge on a value in the absence of
new updates, allowing for writes to be propagated asynchronously
in any order. Performance-wise, this is beneficial, but eventual
consistency can be be hard to reason about and can cause nasty
surprises for both developers and clients [42].

More intuitive models mandate write serialization: all sharers
must agree on the order of writes to a single key. Stronger yet
models mandate that writes must propagate synchronously, i.e. in
a blocking fashion. Enforcing such strong guarantees in a high-
throughput fashion is challenging. One natural way to enforce
write serialization is to employ passive replication (also known as
primary-backup replication), where writes of a specific key serialize
at a designated primary, as shown in Figure 4a. Such passive pro-
tocols are commonly used in shared memory multiprocessors [40]
and other distributed systems [15] that demand strong consistency.
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Figure 4: Design space for guaranteeing a single global order
for writes on a per-key basis.

In the same spirit, distributed systems can opt to achieve write
serialization through a sequencer, as shown in Figure 4b, which
assigns monotonically increasing timestamps to writes and their
consistency actions (i.e. invalidations, updates).

However, in the presence of skew, the primary (or sequencer) in
the two approaches could easily become a hotspot on writes to a
hot item, as consistency actions related to that item must serialize
through it. We address this issue by employing fully distributed
protocols that achieve write serialization in a fully distributed man-
ner, shown in Figure 4c, while still guaranteeing strong consistency.
We elaborate on the protocols specifics below.

In this work we consider two strong models: per-key sequential
consistency (SC) and per-key linearizability (Lin). We employ fully
distributed protocols that enforce the models efficiently. In the rest
of the section, we first introduce the two consistency models, then
briefly overview existing protocols and their limitations, and finally
describe the protocols in depth.

5.1 Consistency Models
For this discussion, let us assume that a number of clients (modelled
as sessions) are interacting with a replicated data store by issuing
get and put requests [8]. The session order is a per-session total
order which represents the order in which gets and puts appear
in each session. A put writes the provided object (abstracted as a
value) of the corresponding key, whereas a get reads and returns
the value.

A consistencymodel must formally specify what value a get must
return. Since we are considering data serving applications, our focus is
on consistency models that provide guarantees on a per-key basis [12];
there are no guarantees between gets and puts of different keys. We
focus on SC and Lin, the latter strictly stronger than the former. It
is worth noting that in both of the above models, updates to any
object must happen atomically; a get must return a value written
in its entirety by exactly one put – it cannot return a mishmash of
the values written by two different puts.

time

Session A Session B

t0 :

t1 :

t2 :

PUT(K,1)

GET(K)→1

GET(K)→0

Initially all values are equal to 0.

Figure 5: Session B seeing the old value is a violation of Lin,
but not SC.

time

Session A Session B Session C Session D

t0 :

t1 :

t2:

PUT(K,1)

GET(K)→1

GET(K)→2

GET(K)→2

GET(K)→1

PUT(K,2)

Initially all values are equal to 0.

Figure 6: Sessions B andC do not agree on the order of writes
and hence this is a SC violation (also a Lin violation).

Per-key Sequential Consistency. Informally, SC allows forwrites
to propagate asynchronously, as long as all sessions can agree on
the order of writes to the same key . The following sequence of oper-
ations to key K, depicted in Figure 5, does not violate SC. Session A
writes a value of 1 at real time t0, then reads its own write at time
t1. Later, at time t2, it is permissible for session B to read the old
value of 0, since SC does not mandate that write must happen syn-
chronously. However, the following sequence illustrated in Figure 6
is not allowed. There are two concurrent puts to same key (from
sessions A and D). From the point of view of session B, the put from
session A appears to perform before that of session D. Session C,
however, observes a different order. Since the two sessions don’t
agree on the order of puts, there is a SC violation.

Formally, SC mandates that: (i) every put must eventually propa-
gate (i.e. it must be made visible) to all sessions; (ii) all sessions must
agree on the order of puts to the same key (writes must serialize)
and (iii) gets and puts from the same session to the same key must
appear to take effect in session order. More formally, gets and puts
of the same key from all sessions must appear to perform in some
total order that is consistent with the session order. It is worth
noting that a similar guarantee has been formalized as coherence in
the world of shared memory multiprocessors [3].
Per-key Linearizability. Informally, the data store must behave
as if there exists only a single copy of every object in the data store,
and at any time-step at most one sessionmay issue an operation (get
or a put) in session order. Thus, Lin preserves real-time behaviour,
with each call to get and put appearing to take place some time
between their invocation and completion. Therefore, the behavior
shown in Figure 5 is impossible in a system that guarantees Lin.
Lin must satisfy all the constraints of SC along with two additional
conditions: (i) a put must return only after the value written has
become visible to all sessions (writes are synchronous); (ii) a get
may return a value only after the put (from which it reads its value)
has become visible to all sessions.
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5.2 Protocols
SC Protocol. We adapt the update-based protocol developed by
Burckhardt [8] that uses Lamport timestamps for achieving write
serialization. Each object in the symmetric cache is tagged with
a Lamport logical clock [29], along with the session id of the last
writer. (Together, the clock and session id are referred as Lamport
timestamp.) On a put that hits in the cache, thewriter: (1) increments
the Lamport clock, (2) writes the new value, and (3) broadcasts an
update that contains the new value and the timestamp.

On receiving an update, a node will apply the change only if the
received value has a bigger Lamport clock than the stored Lamport
clock. If the two Lamport clocks are equal, the session ids are used
as tie breakers.

Figure 4c shows the fully distributed nature of the protocol,
where write serialization is achieved via the use of Lamport times-
tamps, thus avoiding the use of serialization points (Figures 4a and
4b). The protocol is non-blocking: writes are asynchronous and can
be locally applied immediately (on any replica), allowing for reads
following the write to return the new value without waiting for the
broadcast.
Invariant. Each write is tagged with a Lamport clock and the session
id of the writer, which gives a unique timestamp for every write.
This is the invariant that ensures write serialization. The reader is
referred to Burckhardt [8] for a formal proof.
Lin Protocol. Recall that with Lin, a put can return only after it
has propagated to all sessions. This calls for a two-phase protocol:
the writer needs to broadcast invalidations and get an acknowledge-
ment from every other sharer; only then can the value be broadcast.
Of course, there can be multiple puts happening concurrently and
all sessions need to agree on the same order. Therefore, in the first
phase invalidations are tagged with Lamport timestamps to achieve
write serialization. Figure 7 illustrates the phases involved.

The protocol we use is an adaptation of the one proposed by
Guerraoui et al. [17]. Because writes are synchronous (blocking),
there are situations when the protocol is waiting for an event and
must deal with intervening requests correctly, without violating
safety or causing deadlocks. Thus, we must account for and handle
such transient states.

Protocol actions. A session that performs a put increments its Lam-
port clock and transitions the state of the cached object to a transient
Write state (indicating that it is waiting for acknowledgements).
It then broadcasts invalidations that include the key, and its Lam-
port timestamp. When a node receives an invalidation, it compares
the incoming timestamp with the stored timestamp. If the received
timestamp is greater, the machine transitions the state of the cached
object to Invalid and responds to the writer with an acknowledg-
ment. When a node receives an acknowledgement, it increments a
counter that holds the received acknowledgements for the relevant
key. When the counter indicates that all nodes have acknowledged
the invalidation, the cached object is transitioned to Valid state and
the new value and its timestamp are broadcast. Upon receiving an
update, a node will check whether the relevant key is currently in
Invalid state, waiting for the particular update (checked via compar-
ing the timestamps); if the timestamps match, the update is applied
and the object transitions to Valid state, otherwise the update is
discarded.
Verification. The Lin protocol has one stable state and two transient
states, making it more complex than the SC protocol, which has
only one stable state and no transient states and has been formally
shown to be correct by Burckhardt [8]. Therefore, we wanted to
formally verify the Lin protocol. To this end, we expressed the Lin
protocol in the model checker Murφ [13] and verified the protocol
for safety and the absence of deadlocks. For safety, we verified
two invariants. First, the single-writer-multiple-reader invariant
(SWMR) [40]: at any given time there can be exactly one writer that
can update an object (multiple readers can safely read an object).
Second, the data value invariant: if an object is in a valid state
(that can be read), then it must hold the most recent value that
was written to that object. Our Murφ model allows for the number
of processors, addresses, and timestamp size to be configured. We
have verified with three processors, two addresses and timestamp
of size two bits. A detailed state transition table as well as the Murφ
model is available online.1

6 ccKVS
In order to understand the benefits and limitations of the proposed
Scale-Out ccNUMA architecture, we build ccKVS, an in-memory
RDMA-based distributed key-value store which combines a NUMA
abstraction [14] with the consistent symmetric cache. The code of
ccKVS is available online.2

Each node in ccKVS is composed of two entities: a shard of
the KVS and an instance of the cache; each of the entities has an
object store and a dedicated pool of threads for request processing.
As described in Section 4, the content of all caches is identical,
composed of the most popular items in the dataset. The caches
are kept consistent using the fully-distributed protocols described
in Section 5. The nodes of a ccKVS deployment are connected via
RDMA with two-sided primitives used for communication. Clients
load balance their requests (both reads and writes) across all nodes
in a ccKVS deployment, e.g., by picking a server at random or in a
round-robin fashion.

1https://github.com/icsa-caps/Linearization-Protocol
2https://github.com/icsa-caps/ccKVS
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6.1 Functional overview
Reads: When a client request arrives at a ccKVS server, the server
probes its instance of the symmetric cache. If the requested key
is found, the associated object is retrieved from the cache and the
server directly responds to the client. In case of a miss, the server
determines whether the key belongs to a local or remote KVS
partition. If remote, the server issues a remote access to the server
containing the requested key using a two-sided RDMA primitive.
On the destination side, the server picks up the remote access and
responds with the data to the requesting server. Once the object is
available, either by virtue of being in the local partition or through
a remote access, the server handling the request responds to the
client.
Writes: Similar to reads, write requests are also load balanced
across all nodes in a ccKVS deployment, thus avoidingwrite-induced
load imbalance. If the write request hits in the cache, the server
handling the request executes the steps necessary to maintain con-
sistency across all symmetric caches in accordance with the chosen
consistency protocol. In brief, for the SC protocol, this means imme-
diately propagating the new data to all of the caches, whereas for
the Lin protocol, it requires first invalidating the caches and then
propagating the new data. Regardless of the protocol, the commu-
nication required for maintaining consistency relies on two-sided
RDMA primitives. If the write request misses in the cache, the
server forwards it to the home node (if remote), which performs
the write.

6.2 Cache and KVS Implementation Details
Thread Partitioning. The threads inside a machine in ccKVS are
partitioned into two pools: cache threads and KVS threads. The
cache threads receive the requests from the outside clients and are
responsible for the cache accesses. The back-end KVS is handled
by the KVS threads; thus, in case of a cache miss the request must
be propagated from a cache thread to a KVS thread (local or re-
mote). Finally, the cache threads also communicate with each other
to exchange consistency messages: updates in SC; invalidations,
acknowledgements and updates in Lin. Notably, the KVS threads
do not communicate with each other.
Concurrency Control. Among the cache threads (threads respon-
sible for servicing requests to the most popular items in the request
stream) ccKVS leverages the Concurrent Read Concurrent Write
model (CRCW): any cache thread can read or write any item in the
cache. Despite the mandatory synchronization overheads, we find
that this design maximizes throughput given the demand for the
most popular keys in the dataset.

The KVS design is more involved. Conventional wisdom [33] is
that when the requests are load balanced across all machines, it is
beneficial to partition the KVS at a core granularity (i.e. Exclusive
Reads Exclusive Writes - EREW) to avoid inter-thread synchroniza-
tion on data accesses. Our design, however, employs the CRCW
model for the KVS, despite the fact that, with the skew shaved by
the caches, KVS accesses enjoy an access distribution that closely
approaches uniform.

The reason we choose CRCW is that it allows us to minimize the
connections among the cache threads and the KVS threads in the
deployment. Our experiments show that this is a favourable design

choice, as the benefits of limiting the connectivity, among threads
on different machines, trump the overhead of the concurrency con-
trol in CRCW. We elaborate on these benefits in section 6.4. Finally,
the CRCW concurrency model in KVS increases the ability of cache
threads to batch multiple requests in a single packet, alleviating
network-related bottlenecks. We explore the benefits of this opti-
mization in section 8.5.

To ensure high read/write performance under the CRCW model,
ccKVS synchronizes accesses using sequential locks (seqlocks) [19,
28], which allow lock-free reads without starving the writes. The
seqlock is composed of a spinlock and a version. The writer ac-
quires the spinlock and increments the version, goes through its
critical section, increments the version again and releases the lock.
Meanwhile, the reader never needs to acquire the spinlock; the
reader simply checks the version right before entering the critical
section and right after exiting. If in either case the version is an odd
number, or if the version has changed, then a write has happened
concurrently with the read and thus the reader retries.

The seqlocks are implemented in the header of each object. The
header contains a version number that has a dual role: it is used both
to implement seqlocks and as the Lamport clock for the consistency
protocols. Therefore, we only need to add one Byte to the header
to implement the spinlock. Our seqlock implementation is inspired
by the OPTIK design pattern [18].

All consistency messages are treated as writes, as they need to
modify metadata in the header of the key-value pair. Meanwhile,
reads to the cache do not modify state and thus they happen “lock-
free” and in parallel.
KVS. We use MICA [33] as a state-of-the-art KVS and leverage
the source code for EREW found in [23] to build our KVS. Since
ccKVS adopts the CRCW model, the KVS is concurrently accessed
by all KVS threads; therefore, we implement seqlocks over MICA.
Our evaluation considers both EREW and CRCW design choices.
Finally, we note that Scale-Out ccNUMA and symmetric caching
are not tied to any particular KVS.
Symmetric Cache. The symmetric cache is a data structure that
is concurrently accessed by all the cache threads within a node; it
inherits its structure from our KVS (and thus by extension from
MICA [33] ), and also implements appropriate support for SC and
Lin. We extend the KVS’s API and functionality to provide support
for the consistency protocols (i.e. stable and transient states) and
the consistency related operations (i.e. updates, invalidations and
acknowledgments). For example, a read request under Lin may
hit in the cache but it may not succeed, if the key-value pair is in
Invalid state.

Each key-value pair stored in the cache has an 8B header, where
the necessary metadata for synchronization and consistency are
efficiently maintained. The metadata include: the consistency state
(1B, only used in Lin), the version (i.e. Lamport clock, 4B), the id of
the last writer (1B), a counter for the received acknowledgements
(1B, only used in Lin) and the spinlock required to support the
seqlock mechanism (1B).

6.3 Communication Layer
RDMA. There are two prevalent techniques to build an RDMA-
based KVS: (i) using RDMA Reads via one-sided primitives, similar
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to FaRM [14] or (ii) with Remote Procedure Calls (RPCs) over Un-
reliable Datagram Sends (UD Sends) similarly to FaSST [24]. We
choose the more general RPCs over UD Sends approach, but note
that the Scale-Out ccNUMA paradigm is not constrained by the
choice of the communication primitive and could equally work with
one-sided accesses. For convenience, we utilize the elegant RDMA
wrappers built by Kalia et al. in [23], modifying them wherever
more fine-grained control is required.
Flow Control. The communication between cache threads and
KVS threads is facilitated by a credit-based flow control mecha-
nism [27]. The cache threads have a number of credits for each
remote KVS thread, and the KVS threads have a matching amount
of buffer space for each remote cache thread. Each time a cache
thread sends a request, the credits for the receiving KVS thread are
decremented. Similarly, the credits are incremented whenever the
KVS responds. Because a request always receives a response, the
flow control does not require additional credit update messages;
the responses to the requests are implicitly used as credit update
messages.

In contrast, the communication between cache threads on con-
sistency actions requires explicit credit updates because not all
messages receive a response. For example, a cache thread that
broadcasts updates to all other machines does not receive acknowl-
edgements for those updates. Thus, ccKVS uses explicit credit up-
date messages to inform cache threads of buffer availability across
the symmetric cache nodes. Section 6.4 describes optimizations to
alleviate the network bandwidth overhead of credit updates.
Broadcast Primitive. To facilitate both protocols we implement a
software broadcast, where the sender prepares and sends a separate
message to each receiver. The application sends a linked list of work
requests to the NIC as a batch; all work requests point to the same
payload but each work request points to a different destination (i.e.
Address Handle). When a cache thread intends to send more than
one broadcast, we batch these broadcasts together to the NIC to
amortize the PCIe overheads.

We also implement the broadcast primitive for SC using the
RDMA Multicast, but do not observe any benefit. The semantics
of the RDMA Multicast are that the sender node transmits a single
message to the switch and the switch propagates it to all registered
recipients. Therefore, RDMA Multicast optimizes the send side,
but the bottleneck persists in the receive side. Thus, although ma-
chines have available send-bandwidth to send additional messages,
they are still bandwidth-limited on the receive side. In practice,
using RDMA Multicast slightly decreases ccKVS performance; we
attribute this decrease to the switch’s multicast implementation
overheads.

6.4 Performance Optimizations
Reducing Connections. One of our goals in implementing ccKVS
is to maintain RDMA scalability by limiting the number of threads
that communicate with each other. Despite using the more scalable
UD transport, all-to-all communication at the thread level can still
prove challenging to scale because of the required buffer space
and the posted RDMA Receives that scale linearly with connection
count [24].

Partitioning the threads (Section 6.2) works toward limiting the
extent of all-to-all communication, as KVS threads of different nodes
do not need to communicate with each other. Additionally, we bind
each cache thread to exchange messages with just two threads in
each remote machine: one cache thread and one KVS thread. This
optimization is enabled by the use of the CRCW model in both the
symmetric cache and the KVS, since each thread has full access to
the dataset (cache or KVS, respectively).

Reducing the connections minimizes the required posted RDMA
Receives and the required buffer space that is registered with the
NIC. As discussed in section 6.2, transitioning the KVS from the
EREW to the CRCW model incurs a concurrency control overhead.
However in our experiments we measure a performance increase
of up to 10% when employing CRCW instead of EREW, which we
attribute to the reduction of the connections between cache and
KVS threads.
RDMA optimizations. Using the UD transports allows us to per-
form opportunistic batching in all communication with the NIC
to amortize the PCIe overheads. We post Receive and Send work
requests as linked lists and notify the NIC about their existence
through an MMIO write. The NIC is then able to read these requests
in bulk, amortizing the PCIe overheads. In order to additionally
alleviate PCIe overheads, we inline payloads inside their respective
work requests, whenever the payloads are small enough (less than
189 Bytes), such that the NIC does not need a second round of DMA
reads to fetch the payloads after reading the work requests.

We follow the guideline to use multiple Queue Pairs (QPs) per
thread [23]; for example, a cache thread uses different QPs for the
remote requests, the consistency messages and the credit updates.
Furthermore, we utilize the capability to use Selective Signaling
when sending messages: the sender needs to poll for only one
completion every time it sends a fixed-size batch of messages. We
get additional performance by fine-tuning the Selective Signaling
batches to match the size of the queues, such that one completion
is created every time the Send Queue is filled.
Flow Control optimizations. To prevent flow control from be-
coming an important factor in network bandwidth consumption,
we apply a batching optimization on the credit updates: we do not
send a credit update for each received message; rather, we send a
credit update after receiving a number of consistency messages to
amortize the network cost of the credits. Additionally, the credit
update messages have no payload (i.e. they are header-only mes-
sages), reducing the required PCIe transactions and network traffic
for sending and receiving them. In Section 8 we show that through
these optimizations the overhead of the credit update message
becomes trivial.

7 METHODOLOGY
In this section, we first present the designs that we evaluate and
then describe our evaluation infrastructure.

7.1 Evaluated Systems
We evaluate Scale-out ccNUMA by comparing it with a state-of-the-
art skew mitigation approach based on FaSST [23]. Although FaSST
is designed for transaction processing, it has two key attributes
that make it a good baseline for a system to tackle skew: it offers a
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NUMA abstraction like FaRM [14] and RackOut [38], and it lever-
ages several design techniques to achieve high performance using
RDMA [24]. Wemodify FaSST to implement efficient single-key Get
and Put operations by stripping off all of the transaction processing
overheads. We apply all of our optimizations (discussed in Section
6.4) to maximize the performance of this baseline and negate any
implementation-specific advantages of ccKVS. The performance
of our baseline system is on par with the reported FaSST results
(subject to different evaluation setups).
We evaluate three flavours of the FaSST-based baseline design:

• Base-EREW: has its KVS partitioned at a core granularity
similarly to MICA [33]. We expect this system to suffer under
a skewed distribution as the performance will be limited by
the core responsible for the hottest shard.

• Base: has its KVS partitioned at a server-granularity (CRCW).
Compared to Base-EREW, we expect this system to perform
better under skew, while still being bottlenecked by the
server with the hottest shard.

• Uniform: represents the performance of Base under a uni-
form distribution. This establishes an upper bound on the
performance of baseline designs.

We build ccKVS by adding symmetric caches on top of Base.
More specifically, we add a cache to each node and implement
a system as described in Section 6 that supports the SC and Lin
consistency protocols specified in Section 5.2. We refer to these
variants of ccKVS as ccKVS-SC and ccKVS-Lin, respectively. We
configure the symmetric cache size to 0.1% of the total dataset (250K
objects of up to 1KB each, with overall memory footprint of up to
1GB). In accordance with Figure 3, the expected cache hit ratio is
46%, 65% and 69% for skew exponents of α equal to 0.9, 0.99 and
1.01, respectively.

7.2 Evaluation Setup
Infrastructure:We conduct our experiments on an isolated cluster
of 9 servers interconnected via a 12-port Infiniband switch (Mel-
lanox MSX6012F-BS). Each machine runs Ubuntu server 14.04 and
is equipped with two 10-core CPUs (Intel Xeon E5-2630) with 64
GB of system memory and a single-port 56Gb Infiniband NIC (Mel-
lanox MCX455A-FCAT PCIe-gen3 x16) connected on socket 0. Each
CPU has 25 MB of L3 cache and two hyper-threads per core. We
disable turbo-boost, pin threads to cores and use huge pages (2MB)
for both the KVS and the cache.
Workloads: Our evaluation is performed on workloads that follow
a Zipfian access distribution. We use the skew exponent α = 0.99
as the default value (as used in YCSB [10]) and also study α =
{0.90, 1.01}. For comparison, we also assess a uniform access dis-
tribution. We evaluate both a read-only workload and workloads
with modest write ratios, which are representative of large-scale
data serving deployments (e.g. Facebook reports a write ratio of
0.2% [7]). The KVS consists of 250 million distinct key-value pairs,
thus making each node responsible for nearly 28 million keys. Un-
less stated otherwise, we use keys and values of 8 and 40 bytes,
respectively, thus allowing a direct comparison with FaSST [24].
Finally, we apply a request coalescing optimization only in Sections
8.4, 8.5 and 8.6.
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Figure 8: Throughput comparison for a read-only workload
with varying skew. [9 nodes]

8 EVALUATION
8.1 Read-Only Performance
We first evaluate the performance of all the designs for a read-
only workload. Figure 8 shows the performance of Base-EREW,
Base and ccKVS under three different skewed distributions (α =
0.9, 0.99, 1.01). The results are similar for all three distributions and
thus we focus our discussion on α = 0.99.

As expected, Base-EREW has poor performance and achieves
only 95 million requests per second (MRPS), as the whole system
is bottlenecked by the throughput of the core responsible for the
hottest shard. On the other hand, Base achieves 215 MRPS, signifi-
cantly mitigating the skew, as the bottleneck shifts from the hottest
core to the hottest server. In fact, the performance of Base is within
10% of Uniform, which achieves 240 MRPS. It is worth noting that
this performance gap is strongly correlated with the skew exponent
(α ) and the number of servers in the deployment.

ccKVS achieves 690MRPS, which is 3.2× higher than the through-
put of Base and 2.85× higher than Uniform. The significantly higher
throughput of ccKVS compared to Uniform highlights the fact that
the baseline systems are network limited. ccKVS is able to achieve
considerably higher throughput by avoiding the need to access
remote nodes for cached objects, thus reducing network bandwidth
pressure. ccKVS also benefits from the fact that symmetric caches
allow all the nodes in the KVS to serve requests for hot objects,
thus distributing the load evenly among them.

To better understand the reasons behind the significant perfor-
mance improvement provided by ccKVS, we analyze its throughput.
Figure 9 shows the breakdown of ccKVS throughput in terms of
the number of cache hits and misses for a read-only workload with
varying skew. In general, as the skew increases, the cache hit rate
will also increase. Cache hits require compute resources, whereas
cache misses mostly require network resources due to remote KVS
access. We observe that the cache-miss throughput of ccKVS is
equal to the entire throughput of Uniform and that the cache-miss
throughput stays constant even though the cache miss rate is higher
with lower skew exponents. This leads to the conclusion that both
ccKVS and Uniform are network bound. Meanwhile, the cache hit
throughput increases as the cache hit rate increases, which hints
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Figure 9: Break-down of completed requests in ccKVS for a
read-only workload with varying skew. [9 nodes]

that CPU is not the bottleneck. We confirm these hypotheses in
section 8.4.

8.2 Performance under writes
We now analyze the performance of ccKVS in the presence of
writes. Figure 10 shows the throughput of the evaluated systems
for varying write ratios with α = 0.99. None of the baselines are
sensitive to the write ratio, as they are all bottlenecked by the
network. Note that in the baseline design, the network traffic does
not changewith varyingwrite ratio as remote read and remotewrite
requests both consume the same amount of network bandwidth.
In contrast, the throughput for ccKVS decreases with increasing
write ratio. This decrease is caused by the additional consistency
actions for every cache write, such as broadcasting updates over
the network. These actions consume network resources and thus
diminish the throughput of the system, which is network-bound
even in the read-only case (Section 8.1).

However, for realistic write ratios, such as 0.2% for Facebook
workload [7], both ccKVS-SC and ccKVS-Lin provide throughput
within 3% of a read-only workload. In fact, ccKVS outperforms Base
even for write ratios as high as 5%, while providing the strongest
consistency guarantee (per-key linearizability). This is a particularly
important result which shows that contrary to conventional wisdom,
it is possible to achieve high throughput in the presence of aggressive
replication under strong consistency guarantees.

To further analyze the throughput of ccKVS with increasing
write ratios, we show the breakdown of the network traffic for
ccKVS-SC and ccKVS-Lin for 1% and 5% write ratios in Figure 11.
As the write ratio increases, consistency actions (i.e. updates, in-
validates and acks) claim an increasingly larger percentage of the
available network bandwidth. As a result, less bandwidth is avail-
able for remote KVS accesses triggered by cache misses. Since the
system is network-bound, a reduction in available bandwidth for
remote KVS accesses proportionately lowers total system through-
put. Finally, we note that, thanks to batching of credits (Section 6.4),
flow control consumes a negligible amount of bandwidth.
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8.3 Sensitivity to Object Size
We next study the performance of ccKVS with varying object sizes.
Figure 12 shows the throughput of ccKVS in comparison to Base
for various object sizes with 0% and 1% writes and α = 0.99.

In the read-only scenario (0% writes), the relative performance
of Base and ccKVS follows the same trend irrespective of the object
size: ccKVS still outperforms Base by over 3× for bigger objects.
With writes, however, increasing the object size lowers the perfor-
mance difference between ccKVS-Lin and ccKVS-SC. This occurs
because with large object sizes, the bulk of network bandwidth
is consumed by the data payloads and only a small fraction of
the bandwidth is spent on consistency messages (i.e. invalidations
and acknowledgements) inherent in ccKVS-Lin. This result demon-
strates that for workloads with large objects, it is possible to provide
stronger consistency guarantees at very low performance overhead.

8.4 System Bottlenecks
In order to identify the system bottlenecks, we analyze the hardware
counters for the NIC, PCIe and memory3. We also profile ccKVS
(using the Zoom profiler [1]) and use busy-wait counters within
the ccKVS. After inspecting all measurements, we observe that

3We used the Mellanox’s NEO-Host suite [34] for NIC profiling and Intel’s pcm [2] for
the PCIe and memory measurements.
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Figure 12: Read-only and 1%writes while varying object size.
[9 nodes, α = 0.99]

bottleneck shifts depending on the network packet size. We identify
two distinct cases: big objects that result in big packet sizes, and
small objects that result in small packet sizes.

For big objects, network utilization in ccKVS closely approaches
the available network bandwidth, while the rest of the resources
remain underutilized; thus, we can safely infer that the bottleneck
in this case is the available network bandwidth. On the other hand,
with small objects, CPU, PCIe, memory bandwidth and network
bandwidth are all underutilized. To our surprise, the bottleneck in
the case of small object sizes appears to be the packet processing
rate of the switch.

To validate our claim, we conduct the following experiment:
we measure the maximum packet rate using Mellanox’s micro-
benchmark (ib_send_bw), when connecting two machines directly
(i.e. without the switch) and when connecting them through the
switch. We observe that the maximum rate of sent/received packets
per second is significantly higher (by up to 25%), when the servers
are connected directly.4 The results hold in ccKVS as well.

For simplicity, throughout the paper we assume that the bottle-
neck is in the network in both cases, as the limited switch processing
rate for small packets can be viewed as an artificial network band-
width limitation. We measure the maximum achievable bandwidth
to be around 21.5 Gbps for small packets, while the NIC nominally
supports 54 Gbps.

8.5 Request Coalescing
In order to demonstrate and alleviate the bottlenecks imposed by
transmitting small packets, we enable request coalescing, whereby
multiple requests destined to the same node are opportunistically
coalesced into a single network packet. We only apply request
coalescing to cache misses (requests and the associated responses),
since these dominate the network traffic in ccKVS at modest write
ratios.

Figure 13a shows the network utilization of ccKVS with and
without request coalescing. In the figure, the network utilization is
broken down into packet header and payload (i.e. data traffic), illus-
trated with striped and solid bars respectively. Coalescing multiple
requests results in larger network packets, shifting the bottleneck
4Our findings were confirmed by the manufacturer of the switch.

from the switch’s packet processing rate to network bandwidth. As
a result, the optimized ccKVS that supports coalescing increases
the throughput by almost 3× for the 40B values.

For a fair comparison, we also add support for coalescing to Base
and we present the optimized performance of ccKVS and Base in
Figure 13b, for read-only and 1% writes, while varying the object
size. As expected, comparing the results presented in Figures 12
and 13b, both ccKVS and Base enjoy increased throughput for small
object sizes when coalescing is applied. However, for larger objects
coalescing is less beneficial as the system is already bottlenecked
by the network bandwidth.

In detail, examining the effect of coalescing for small (40B) ob-
jects, we observe that the performance of Base is almost 950 MRPS
for both read-only and 1% writes workloads, which yields an im-
provement of over 4× relative to the no-coalescing Base. In turn,
ccKVS achieves a 3× improvement in performance with coalescing
enabled, delivering over 2 billion requests per second, which is
more than twice the performance of Base with coalescing.

The benefits of coalescing diminish in ccKVS on the 1% writes
workload, because a fraction of network traffic carries consistency
messages, which we do not coalesce. Nonetheless, even with writes,
request coalescing improves the performance of the SC (Lin) variant
of ccKVS by 2.6× (2×) over no-coalescing.

8.6 Latency
Figure 13c illustrates the average and the 95-percentile latency of a
read-only workload (ccKVS) and a workload with 1% writes (ccKVS-
SC and ccKVS-Lin) with varying load and with request coalescing
enabled. We observe that, even at high loads, tail latency is about an
order of magnitude lower than the target of 1ms for a typical KVS
service [30]. In fact, at maximum load, the 95th percentile of both
read-only and ccKVS-SC (1% writes) is quite close to the average
latency. However, when ccKVS-Lin is at high load, its 95-percentile
is noticeably higher than its average latency, which is expected
since writes in ccKVS-Lin are blocking (i.e. sending invalidations
and waiting for acknowledgments is in the critical path).

8.7 Analytical model
Since our 9-machine deployment prevents us from directly evalu-
ating the scalability of ccKVS, we build an analytical model that
models the throughput of ccKVS. The model leverages the fact
that ccKVS is bottlenecked by the network bandwidth (Section 8.4);
therefore, the throughput of ccKVS is inversely proportional to the
overall network traffic.

There are two sources of network traffic. The first source is due to
requests that miss in the cache, whose keys are mapped to a remote
node. A request is a cache miss with probability (1 − h), where h
denotes the hit ratio; the cache miss is mapped to a remote node
with probability 1 − 1

N , where N denotes the number of servers. A
remote request generates two messages: one request and one reply;
the total size of these two messages, in bytes, is denoted as BRR .
On average, the cache miss-related traffic (TRCM ) generated per
request is given by:

TRCM = (1 − h) ∗ (1 −
1
N
) ∗ BRR (1)

The second source of traffic are the messages for consistency
actions, generated by hot writes (i.e., those writes that hit in the
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Figure 13: Analysis of coalescing and latency. [9 nodes, α = 0.99]

cache). Consistency actions vary depending on the protocol. Con-
sistency actions in Lin include invalidations, acknowledgements
and updates; these three messages amount to BLin bytes, with each
hot writing generating (N − 1) of each of these. Additionally, the
probability of a hot write is given by h ∗w , where w denotes the
write ratio. Therefore the overall consistency-related traffic (TRLin )
generated per request in ccKVS-Lin, is given by:

TRLin = h ∗w ∗ (N − 1) ∗ BLin (2)

From 1 and 2, each request in ccKVS-Lin generates TRCM +
TRLin bytes worth of traffic. Because ccKVS is network-limited, the
throughput (i.e. the number of requests per second) of a ccKVS-Lin
server can be computed as the available network bandwidth (BW )
divided by the bytes required per request. Naturally, to compute
the total throughput (TLin ) of ccKVS-Lin, we need to multiply by
the number of servers as shown in equation 3.

TLin = N ∗
BW

TRCM +TRLin
(3)

In contrast to Lin, a hot write in ccKVS-SC generates only (N −1)
updates, where each update requires BSC bytes to be transferred
over the network. In total, the traffic of a hot write amounts to
(N −1) ∗BSC bytes in ccKVS-SC. Therefore, the overall consistency
related traffic (TRSC ) generated by a request in ccKVS-SC, is given
by:

TRSC = h ∗w ∗ (N − 1) ∗ BSC (4)
From 1 and 4, we can compute the total throughput (TSC ) of

ccKVS-SC as shown in 5.

TSC = N ∗
BW

TRCM +TRSC
(5)

In the Uniform design, network traffic is generated for requests
that map to a remote node. Requests map to a remote node with
the probability 1 − 1

N and such requests generate a request and a
reply message, similar to cache misses in ccKVS, that amount to
BRR bytes transferred over the network. Therefore, the total traffic
(TRU ) generated by a request in Uniform is given by:

TRU = (1 −
1
N
) ∗ BRR (6)

And the total throughput (TU ) of Uniform is as shown in Equation 7.

TU = N ∗
BW

TRU
(7)

8.7.1 Scalability study. In the presence of writes, we antici-
pate the per-server throughput of ccKVS to degrade as the number
of servers increase, due to the proportional increase in consistency
traffic. We employ the proposed analytical model to conduct a
scalability study and understand the extent of this degradation.

To validate the model with our existing setup, we feed the model
with the same parameters as in our implementation with request
coalescing disabled. We set the cache hit ratio (h) to 65% and we set
the message sizes with the exact numbers used in our evaluation
for small objects (Sections 8.1, 8.2): BRR = 113 bytes, BSC = 83
bytes and BLin = 183 bytes (including network headers). Finally,
we set the available network bandwidth (BW ) at 21.5 Gbps, which
is the network bandwidth observed for the configuration with small
objects (Figure 13a).

Figure 14 shows the estimated throughput of Uniform, ccKVS-
SC and ccKVS-Lin, when scaling the number of servers of the
deployment from 5 to 40, while fixing the write ratio at 1%. As
expected, the scaling of Uniform is almost perfectly linear. However,
ccKVS-SC and ccKVS-Lin scale sublinearly with the number of
servers; this is because, as the number of servers increases, the
consistency traffic increases too. ccKVS-Lin scales more poorly than
ccKVS-SC, because ccKVS-Lin requires more consistency messages
due to the two-phase nature of its protocol.

We also plot the measured throughput of our system for up
to 9 machines (i.e. the size of our deployment). As we can see,
the analytically computed throughput is similar to the measured
throughput for both ccKVS and Uniform. With 9 servers, ccKVS-SC
and ccKVS-Lin are estimated to achieve 628MRPS and 554MRPS,
respectively, which is within 2% of the measured throughput in
our implementation (639 MRPS for ccKVS-SC and 554 MRPS for
ccKVS-Lin).

In general, we find that the analytical model predicts the per-
formance of ccKVS designs with sufficient accuracy. Using the
validated model, we find that the performance of both ccKVS-SC
and ccKVS-Lin is significantly better than the upper bound for the
baseline (i.e. Uniform) for moderately sized deployments with a 1%
write ratio.

8.7.2 When does Symmetric Caching break even? Next,
we use our analytical model to answer the following question: for
a deployment of X servers, what is the write ratio at which ccKVS
yields the same throughput as Uniform. We call this write ratio
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Figure 14: ccKVS scalability study using the model (dashed)
and real-system validation (solid). [1% writes, α = 0.99]

the break-even write ratio. In order to calculate the break-even
write ratio for ccKVS-SC, we equate the throughput of Uniform,TU
(Equation 5), with the throughput of ccKVS-SC, TSC (Equation 7),
and solve for the write ratio. We follow the same procedure to
calculate the break-even write ratio for ccKVS-Lin.

Figure 15 illustrates the break-even write ratio for ccKVS-SC and
ccKVS-Lin deployments of up to 40 servers. For example, a ccKVS-
SC deployment with 20 servers will yield the same performance as
Uniform at a write ratio of 8%. Therefore, a 20-server deployment
with write ratio below 8% can benefit from employing ccKVS-SC.

To validate the model, Figure 15 also depicts the measured break-
even write ratios for actual deployments of up to 9 machines. We
observe that the trend is similar for both the model and actual
measurements; however, the real system can sustain slightly higher
break-even write ratios than what the model predicts. The reason
behind this slight discrepancy is that, as noted in Section 8.4, the ac-
tual bottleneck for small packets is in the switch packet processing
and, because the update messages in Lin and SC are big (contain
both key and value) the system achieves higher network bandwidth
than predicted for high write ratios.

As expected, the break-even write ratios for ccKVS-Lin are con-
sistently lower than those for ccKVS-SC. Furthermore, as the num-
ber of servers increases, the break-even write ratio decreases in
both consistency models. The decrease happens because the con-
sistency traffic increases linearly with the number of servers, since
a write to a hot object must be propagated to all servers. With
40 servers, the break-even write ratio is almost 4% for ccKVS-SC
and 1.7% for ccKVS-Lin. This indicates that in a moderately sized
deployment with low write ratios, ccKVS should outperform the
baseline while maintaining strong consistency guarantees; however,
at higher write ratios or in larger deployments, the performance
benefit of ccKVS may vanish.

9 DISCUSSION
Scalability. We have established that the benefits of symmetric
caching decrease with increasing size of the deployment. However,
this constraint does not strictly prohibit the application of symmet-
ric caching in large deployments. To scale beyond a rack-scale or
small cluster sized deployment, we believe our ideas can be applied
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Figure 15: Break-even write ratio model (dashed) and real-
system validation (solid) for up to 9 nodes. [α = 0.99]

by simply partitioning bigger deployments into smaller Scale-Out
ccNUMA clusters, each of which can independently apply symmet-
ric caching. For example, a KVS that spans 100 nodes can be split
into five 20-machine groups (similar to [38]), where each group
employs symmetric caching for its portion of the KVS.
Resilience.We do not handle failures in the ccKVS design. How-
ever, existing resilience mechanisms, such as the one proposed in
FaRM [15], can be readily applied to ccKVS, and, more generally, to
Scale-Out ccNUMA. Most generally, we note that the principle ob-
jective of this work is to demonstrate that caching with aggressive
replication presents a performance opportunity even with strong
consistency models. Nonetheless, there is interesting interplay be-
tween replication, resilience and the strength of the consistency
model, which we leave for future work to explore.

10 RELATEDWORK
Data replication is often used by service providers to improve
system performance, particularly due to load imbalance. While
conceptually straight forward – replicate hot data across some
number of servers [20, 21] – it comes with a number of practical
shortcomings as detailed in [37]. These include determining the
appropriate level of replication granularity (object, partial shard
or entire shard), tracking replicas, maintaining replicas consistent,
and informing clients of the replica’s locations. The latter can be
particularly onerous if the number of clients is much greater than
that of servers, which is often the case. In practice, these problems
tend to have ad-hoc solutions requiring complex engineering and
with significant system-level overheads, hence spurring the recent
work on alternative approach using fast remote access and caching,
as discussed in Section 2.2.

Our work takes the best features of replication, caching and fast
remote access. Compared to traditional replication, our solution
allows fine-granularity replication of individual keys and does not
require client-side knowledge of replicas while affording strongly
consistency across all replicas.
Distributed Shared Memory (DSM). In principle, a distributed
KVS is not all that different from a DSM [9, 26, 31, 41]. The under-
lying problem boils down to enforcing a consistency model in the
presence of replication. However, there is one important difference:



EuroSys ’18, April 23–26, 2018, Porto, Portugal V. Gavrielatos and A. Katsarakis et al.

the workloads.Whereas the goal of DSM is to support scalable paral-
lel programs, the goal of KVS is to support data-serving workloads.
Whereas the former is characterized by CPU-intensive programs
that ideally do not spend all their time waiting for memory, the
latter does little more than data accesses to main memory. Whereas
locality in DSM is because of program working sets, locality in a
KVS can be explained by a skewed access distribution.

These workload differences and differences in sharing patterns
translate into significant differences in the design of caches and the
consistency protocols. Particularly, the popularity skew naturally
dictates that only the popular items should be cached. Similarly, it
dictates that there is no need to have different items in different
caches, thus avoiding the need to track sharers (e.g., through a
directory) or migrate pages.
Cache Coherence. In shared memory multiprocessors, the local
caches of each processor are typically kept coherent using hardware
based coherence protocols [40]. Our approach is inspired by the
effectiveness of coherent caches in such architectures. Furthermore,
the per-key consistency guarantees we offer are similar to the per-
memory location guarantees offered by coherence protocols.5 On
the other hand, as discussed in Section 3, the protocols we employ
(update based, full distributed) are very different from the ones
typically employed in shared memory multiprocessors (invalidation
based, serializing).

11 CONCLUSION
Popularity skew is a well-known bottleneck in existing KVS de-
ployments. Existing skew-mitigation techniques are limited in their
efficacy when applied to a distributed in-memory KVS. This work
embraces skew as an opportunity through aggressive caching of
popular items across all nodes of the KVS. While aggressive replica-
tion is generally thought to be a challenge in scale-out settings due
to the perceived cost of keeping replicas consistent, we show other-
wise. Using a low-overhead symmetric cache architecture combined
with two fully-distributed variants of strongly consistent protocols,
we show that our prototype ccKVS outperforms a state-of-the-art
KVS on workloads with a moderate write ratio. This strong result
paves the way for future work on enforcing strong consistency
without sacrificing performance in scale-out settings.
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