
Confluence: Unified Instruction Supply
for Scale-Out Servers

Cansu Kaynak
EcoCloud, EPFL

Boris Grot
University of Edinburgh

Babak Falsafi
EcoCloud, EPFL

ABSTRACT
Multi-megabyte instruction working sets of server work-
loads defy the capacities of latency-critical instruction-
supply components of a core; the instruction cache (L1-
I) and the branch target buffer (BTB). Recent work has
proposed dedicated prefetching techniques aimed sepa-
rately at L1-I and BTB, resulting in high metadata costs
and/or only modest performance improvements due to
the complex control-flow histories required to effectively
fill the two components ahead of the core’s fetch stream.

This work makes the observation that the metadata
for both the L1-I and BTB prefetchers require essen-
tially identical information; the control-flow history.
While the L1-I prefetcher necessitates the history at
block granularity, the BTB requires knowledge of indi-
vidual branches inside each block. To eliminate redun-
dant metadata and multiple prefetchers, we introduce
Confluence – a frontend design with unified metadata
for prefetching into both L1-I and BTB, whose contents
are synchronized. Confluence leverages a stream-based
prefetcher to proactively fill both components ahead of
the core’s fetch stream. The prefetcher maintains the
control-flow history at block granularity and for each
instruction block brought into the L1-I, eagerly inserts
the set of branch targets contained in the block into the
BTB. Confluence provides 85% of the performance im-
provement provided by an ideal frontend (with a perfect
L1-I and BTB) with 1% area overhead per core, while
the highest-performance alternative delivers only 62%
of the ideal performance improvement with a per-core
area overhead of 8%.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles - cache
memories

Keywords
Instruction streaming, Branch prediction

Appears in proceedings of the 48th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), 2015.

1. INTRODUCTION
With the slowdown in Dennard scaling [11, 16], im-

proving server efficiency has become the primary chal-
lenge in large-scale IT infrastructure and datacenters.
Many online services ranging from data and web serving
to analytics are run in memory due to tight latency de-
mands, requiring processors that can serve in-memory
data with maximum throughput while maintaining low
tail response latencies. Recent research identifies perfor-
mance and efficiency bottlenecks in conventional server
processors running scale-out online services, advocating
for specialized manycore server processors [13, 27] that
improve performance by an order of magnitude given
the same silicon and power budgets and memory band-
width with no modifications to software. Google has
corroborated these results for their online services [20]
with products announced (e.g., Cavium ThunderX [9])
as a first stepping stone in designing specialized server
processors.

The key source of inefficiency in server processors is
instruction supply [1, 13, 17, 20, 22, 30]. Modern server
workloads, unlike desktop and scientific workloads, of-
ten run on deep software stacks of over a dozen layers
of services. The result is multi-megabyte instruction
working sets, commensurately large per-core control-
flow state, incurring high latency on the execution’s
critical path and accounting for a large fraction of the
overall silicon budget. Moreover, while there is much in-
terplay among the instruction-supply mechanisms (e.g.,
instruction prefetching and branch prediction), these
mechanisms are implemented standalone. Finally, all
instruction-supply mechanisms are duplicated per core
in manycore server processors leading to major silicon
overprovisioning.

There is a myriad of techniques to improve instruc-
tion supply in servers. A brute-force approach to im-
prove frontend performance is larger L1-I caches (e.g.,
Cavium ThunderX) or multi-level branch target buffers
(BTB) [3, 5, 31], which exacerbate the silicon over-
provisioning and are limited in effectiveness. Stream-
based prefetchers to hide the latency of instruction
fetches from lower levels of the cache hierarchy ap-
proach the performance of a perfect L1-I, but incur pro-
hibitive storage costs due to storage-intensive control-
flow metadata required to make predictions [14, 15].
Recent proposals advocate virtualizing [5] and/or shar-
ing instruction-supply metadata [21] among multiple

cores. The state-of-the-art stream-based prefetcher,
SHIFT [21], eliminates the majority of fetch stalls
in servers by proactively streaming blocks that are
likely to be accessed into the L1-I by leveraging shared
instruction-supply metadata. Unfortunately, prior work
falls short of providing a fully integrated approach to in-
struction supply within or across cores.

We present Confluence, an integrated architecture for
instruction supply that exploits the interplay between
instruction fetch and branch target prediction, the two
most resource-intensive components in instruction sup-
ply in manycore server processors. We observe that
timely proactive fetch of instructions into the L1-I paves
the way for doing the same for the relevant instruction-
supply metadata (i.e., branch targets) as there is a
one-to-one correspondence between a branch instruc-
tion and its target metadata. Based on this insight,
Confluence leverages a single stream-based prefetcher
to fill both the L1-I and the BTB, effectively unifying
the two sets of metadata and eliminating the associated
storage redundancy.

An important challenge Confluence addresses is in
managing the disparity in the granularity of control-flow
metadata required by each of the structures it manages.
Whereas an L1-I prefetcher operates at instruction-
block granularity, and hence needs to track block-grain
addresses, a BTB must reflect instruction-grain infor-
mation of individual branches. Confluence overcomes
this problem through AirBTB–a block-based BTB or-
ganization with an eager insertion policy. Whenever
a block is prefetched into the L1-I, it is scanned for
branch instructions and the entire set of targets asso-
ciated with the branch instructions in the instruction
block is inserted into AirBTB as a block. Our specific
contributions are as follows:

• We show that conventional frontend designs for
high-performance instruction supply incur massive
per-core storage costs yet fall far from optimal due
to their inability to eliminate both L1-I and BTB
misses in a timely manner.

• We introduce Confluence, a frontend architecture
that uses a single set of control-flow metadata
shared across cores and virtualized in LLC, main-
tained at instruction-block granularity to fill both
the L1-I and the BTB. Confluence leverages a
stream-based prefetcher to proactively fill both the
L1-I and the BTB ahead of the fetch stream, thus
hiding the fill latency from the core.

• We propose AirBTB, a lightweight BTB design for
Confluence that uses a block-based organization to
reduce tag storage costs, lower BTB bandwidth re-
quirements, and provide high hit rates by exploit-
ing spatial locality in the instruction stream. Com-
pared to a conventional BTB with minimal per-
core storage, Confluence can eliminate 93% of the
misses (32% higher than a state-of-the-art BTB
prefetcher [5]), while a prohibitively large private
BTB provides 95% miss coverage.

0

20

40

60

B
TB

 M
PK

I

1K 2K 4K 8K 16K 32K

Figure 1: BTB MPKI as a function of BTB ca-
pacity (in kilo entries).

• We show that Confluence delivers 85% of the per-
formance benefits of an ideal design (perfect L1-I
and BTB combination) with only 1% area over-
head per core, while the best alternative, a two-
level private BTB with an 8% area overhead per
core, delivers only 62% of the ideal performance
improvement.

2. MOTIVATION
In this section, we briefly describe the state-of-the-art

mechanisms to alleviate frequent misses in the BTB and
L1-I. We quantify their performance benefits and asso-
ciated storage overheads, and demonstrate that there is
a need for an effective and low-cost unified mechanism
for storing and managing instruction-supply metadata.

2.1 Conventional Instruction-Supply Path
Maximizing the core performance necessitates sup-

plying the core with a useful stream of instructions
to execute continuously. To do so, modern processors
employ branch predictors accommodating conditional
branch history and branch target history to predict the
correct-path instructions to execute.

High-accuracy branch prediction necessitates captur-
ing the prediction metadata of the entire instruction
working set of a given application in the predictor ta-
bles. Unfortunately, server applications with large in-
struction working sets exacerbate the storage capacity
requirements of these predictors. Figure 1 shows the
BTB miss rate as a function of the total number of BTB
entries per core. A BTB miss occurs when an entry
for a predicted taken branch is not found in the BTB.
Most server workloads used for this study (detailed in
Section 4) require up to 16K BTB entries to fully cap-
ture all branches in their instruction working sets, while
OLTP on Oracle benefits from even 32K entries, cor-
roborating prior work [3, 5, 18]. The storage capacity
requirement of a 32K-entry BTB is around 280KB (Sec-
tion 4 details the cost).

Recent work has examined hierarchical BTBs that
combine a small-capacity low-latency first level with a
large-capacity but slower second level. The state-of-the-
art proposals combine a two-level BTB with a dedicated
transfer engine, which we refer to as a BTB prefetcher,
that moves multiple correlated entries from the second
level into the first level upon a miss in the first-level
BTB. One approach, called PhantomBTB, uses tempo-

ral correlation, packing several entries that missed con-
secutively in the first level into blocks that are stored
in the LLC using predictor virtualization [5]. Another
approach, called Bulk Preload and implemented in the
IBM zEC12, moves a set of spatially correlated regions
(4KB) between a dedicated 24K-entry second-level BTB
structure and the first level [3].

For both two-level designs, second-level storage re-
quirements are more than 200KB per core. Moreover,
accesses to the second level are triggered by misses in
the first level, exposing the core to the latency of the
second-level structure. For PhantomBTB, this latency
is a function of NOC and LLC access delays, likely run-
ning into tens of cycles for a manycore CMP. In the case
of bulk preload, this latency is in excess of 15 cycles [3].

While predicting the correct-path instructions to ex-
ecute is essential for high performance, serving those
instructions from the L1-I cache is also performance-
critical in order not to expose the core to the long la-
tencies of lower levels of the cache hierarchy. Doing so
necessitates predicting the instructions that are likely
to be fetched and proactively fetching the correspond-
ing instruction blocks from the lower levels of the cache
hierarchy into the L1-I (or prefetch buffers). To that
end, fetch-directed prefetching (FDP) [32] decouples the
branch predictor from the L1-I and lets the branch pre-
dictor run ahead to explore the future control flow. The
instruction blocks that are not present in the L1-I along
the predicted path are prefetched into the L1-I.

Although huge BTBs are effective at accommodat-
ing the target addresses for all taken branches in the
instruction working set, when leveraged for FDP, they
fall short of realizing the performance potential of a
frontend with a perfect L1-I (i.e., L1-I that always
hits) [15]. FDP’s limitations are two-fold. First, be-
cause the branch predictor generates just one or two
predictions per cycle, its lookahead is limited and is of-
ten insufficient to hide the long access latency to the
lower levels of the cache hierarchy, which includes the
round-trip time to the LLC and the LLC access itself.
Second, because the branch predictor speculatively runs
ahead of the fetch unit to provide sufficient prefetch
lookahead, its miss rate geometrically compounds, in-
creasingly predicting the wrong-path instructions. As
a result, even with a perfect BTB, FDP significantly
suffers from fetch stalls.

2.2 Covering L1-I Misses with Stream-Based
Prefetching

To overcome FDP’s lookahead and accuracy limita-
tions, the state-of-the-art instruction prefetchers [14,
15, 21, 24] exploit temporal correlation between instruc-
tion cache references at block granularity. The con-
trol flow in server applications tends to be highly re-
curring at the request level due to serving the same
types of requests perpetually. Because of the recurring
control flow, the core frontend generates repeating se-
quences of instruction addresses, so-called temporal in-
struction streams. For example, in the address sequence
A,B,C,D,A,B,C,E, the subsequence A,B,C is a tempo-
ral stream. The state-of-the-art instruction prefetchers

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1 1.02 1.04 1.06 1.08 1.1

R
el

at
iv

e
Pe

rf
or

m
an

ce

Relative Area

Ideal

FDP
PhantomBTB+FDP

2LevelBTB
+SHIFT

2LevelBTB
+FDP

Figure 2: Relative performance & area overhead
of conventional instruction-supply mechanisms.

exploit temporal correlation by recording and replaying
temporal instruction streams consisting of instruction
block addresses. This way, every prediction made by
the prefetcher triggers the fetch of a whole instruction
block into L1-I. Because of the high recurrence in the
control flow, temporal instruction streams span several
hundreds of instruction blocks [14]. As a result, stream-
based instruction prefetchers can eliminate over 90% of
the L1-I misses, providing near-perfect L1-I hit rates
and performance [14].

However, the aggregate storage requirements of
stream-based prefetchers scale with the application
working set size and core count, commonly exceeding
200KB per core. To mitigate the storage overhead,
the most recent work, SHIFT [21], proposes sharing the
control-flow metadata across the cores running the same
server application, thus eliminating inter-core metadata
redundancy, and embedding the metadata into the LLC
to eliminate dedicated storage for metadata.

2.3 Putting It All Together
We quantify the performance benefits and relative

area overheads of all the instruction-supply mechanisms
described above for a 16-core CMP running server work-
loads in Figure 2. Both the performance and area num-
bers are normalized to that of a core with a 1K-entry
BTB without any prefetching. For all the BTB design
points (except for the baseline and SHIFT), we leverage
FDP for instruction prefetching.

We evaluate an aggressive two-level BTB design com-
posed of a 1K-entry BTB in the first level (1-cycle access
latency) and a 16K-entry BTB in the second level (4-
cycle access latency). Such a BTB design necessitates
around 140KB storage per core, corresponding to 7% of
the core area footprint (for an ARM Cortex-A72). For
a 16-core CMP, this totals more than 2MB of storage.

We also evaluate PhantomBTB, a state-of-the-art hi-
erarchical BTB design with prefetching. PhantomBTB
is comprised of a 1K-entry private BTB backed by a
second-level BTB virtualized in the LLC. The second
level features 4K temporal groups, each spanning a 64B
cache line, for a total LLC footprint of 256KB. While
not proposed in the original design, we take inspiration
from SHIFT and share the second BTB level across
cores executing the same workload in order to reduce
the storage requirements. Without sharing, the stor-
age overhead for PhantomBTB would increase by 16x

(i.e., to 4MB) for a 16-core CMP. Sharing the virtu-
alized second-level BTB does not cause any significant
reduction in the fraction of misses eliminated.

As Figure 2 shows, the 1K-entry BTB with FDP
improves performance by just 5% over the baseline as
it incurs frequent BTB misses, thus failing to identify
control-flow redirects. PhantomBTB+FDP provides a
9% performance improvement over the baseline despite
a large second-level BTB. The underwhelming perfor-
mance of this configuration is attributed to its low miss
coverage in the first-level BTB, which stems from the
way PhantomBTB correlates branches (detailed analy-
sis in Section 5), and the delays in accessing the second
level of BTB storage in the LLC.

Compared to PhantomBTB+FDP, 2Lev-
elBTB+FDP delivers better performance as the
BTB metadata accesses from the second-level BTB are
faster compared to the LLC access latency incurred
by PhantomBTB. Among the evaluated designs, the
highest performance is reached by 2LevelBTB+SHIFT,
which combines a dedicated L1-I prefetcher (SHIFT)
with a two-level BTB. This configuration improves
performance by 22% over the baseline, demonstrating
the importance of an effective L1-I prefetcher and
underscoring the limitations of FDP. However, 2Lev-
elBTB+SHIFT increases core area by 1.08x due to
the high storage footprint of separate BTB and L1-I
prefetcher metadata.

Finally, we observe that an Ideal configuration com-
prised of a perfect L1-I and a perfect single-cycle BTB
achieves a 35% performance improvement over the base-
line. 2LevelBTB+SHIFT delivers only 62% of the Ideal
performance improvement. Since both the L1-I and the
BTB in the 2LevelBTB+SHIFT design provide near-
perfect hit rates, the performance shortfall relative to
Ideal is caused by the delays in accessing the second
level of the BTB upon a miss in the first level. Because
of the high miss rate of the first-level BTB, these delays
are frequent and result in multi-cycle fetch bubbles.

To summarize, the existing frontend designs are far
from achieving the desired combination of high per-
formance and low storage cost. Performance is lim-
ited by the delays caused in accessing the second BTB
level. The high storage overheads arise from maintain-
ing separate BTB and instruction prefetcher metadata.
Even worse, because both sets of metadata capture the
control-flow history, they cause redundancy within a
core. Moreover, because the server cores run the same
application, the metadata across cores overlap signifi-
cantly, causing inter-core redundancy. Eliminating the
intra- and inter-core redundancy necessitates the meta-
data to be unified within a core and shared across cores
to maximize the performance benefits harvested from a
given area investment.

3. CONFLUENCE: UNIFYING
INSTRUCTION-SUPPLY METADATA

Achieving a high-performance instruction-supply
path requires effective and timely L1-I and BTB
prefetching. Existing L1-I prefetcher and BTB designs

Figure 3: High-level organization of cores
around (a) disparate BTB and L1-I prefetcher
metadata (b) Confluence with unified and
shared prefetcher metadata.

strive to capture the entire control-flow history of an
application with their prediction metadata maintained
independently as shown in Figure 3 (a).

We now describe Confluence, a specialized
instruction-supply path that unifies the control-
flow metadata and prefetch mechanisms for the L1-I
and the BTB, and shares the metadata across cores
running the same application as shown in Figure 3 (b).
The single set of metadata maintained by Confluence
eliminates the storage redundancy that plagues existing
designs. Meanwhile, a stream-based prefetcher provides
accurate and timely delivery of instructions and BTB
entries ahead of the core’s fetch stream.

The state-of-the-art stream-based prefetchers [14, 21]
maintain a history of L1-I accesses at block granularity,
which they leverage to anticipate the fetch stream well
ahead of the core’s fetch unit. However, the block-grain
history presents a challenge for filling the BTB, which
typically tracks individual branch PCs and their targets.
To bridge the granularity gap, we introduce AirBTB, a
lightweight BTB design whose content mirrors that of
the L1-I, thus enabling a single control-flow history to
be used for prefetching into both structures.

AirBTB avoids the need for local (i.e., intra-
block) control-flow history that existing stream-based
prefetchers lack, which would be expensive storage-wise
to maintain. Instead, AirBTB inserts all targets of
branch instructions in the instruction blocks brought
into the L1-I (either by Confluence or on demand by
the core) into the BTB. In doing so, AirBTB exploits
spatial locality within instruction blocks (i.e., the like-
lihood of more than one branch instruction being ex-
ecuted in a block), which helps to reduce the number
of misses. To minimize tag overheads and BTB write
bandwidth, AirBTB adopts a block-based organization.

As Figure 4 depicts, Confluence synchronizes the
insertions/evictions into/from AirBTB with the L1-I,
thus guaranteeing that the set of blocks present in
both structures is identical. As the blocks are proac-
tively fetched from lower levels of the cache hierarchy
as requested by the prefetch engine (step 1), Conflu-
ence generates the BTB metadata by predecoding the
branch type and target displacement field encoded in

Figure 4: Confluence organization and instruc-
tion flow.

the branch instructions in a block and inserts the meta-
data into AirBTB (step 2) and the instruction block
itself into the L1-I (step 3). Finally, Confluence relies
on predictor virtualization [6] to store the control-flow
metadata used by the prefetcher in the LLC, allowing all
cores running a common workload to share metadata.

In the rest of this section, we describe the AirBTB or-
ganization, the insertion and replacement operations in
AirBTB and how AirBTB operates within the branch
prediction unit. We also briefly describe the state-of-
the-art stream-based prefetcher, SHIFT [21], which en-
ables Confluence through timely and accurate instruc-
tion supply with minimal storage overhead.

3.1 AirBTB Organization
AirBTB is organized as a set-associative cache. Be-

cause AirBTB’s content is in sync with the L1-I,
AirBTB maintains a bundle for each block in L1-I. Each
bundle comprises a fixed number of branch entries that
belong to the branch instructions in a block.

In a conventional BTB design, each entry for a branch
instruction (or basic block entry) is individually tagged,
necessitating to maintain a tag for each individual entry.
Because the branches in a bundle in AirBTB belong to
the same instruction block, the branch addresses share
the same high-order bits, which constitute the address
of the block. To exploit the commonality of high-order
bits of the branch instruction addresses in a bundle,
AirBTB maintains a single tag for a bundle, which is the
instruction block address that contains the branches.
We refer to this organization as block-based organiza-
tion. The block-based organization amortizes the tag
cost across the branches in the same block. Moreover,
the block-based organization avoids conflict misses be-
tween the branch entries that belong to two different
blocks resident in the L1-I.

Figure 5 depicts the AirBTB organization, where
each bundle is tagged with the block address and con-
tains entries of three branches, which fall into the same
instruction block. The branch bitmap in each bundle
is a bit vector that identifies the branch instructions in
an instruction block. The branch bitmap maintains the
knowledge of basic block boundaries within a block, al-

lowing for providing the instruction fetch unit (L1-I),
with multiple instructions to fetch in a single lookup.
Each branch entry in a bundle contains the offset of the
branch instruction within the cache block, the branch
type (i.e., conditional, unconditional, indirect, return)
and the branch target address (if the branch target is
PC-relative, which is mostly the case).

Because each bundle maintains a fixed number of
branch entries, instruction blocks with more branch in-
structions can overflow their bundles. Such overflows
happen very rarely if bundles are sized correctly to ac-
commodate all the branches in a cache block in the com-
mon case. To handle overflows, AirBTB is backed with
a fully-associative overflow buffer consisting of a fixed
number of entries. Each entry is tagged with full branch
instruction address and maintains the branch type and
target address. The branch bitmap in a bundle also
keeps track of the branch entries in a block that over-
flowed to the overflow buffer.

3.2 AirBTB Insertions and Replacements
Insertions of the branch entries of a block into

AirBTB take place in sync with the insertion of that
instruction block into L1-I. By relying on spatial local-
ity, Confluence inserts all the branch entries of an in-
struction block eagerly into AirBTB. This way, Conflu-
ence overprovisions for the worst case where each branch
entry might be needed by the branch prediction unit,
even though the control flow might diverge to a differ-
ent block before all the entries in the current block are
used by the branch prediction unit.

For each block fetched into the L1-I, Confluence ne-
cessitates identifying the branch instructions in a block
and extracting the type and relative displacement field
encoded in each branch instruction. Confluence relies
on predecoding to generate the BTB metadata of the
branches in a block before the block is inserted into the
L1-I. The predecoder requires a few cycles to perform
the branch scan within a cache block before the block
is inserted into the L1-I [7, 34]. However, this latency is
not on the critical path if the block is fetched into the
L1-I earlier than it is needed with the guidance of the
instruction prefetcher. Predecoding of an instruction
block is performed even if the fetched block is a demand
miss, adding a few cycles to the fetch latency. However,
this is a rare event when an instruction prefetcher with
high miss coverage and timeliness is employed.

As shown in Figure 5 on the left-hand side, for each
instruction block fetched into the L1-I, Confluence allo-
cates a bundle in AirBTB and inserts the branch entries
into the bundle, while setting the bits of the correspond-
ing branches in the branch bitmap, until the bundle
becomes full. If the block overflows its bundle, the en-
tries that cannot be accommodated by the bundle are
inserted into the overflow buffer, while their correspond-
ing bits are also set in the bitmap.

Upon the insertion of a new bundle due to a newly
fetched instruction block, the bundle evicted from
AirBTB corresponds to the instruction block evicted
from the L1-I. This way, AirBTB maintains only the
entries of the branch instructions resident in the L1-I.

Block
Tag

Branch
Bitmap

Q 01001001

P 00010001

Offset Type,
Target

1 U, (X+5)

3 C, (Q+2)

Offset Type,
Target

4 C, (A+1)

7 C, (R+3)

Offset Type,
Target

7 U, (N+2)

Block Q

Fetch from LLC

Predecoder

Branch instructions

Fetch
Region

Branch
Direction

[P, P+3] Taken

[Q+2, Q+4] Not Taken

[Q+5, Q+7] Taken

...

1

2

3

[N+2, …]

AirBTB Insertions: AirBTB Predictions:

4

*Branch Types:
C: Conditional, U: Unconditional

Bundle

Branch Entry AirBTB Branch Entry Branch Entry

Figure 5: AirBTB organization.

Although the AirBTB organization described above is
tailored to RISC ISAs, which have fixed-length instruc-
tions, the design can be easily extended to support CISC
ISAs with variable-length instructions by maintaining
a bit for each byte in an instruction block (instead of
one bit per instruction in the bitmap) as the beginning
of an instruction can be located in any byte within a
block and extending the tag of each branch entry with
the length of the instruction.

3.3 AirBTB Operation
Every lookup in AirBTB, in cooperation with the

branch direction predictor, provides a fetch region, the
addresses of the instructions starting and ending a basic
block, to be fetched from the L1-I. In this section, we
explain how AirBTB performs predictions along with
the direction predictor in detail.

Figure 5 (right-hand side) lists the predictions made
step by step. We assume that the instruction stream
starts with address P. AirBTB first performs a lookup
for block P and, upon a match, identifies the first sub-
sequent branch instruction that comes after instruction
P by scanning the branch bitmap. In our example,
the first branch instruction after P is the instruction
at address P+3. The fetch region, P to P+3, is sent
to the instruction fetch unit and the target address for
the branch instruction P+3 is read out. Next, a direc-
tion prediction is made for the conditional branch at
address P+3 by the direction predictor and a lookup is
performed for P+3 ’s target address Q+2 in AirBTB.
Because the conditional branch is predicted taken, the
next fetch region provided by the target address’ bun-
dle, Q+2 to Q+4, is sent to the fetch unit. Then,
because the conditional branch Q+4 is predicted not
taken, the next fetch region is Q+5 to Q+7.

If a branch is a return or indirect branch, the target
prediction is made by the return address stack or indi-
rect target cache respectively. If a branch indicated by
the branch bitmap is not found in one of the branch en-
tries in the bundle, AirBTB performs a lookup for that
branch instruction in the overflow buffer. The rest of
the prediction operation is exactly the same for branch
entries found in the overflow buffer.

If AirBTB cannot locate a block or a branch entry
indicated by a bitmap (e.g., due to evictions), it specu-
latively provides the fetch unit with a fetch region con-
sisting of a predefined number of instructions following
the last predicted target address, until it is redirected

to the correct fetch stream by the core.

3.4 Prefetcher Microarchitecture
An accurate and timely prefetcher is the key enabler

of Confluence. The goal of the prefetcher is to run ahead
of the core’s fetch stream and not be disturbed by mis-
speculation or misses in the core’s frontend components
(L1-I, BTB or branch direction predictor). For that rea-
son, Confluence leverages SHIFT [21], the state-of-the-
art stream-based instruction prefetcher. SHIFT relies
on the history of previously observed instruction cache
accesses, which it replays to fill the frontend with useful
instructions. SHIFT stores the control-flow history at
instruction-block granularity and amortizes its history
storage cost across cores running the same application
as described in Section 2.

SHIFT consists of two components to maintain the
history of instruction streams; the history buffer and
the index table. The history buffer, which is a circular
buffer, maintains the history of the L1-I access stream
generated by one core at block granularity. The index
table provides the location of the most recent occurrence
of an instruction block address in the history buffer for
fast lookups. The content of these two components are
generated by only one core and used by all cores running
a common server application in a server CMP.

To enable sharing and eliminate the need for a
dedicated history table, the history is maintained in
the LLC, leveraging the virtualization framework [6].
Shared history is maintained in the LLC blocks that
are reserved for the history. Read and write accesses
to the shared history in the LLC compete with normal
accesses, but normal accesses are prioritized. The his-
tory buffer size allocated (detailed in Section 4.2.1) is
sufficient to capture the instruction working set of the
server workloads evaluated in this study and hence pro-
vides the highest L1-I miss coverage.

Although more cores running a common workload
better amortize the cost of history, SHIFT can be easily
extended to support multiple workloads. Because the
shared history is maintained in the LLC rather than
dedicated storage, a disparate instance of history space
can be easily allocated in the LLC for each workload in
the case of workload consolidation. It has been shown
that multiple instances of history provide performance
benefits similar to that of a single shared history, as long
as there is enough LLC capacity for history instance per
workload [21].

A miss in the L1-I initiates a lookup in the index table
to find the most recent occurrence of that block address
in the history buffer. Upon a hit in the index table, the
prefetch engine fetches prediction metadata from the
history buffer starting from the location that is pointed
to by the index table entry. The prefetch engine uses
this metadata to predict future L1-I misses by prefetch-
ing the instruction blocks whose addresses are in the
metadata. As predictions are confirmed to be correct
(i.e., the predicted instruction blocks are demanded by
the core), more block addresses are read from the his-
tory buffer and used for further predictions.

4. METHODOLOGY
4.1 Baseline System Configuration

We simulate a sixteen-core CMP running server work-
loads using Flexus [37], a Simics-based full-system mul-
tiprocessor simulator. We use the Solaris operating sys-
tem and run the server workloads listed in Table 1. We
run trace-based simulations for profiling and BTB miss
coverage studies using traces with 16 billion instruc-
tions (one billion instructions per core; one instruction
from each core is processed in round-robin fashion) in
the steady state of workload execution. For the DSS
queries, we use the traces of the full query executions.
Our traces consist of both application and operating-
system instructions.

For performance comparison, we leverage the Sim-
Flex multiprocessor sampling methodology [37] extend-
ing the SMARTS sampling framework [38]. The sam-
ples are collected over 10-30 seconds of application ex-
ecution (from the beginning to the completion of each
DSS query). The cycle-accurate timing simulation for
each measurement point starts from a checkpoint with
warmed architectural state (branch predictors, caches,
memory, prefetcher history), and then, runs 100K cy-
cles in the detailed cycle-accurate simulation mode to
warm up the queues and on-chip interconnect. The re-
ported measurements are collected from the subsequent
50K cycles of simulation for each measurement point.
Our performance metric is the ratio of number of ap-
plication instructions retired to the total number of cy-
cles (including the cycles spent executing the operating
system instructions) as this metric has been shown to
accurately represent the overall system throughput [37].
We compute the performance with an average error of
less than 5% at the 95% confidence level.

We model a tiled server processor architecture whose
architectural parameters are listed in Table 1. Today’s
commercial processor cores typically comprise 3-5 fetch
stages followed by several decode stages [2, 7, 25, 34].
Similarly, we model a core with three fetch stages and
fifteen stages in total, representative of an ARM Cortex-
A72, which has an area of 7.2mm2 when scaled to the
40nm technology [2]. The branch prediction unit is de-
coupled from the fetch unit with a fetch queue of six
basic blocks [31]. The branch prediction unit outputs a
fetch region every cycle and enqueues the fetch region
into the fetch queue to be consumed by the L1-I. Upon
a miss in the BTB, a predefined number of instructions

(eight) subsequent to the last fetch address predicted
are enqueued in the fetch queue as the next fetch re-
gion. Misfetches due to BTB misses are identified right
after the fetch stage, in the first decode stage, which
corresponds to a misfetch penalty of 4 cycles.

4.2 Instruction-Supply Mechanisms
We compare Confluence (AirBTB coupled with

SHIFT) against fetch-directed prefetching leveraging
three different BTB designs, namely the IdealBTB with
16K entries and 1-cycle latency, realistic conventional
2LevelBTB, and PhantomBTB as a two-level BTB de-
sign allowing for sharing the second-level BTB across
cores. We also couple SHIFT with these three different
BTB designs and compare with AirBTB to decouple
the effects of instruction prefetching and BTB design.
The area overheads of these different design points are
determined with CACTI 6.5 [28] in 40nm technology
assuming a 48-bit virtual address space.

4.2.1 Instruction Prefetchers
Shared History Instruction Fetch (SHIFT):
SHIFT, described in detail in Section 3.4, tuned for
maximum L1-I miss coverage, requires a 32K-entry his-
tory buffer (204KB) virtualized in the LLC and around
240KB of index storage embedded in the tag array of
the LLC. With history buffer entries embedded in the
existing LLC blocks, which results in a negligible per-
formance overhead, SHIFT’s only meaningful area over-
head stems from the extension of the LLC tag array for
the index pointers, which is estimated to be 0.96mm2.
This corresponds to 0.06mm2 area overhead per core.
Fetch-Directed Prefetching (FDP): The branch
prediction unit is decoupled from the L1-I with a queue
that can accommodate six basic blocks (determined ex-
perimentally to maximize performance) and the branch
prediction unit outputs a basic block every cycle, as
described above. For each fetch region enqueued in the
fetch queue, prefetch requests are issued for the instruc-
tion blocks that fall into the fetch region, if they are not
already in the L1-I. Because FDP relies on the existing
branch predictor metadata, it does not incur any addi-
tional storage overhead.

4.2.2 BTB Designs
AirBTB: The final AirBTB design maintains 512 bun-
dles in total (same as the number of blocks in the L1-
I) and 3 branch entries per bundle. Because the in-
struction size is 4B, each 64B block has 16 instruc-
tions in total. So, each bundle maintains a 16-bit
branch bitmap. Each branch entry has a 4-bit offset,
2-bit branch type, and 30-bit target field. The overflow
buffer has 32 entries. The final AirBTB design requires
10.2KB of storage, incurring 0.08mm2 area overhead
per core (AirBTB’s sensitivity to design parameters is
evaluated in Section 5.3). AirBTB’s area footprint is
comparable to a 1K-entry conventional BTB with a vic-
tim buffer or PhantomBTB’s first level. In total, Con-
fluence, AirBTB backed by SHIFT (0.06mm2 per core),
incurs only 0.06mm2 area overhead per core.
Conventional BTB: To provide multiple instructions

Cores UltraSPARC III ISA,
ARM Cortex-A72-like: 3GHz, 3-way OoO,
128-entry ROB, 32-entry LSQ

Branch Prediction Hybrid branch predictor
Unit (16K-entry gShare, Bimodal, Meta selector)

1K-entry indirect target cache
64-entry return address stack
1 basic-block prediction per cycle

L1 I&D Caches 32KB, 4-way, 64B blocks
2-cycle load-to-use latency, 8 MSHRs

L2 NUCA 512KB per core, unified, 16-way,
Cache 64B blocks, 16 banks, 6-cycle hit latency
Interconnect 4x4 2D mesh, 3 cycles per hop
Main memory 45ns access latency

OLTP - Online Transaction Processing (TPC-C)

DB2
IBM DB2 v8 ESE Database Server

100 warehouses (10GB), 2GB buffer pool

Oracle
Oracle 10g Enterprise Database Server
100 warehouses (10GB), 1.4 GB SGA

DSS - Decision Support Systems (TPC-H)
Qry 2, 8, IBM DB2 v8 ESE

17, 20 480MB buffer pool, 1GB database
Media Streaming

Darwin
Darwin Streaming Server 6.0.3

7500 clients, 60GB dataset, high bitrates
Web Frontend (SPECweb99)

Apache
Apache HTTP Server v2.0

16K connections, fastCGI, worker threading model

Table 1: Architectural system and application parameters.

to be fetched with a single BTB lookup, prior work pro-
posed organizing the BTB to provide a fetch range (i.e.,
basic-block range) [31, 39]. Each BTB entry is tagged
with the starting address of a basic block (excluding the
low-order bits used for indexing) and maintains the tar-
get address of the branch ending the basic block (30-bit
PC-relative displacement; the longest displacement field
in the UltraSPARC III ISA), the type of the branch in-
struction ending the basic block (2 bits), and a number
of bits to encode the fall-through address (the next in-
struction after the branch ending the basic block). We
found that the fall-through distance can be encoded
with 4 bits for 99% of the basic blocks. We evaluate
four-way set-associative BTB organizations as we did
not see any additional benefits in hit rate from increas-
ing the associativity. In our comparisons of conventional
BTB with AirBTB, we augment the conventional BTB
with a 64-entry victim buffer (around 0.6KB). The 1K-
entry conventional BTB with a 64-entry victim buffer
used as the baseline requires 9.9KB of storage in total
(0.08mm2) and has 1-cycle latency. For the conven-
tional two-level BTB configuration, we use a 16K-entry
BTB as the second level, which is 140KB and occupies
0.6mm2 area per core and has a latency of 4 cycles.
PhantomBTB: We tune the PhantomBTB design for
our benchmark suite to maximize the number of misses
eliminated. We use a 1K-entry conventional first-level
BTB with a 64-entry prefetch buffer (9.9KB in total and
0.08mm2). The storage cost of PhantomBTB’s first-
level is almost the same as AirBTB.

For the virtualized prefetcher history, we pack six
BTB entries (the maximum possible) in an LLC block
and dedicate 4K LLC blocks (256KB assuming 64B
blocks). We did not see any significant change in the
percentage of misses eliminated with a bigger history.
The region size used to tag each temporal group (i.e.,
LLC block) is 32 instructions.

Although the original PhantomBTB design maintains
a private prefetcher history per core, we evaluate a
shared prefetcher history as we run homogeneous server
workloads where each core runs the same application
code, thus is amenable to BTB sharing. This enables
a fair comparison between PhantomBTB and Conflu-
ence, as Confluence relies on shared history for instruc-
tion prefetching. It is important to note that sharing
the prefetcher history has negligible (i.e., less than 2%)
effect on the percentage of misses eliminated by Phan-

tomBTB as compared to the private prefetcher history
that was originally proposed. Because the shared Phan-
tomBTB prefetcher history is embedded in the existing
LLC data blocks and its negligible performance impact
due to aggregate capacity reduction is accounted for
(like SHIFT), we assume that PhantomBTB does not
incur any storage overhead.

5. EVALUATION
Confluence unifies the disparately maintained

instruction-supply metadata for BTB and L1-I by re-
lying on a stream-based prefetcher, whose effectiveness
has already been demonstrated for L1-I [21]. Our
focus is on demonstrating that while BTB and L1-I
prefetcher designs have been proposed in isolation,
their unification enables better performance and lower
cost than configurations that maintain them separately.

5.1 Performance and Area Comparison
We first compare the performance benefits and asso-

ciated area overheads of Confluence with conventional
frontend designs discussed in Section 2 in Figure 6. All
the performance and area numbers are normalized to
a core with conventional BTB with 1K entries and 64-
entry victim buffer as described in Section 4. As Fig-
ure 6 demonstrates, Confluence is the closest design
point to Ideal by delivering 85% of the performance
improvement delivered by the Ideal configuration (i.e.,
perfect L1-I and BTB achieving 35% performance im-
provement on average) with 1% storage area overhead
per core (including private BTB’s and SHIFT’s per-core
storage overhead). Confluence delivers higher perfor-
mance as compared to all other design points detailed
in Section 2.3 thanks to its timely and accurate inser-
tions of instructions into the L1-I and branch entries
into the BTB.

It is instructive to compare the 2LevelBTB+SHIFT
and Confluence designs. Both feature SHIFT as the in-
struction prefetcher and a BTB with a high hit rate.
By eliminating the redundant metadata in the 2Lev-
elBTB+SHIFT design (∼140KB for the second-level
BTB), Confluence achieves a considerably lower stor-
age footprint. Performance-wise, Confluence is 8% bet-
ter, despite the fact that 2LevelBTB+SHIFT delivers a
slightly higher hit rate (detailed analysis in Section 5.2).
The reason for Confluence’s superior performance is
timeliness, as the BTB is filled proactively ahead of

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1 1.02 1.04 1.06 1.08 1.1

R
el

at
iv

e
Pe

rf
or

m
an

ce

Relative Area

Ideal

FDP
PhantomBTB+FDP

Confluence

2LevelBTB
+SHIFT

2LevelBTB
+FDP

Figure 6: Confluence’s performance benefits
and area savings compared to conventional
instruction-supply mechanisms.

the fetch stream. In contrast, decoupled BTB designs
(including both 2LevelBTB and PhantomBTB) trigger
BTB fills only when a miss is discovered in the first-
level BTB, thus exposing the core to the latency of the
second level.

In order to isolate the benefits of timely insertions
of entries into BTB from timely insertions of instruc-
tion blocks into L1-I, we also study the performance
of the various BTB designs when coupled with SHIFT
for instruction prefetching. We evaluate PhantomBTB,
2LevelBTB (which corresponds to 2LevelBTB+SHIFT
in Figure 6), and Confluence, and compare their perfor-
mance to an IdealBTB, which has the same capacity as
the 2LevelBTB and 1-cycle access latency.

As Figure 7 shows, the lowest performance is achieved
by PhantomBTB due to its low miss coverage in the
first-level BTB as discussed in the next section. Al-
though the 2LevelBTB design achieves the same hit rate
as Ideal, it provides only 51% of Ideal’s speedup due
to frequent stalls caused by frequent L1-BTB misses,
which expose the L2-BTB’s access latency. In contrast,
Confluence attains 90% of the speedup achieved by Ide-
alBTB+SHIFT, highlighting Confluence’s ability to not
only provide high miss coverage in the frontend, but also
to do so in a timely manner.

As noted in Section 2.1, OLTP on Oracle is the one
workload that benefits from a BTB larger than 16K
entries. As a result, IdealBTB with 16K entries ex-
hibits some capacity misses on OLTP on Oracle. Be-
cause AirBTB eliminates more misses than IdealBTB
(as shown in Figure 9), AirBTB provides slightly higher
performance than IdealBTB on OLTP on Oracle.

In summary, the main reason why Confluence outper-
forms 2LevelBTB is because AirBTB’s content is proac-
tively populated by SHIFT in Confluence, whereas in
2LevelBTB, a first-level BTB miss is reactively served
by the second-level BTB (i.e., SHIFT only populates
the instruction cache, not the BTB). As a result, 2Lev-
elBTB frequently exposes the core to the latency of the
second-level BTB (4 cycles), while Confluence hides this
latency with the help of the prefetcher. Hence, Conflu-
ence’s performance advantage is due to serving most of
the accesses by AirBTB with a 1-cycle latency.

5.2 Dissecting the AirBTB Benefits
To eliminate most of the misses within a given BTB

1

1.1

1.2

1.3

Sp
ee

du
p

PhantomBTB + SHIFT 2LevelBTB+SHIFT
Confluence IdealBTB +SHIFT

Figure 7: Speedup of various BTB designs over
1K-entry conventional BTB when coupled with
SHIFT for instruction prefetching.

storage budget, AirBTB modifies the baseline BTB de-
sign in several ways. Figure 8 shows how much each
design decision helps to improve the miss coverage over
a conventional BTB design with 1K entries by employ-
ing the mechanisms proposed for AirBTB step by step.
First, AirBTB can afford more entries within a given
storage budget as compared to the 1K-entry conven-
tional BTB, because it amortizes the cost of tags across
the entries in the same instruction block, eliminating
18% of the misses (Capacity). Second, because AirBTB
eagerly identifies the branch instructions in a block
upon a BTB miss in an instruction block and eagerly
installs their entries before the branches are actually
executed, it can eliminate 57% more misses on aver-
age (Spatial Locality). Third, by relying on the instruc-
tion prefetcher, AirBTB can eliminate 7% more misses
by eliminating a BTB miss even if the first instruc-
tion touched in a missing block is a branch (Prefetch-
ing). Finally, the block-based organization employed by
AirBTB guarantees that the blocks in the BTB are in
sync with the L1-I, so that the BTB entries of two L1-
I-resident blocks do not conflict, which provides 11%
additional miss coverage (Block-Based Organization).

It is important to note that the 7% coverage benefit
of prefetching understates the prefetcher’s importance
by focusing just on the hit rate of AirBTB and ignoring
the timeliness aspect. In reality, prefetching is essential
to hide the access latency to metadata and instruction
blocks fetched from the lower levels of the hierarchy.
Not hiding the long-latency accesses to lower levels of
the cache hierarchy leads to frequent frontend stalls,
significantly reducing the performance as quantified for
other design points in Section 5.1.

Figure 9 shows the fraction of BTB misses elimi-
nated by AirBTB, PhantomBTB and a 16K-entry con-
ventional BTB over the 1K-entry conventional BTB.
PhantomBTB eliminates only 61% of the misses on av-
erage, compared to AirBTB’s 93% miss coverage. The
discrepancy in the coverage is attributed to two major
differences between the two designs.

First, because AirBTB amortizes the cost of the tags
across the branch entries within the same instruction
block, it can maintain more BTB entries as compared
to PhantomBTB’s first-level, which is a conventional
BTB organization, within the same storage budget.

More importantly, PhantomBTB forms temporal

0

20

40

60

80

100
B

TB
 M

is
se

s
El

im
in

at
ed

 (%
) Capacity Spatial Locality Prefetching Block-Based Org.

Figure 8: Breakdown of AirBTB miss coverage
benefits over 1K-entry conventional BTB.

groups of BTB entries that consecutively miss in the
L1-BTB by packing a number of BTB entries in an
LLC block and prefetching those entries into the first-
level upon a miss in the first-level. In PhantomBTB,
the BTB entries that fall into a temporal group de-
pend heavily on the branch outcomes in the local control
flow. Small divergences in the control flow significantly
affect the content of the temporal groups and reduce
the likelihood of same sets of branches always missing
in the BTB consecutively. Moreover, because Phan-
tomBTB maintains fixed-sized temporal groups of BTB
entries, as opposed to long arbitrary-length streams as
in SHIFT, its lookahead is limited to only a few BTB
entries upon each L1-BTB miss.

In contrast, the stream-based prefetcher leveraged by
Confluence is a better predictor of future control flow as
it relies on coarse-grain temporal streams of instruction
block addresses that often cover as many as a few hun-
dred instruction blocks per stream. Hence, the stream
prefetcher’s highly accurate control-flow prediction at
macro level coupled with AirBTB’s eager insertion and
block-based organization, which uncover spatial local-
ity, provide a higher miss coverage than PhantomBTB.
We conclude by noting that the coverage reported for
PhantomBTB is the highest coverage we could attain
and does not benefit from further increases in the size
of its history storage.

Overall, AirBTB closely approaches the miss cover-
age of the 16K-entry conventional BTB, which provides
95% miss coverage on average, without incurring its
high per-core storage overhead.

5.3 Sensitivity to Design Parameters
To determine the optimal number of branch entries

to maintain in each bundle in AirBTB, we first char-
acterize the distribution of branches within instruction
blocks for each block that is demand-fetched into the
L1-I during execution. Table 2 lists the average number
of branch instructions in demand-fetched blocks (i.e.,
static) as well as the total number of branches actu-
ally executed (and taken) during the residency of cache
blocks in the L1-I (i.e., dynamic). We show only the
average values for the four DSS queries due to space
constraints. Demand-fetched instruction blocks contain
3.5 static branch instructions and 1.5 dynamic branch
instructions on average.

In light of the branch behavior characterization, we

0

20

40

60

80

100

B
TB

 M
is

se
s

El
im

in
at

ed
 (%

) PhantomBTB AirBTB 16K BTB

Figure 9: PhantomBTB, AirBTB and 16K-entry
conventional BTB miss coverages over a 1K-
entry conventional BTB.

examine different AirBTB configurations by varying the
bundle size (i.e., the number of branch entries in a bun-
dle) and the size of the overflow buffer. The total num-
ber of bundles is fixed as AirBTB maintains only the
instruction blocks resident in the instruction cache at
any given point in time. Figure 10 shows AirBTB’s
miss coverage over the 1K-entry conventional BTB.

Workloads
OLTP OLTP DSS Media Web
DB2 Oracle Qrys Streaming Frontend

Static 3.6 2.5 3.4 3.5 4.3
Dynamic 1.4 1.6 1.4 1.5 1.5

Table 2: Branch density in blocks.

As the number of branch entries in a bundle increases,
the overall miss coverage increases for all workloads as
each bundle can accommodate more entries. 50% of
instruction blocks contain up to three branches on av-
erage. As a result, an AirBTB configuration with three
branch entries per bundle is able to capture the branch
footprint of half of the instruction blocks at any given
point in time. Unfortunately, such an AirBTB config-
uration (B:3, OB:0) has a higher miss rate than the
baseline 1K-entry BTB for some of the workloads.

When AirBTB with three branch entries per bundle
is backed with an overflow buffer (B:3, OB:32), it be-
comes effective at eliminating the misses as compared to
a 1K-entry conventional BTB. For the AirBTB config-
uration with three branch entries per bundle, we found
the optimal overflow buffer size to be 32 entries. We did
not see any significant improvement in coverage beyond
32 overflow buffer entries. Such a configuration (B:3,
OB:32) provides 93% miss coverage on average.

Finally, compared to the AirBTB configuration (B:3,
OB:32), the AirBTB configurations with four entries
per bundle (B:4, OB:32) requires more storage (around
2KB), while increasing the miss coverage by only 2%.
For this reason, we use the AirBTB configuration with
three branch entries per bundle and 32-entry overflow
buffer (B:3, OB:32) as the final AirBTB design.

6. RELATED WORK
Branch target buffer is the key component allow-

ing the branch prediction unit to run ahead of the
core and provide the core with a continuous instruc-
tion stream [26, 29, 36]. Because the branch predictor
is on the critical path, a large BTB with several cy-

-80
-60
-40
-20

0
20
40
60
80

100

O
LT

P
D

B
2

O
LT

P
O

ra
cl

e

D
S

S
 Q

ry
s

M
ed

ia
 S

tre
am

in
g

W
eb

 F
ro

nt
en

d

B
TB

 M
is

se
s

El
im

in
at

ed
 (%

)
B:3,OB:0 B:3,OB:32 B:4,OB:0 B:4,OB:32

Figure 10: Miss coverage for various AirBTB
configurations (B = branch entries in a bundle,
OB = branch entries in the overflow buffer).

cles of latency greatly penalizes the instruction-delivery
rate. One way of reducing BTB’s capacity requirement
is to maintain partial BTB tags instead of full tags [12],
making BTB entries susceptible to aliasing. Another
way is to maintain only the offsets of the fall-through
and target addresses from the basic-block address in-
stead of their full addresses as the distance between the
basic-block address and the fall-through or target ad-
dress is expected to be small [23, 31]. Although these
compression techniques help to reduce the BTB capac-
ity requirements, they cannot mitigate the number of
individual entries that need to be maintained to cap-
ture the entire working set of an application, which is
the fundamental problem for server workloads.

To mitigate the latency of large predictor tables, hier-
archical branch predictors provide low access latencies
with a smaller but less accurate first-level predictor and
leverage a larger but slower second-level predictor to in-
crease accuracy [7, 19, 29, 33]. The second-level table
overwrites the prediction of the first-level table in the
case of a disagreement at a later stage.

While hierarchical predictors provide a trade-off be-
tween accuracy and delay, they still incur high latencies
to access lower levels. To hide the latency of lower-level
predictor tables, several studies proposed prefetching
predictor metadata from the lower-level table into the
first-level table. PhantomBTB exploits the temporal
correlation between BTB misses as misses to a group
of entries are likely to recur together in the future due
to the repetitive control flow [5]. Emma et al. also
propose spilling groups of temporally correlated BTB
entries to the lower levels of the cache hierarchy and
tagging each group with the instruction block address
of the first instruction in the group [10]. Upon a miss
in the instruction cache, the corresponding BTB entry
group can be loaded from the secondary table into the
first level.

In a similar vein, bulk preload [3] maintains per-core
two-level BTBs and fetches a group of BTB entries that
belong to a fixed-size code region (i.e., 64 consecutive
instruction blocks) upon a miss in that region from the
second level into the first level. Bulk preload fails to
eliminate the first miss in every region, because the
first miss is the prefetch trigger. Moreover, because
consecutive accesses to BTB do not frequently fall into
large contiguous code regions because of divergences

(the same reason why next-line prefetchers are ineffec-
tive at eliminating all instruction cache misses), there
is only limited spatial locality that can be exploited.

Although various prefetching techniques for hierar-
chical BTBs aim to reduce the latency to the second
level, they do not address the storage overhead associ-
ated with intra- or inter-core redundancy in metadata.
To eliminate or mitigate the BTB storage overhead,
cores with hardware multithreading [34, 35] employ pre-
decoding to scan the branches in the instruction blocks
that are fetched into L1-I, precompute the target ad-
dresses of the branches, and modify the branch instruc-
tions to store the lower bits of the target address before
they are inserted into the instruction cache. This way,
the target address of a taken branch is formed with a
simple concatenation of the branch PC and the low or-
der bits of the target address, right after the instruction
is fetched from the L1-I. In the absence of multiple hard-
ware threads to cover the latency, this scheme signifi-
cantly hurts single-threaded performance by requiring
several cycles after fetch to identify branches within a
cache block and compute their targets. To mitigate the
resulting fetch bubbles, some processors employ small
BTBs [34]; however, such designs still expose the core
to the high latency of target computation whenever the
small BTB misses.

Prior proposals to unify BTB and L1-I [4] also suf-
fer from multi-cycle latencies of instruction caches and
have no flexibility in the number BTB entries that can
be maintained per block. Finally, next cache line and
set prediction [8] to predict the location of the target
of a taken branch in the L1-I delivers low prediction
accuracy in the presence of frequent L1-I misses.

7. CONCLUSION
Large instruction working sets of server workloads are

beyond the reach of practical BTB and L1-I sizes due to
their strictly low latency requirements. Frequent misses
in BTB and L1-I result in misfetches and instruction
fetch stalls, which greatly hurt the performance of server
workloads. Existing proposals on mitigating frontend
stalls rely on discrete prefetchers for BTB and L1-I,
whose metadata essentially capture the same control-
flow information.

This work proposed Confluence; a new frontend de-
sign, which synchronizes the BTB and L1-I content to
leverage a single prefetcher and unified block-grain his-
tory metadata to fill both BTB and L1-I. By relying
on an autonomous history-based prefetcher, Confluence
avoids the timeliness problem of hierarchical BTB de-
signs that expose the core to the latency of accessing
the second level of BTB storage. Confluence eliminates
93% of BTB misses and 85% of L1-I misses, providing
85% of the speedup possible with a perfect L1-I and
BTB at a cost of only 1% of the core area.

8. ACKNOWLEDGEMENTS
The authors would like to thank Joel Emer, André

Seznec, Paolo Ienne, Djordje Jevdjic, Onur Kocberber,
Stavros Volos, Alexandros Daglis, Javier Picorel, and

the anonymous reviewers for their insightful feedback
on earlier drafts of this paper. This work was partially
supported by the IBM Ph.D. Fellowship award.

9. REFERENCES
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood,

“DBMSs on a modern processor: Where does time go?” in
The VLDB Journal, Sep. 1999, pp. 266–277.

[2] ARM Processor Technology Update, www.arm.com.
[3] J. Bonanno, A. Collura, D. Lipetz, U. Mayer, B. Prasky,

and A. Saporito, “Two level bulk preload branch
prediction,” in Proceedings of the IEEE International
Symposium on High Performance Computer Architecture,
2013.

[4] B. K. Bray and M. J. Flynn, “Strategies for branch target
buffers,” in Proceedings of the 24th Annual International
Symposium on Microarchitecture, 1991.

[5] I. Burcea and A. Moshovos, “Phantom-BTB: A virtualized
branch target buffer design,” in Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2009.

[6] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi,
“Predictor virtualization,” in Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2008.

[7] M. Butler, L. Barnes, D. Sarma, and B. Gelinas, “Bulldozer:
An approach to multithreaded compute performance,”
Micro, IEEE, vol. 31, no. 2, pp. 6–15, March 2011.

[8] B. Calder and D. Grunwald, “Next cache line and set
prediction,” in Proceedings of the International Symposium
on Computer Architecture, 1995.

[9] Cavium ThunderX ARM Processors, www.cavium.com.
[10] P. Emma, A. Hartstein, B. Prasky, T. Puzak, M. Qureshi,

and V. Srinivasan, “Context look ahead storage structures,”
Feb. 26 2008, IBM, US Patent 7,337,271.

[11] H. Esmaeilzadeh, E. Blem, R. St. Amant,
K. Sankaralingam, and D. Burger, “Dark silicon and the
end of multicore scaling,” in Proceedings of the Annual
International Symposium on Computer Architecture, 2011.

[12] B. Fagin and K. Russell, “Partial resolution in branch
target buffers,” in Proceedings of the Annual International
Symposium on Microarchitecture, 1995.

[13] M. Ferdman, A. Adileh, O. Kocberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, and B. Falsafi, “Clearing the clouds: a study
of emerging scale-out workloads on modern hardware,” in
Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2012.

[14] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive
instruction fetch,” in Proceedings of the International
Symposium on Microarchitecture, 2011.

[15] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos, “Temporal instruction fetch streaming,” in
Proceedings of the International Symposium on
Microarchitecture, 2008.

[16] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Toward dark silicon in servers,” Micro, IEEE, vol. 31,
no. 4, July 2011.

[17] ——, “Reactive NUCA: Near-optimal block placement and
replication in distributed caches,” in Proceedings of the
International Symposium on Computer Architecture, 2009.

[18] R. B. Hilgendorf, G. J. Heim, and W. Rosenstiel,
“Evaluation of branch-prediction methods on traces from
commercial applications,” IBM J. Res. Dev., vol. 43, no. 4,
pp. 579–593, Jul. 1999.

[19] D. A. Jiménez, S. W. Keckler, and C. Lin, “The impact of
delay on the design of branch predictors,” in Proceedings of
the Annual ACM/IEEE International Symposium on
Microarchitecture, 2000.

[20] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,
T. Moseley, G.-Y. Wei, and D. Brooks, “Profiling a
warehouse-scale computer,” in Proceedings of the
International Symposium on Computer Architecture, 2015.

[21] C. Kaynak, B. Grot, and B. Falsafi, “SHIFT: Shared
history instruction fetch for lean-core server processors,” in

Proceedings of the Annual International Symposium on
Microarchitecture, 2013.

[22] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and
W. E. Baker, “Performance characterization of a Quad
Pentium Pro SMP using OLTP workloads,” in Proceedings
of the International Symposium on Computer Architecture,
1998.

[23] R. Kobayashi, Y. Yamada, H. Ando, and T. Shimada, “A
cost-effective branch target buffer with a two-level table
organization,” in Proceedings of the International
Symposium of Low-Power and High-Speed Chips, 1999.

[24] A. Kolli, A. Saidi, and T. F. Wenisch, “RDIP:
Return-address-stack directed instruction prefetching,” in
Proceedings of the Annual International Symposium on
Microarchitecture, 2013.

[25] K. Krewell and L. Gwennap, “Silvermont energizes Atom,”
Microprocessor Report, vol. 27, no. 5, pp. 12–17, May 2013.

[26] J. Lee and A. Smith, “Branch prediction strategies and
branch target buffer design,” Computer, vol. 17, no. 1, pp.
6–22, Jan 1984.

[27] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos,
O. Kocberber, J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji,
E. Ozer, and B. Falsafi, “Scale-out processors,” in
Proceedings of the International Symposium on Computer
Architecture, 2012.

[28] N. Muralimanohar, R. Balasubramonian, and N. Jouppi,
“Optimizing NUCA organizations and wiring alternatives
for large caches with CACTI 6.0,” in Proceedings of the
International Symposium on Microarchitecture, 2007.

[29] C. Perleberg and A. Smith, “Branch target buffer design
and optimization,” Computers, IEEE Transactions on,
vol. 42, no. 4, pp. 396–412, Apr 1993.

[30] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A.
Barroso, “Performance of database workloads on
shared-memory systems with out-of-order processors,” in
Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems, 1998.

[31] G. Reinman, T. Austin, and B. Calder, “A scalable
front-end architecture for fast instruction delivery,” in
Proceedings of the Annual International Symposium on
Computer Architecture, 1999.

[32] G. Reinman, B. Calder, and T. Austin, “Fetch directed
instruction prefetching,” in Proceedings of the Annual
ACM/IEEE International Symposium on
Microarchitecture, 1999.

[33] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides, “Design
tradeoffs for the Alpha EV8 conditional branch predictor,”
in Proceedings of the Annual International Symposium on
Computer Architecture, 2002.

[34] M. Shah, R. Golla, G. Grohoski, P. Jordan, J. Barreh,
J. Brooks, M. Greenberg, G. Levinsky, M. Luttrell,
C. Olson, Z. Samoail, M. Smittle, and T. Ziaja, “Sparc T4:
A dynamically threaded server-on-a-chip,” Micro, IEEE,
vol. 32, no. 2, pp. 8–19, March 2012.

[35] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni,
J. A. Van Norstrand, B. J. Ronchetti, J. Stuecheli,
J. Leenstra, G. L. Guthrie, D. Q. Nguyen, B. Blaner, C. F.
Marino, E. Retter, and P. Williams, “IBM POWER7
multicore server processor,” IBM Journal of Research and
Development, vol. 55, no. 3, pp. 1:1–1:29, May 2011.

[36] E. Sussenguth, “Instruction sequence control,” Jan. 26 1971,
US Patent 3,559,183.

[37] T. F. Wenisch, R. E. Wunderlich, M. Ferdman,
A. Ailamaki, B. Falsafi, and J. C. Hoe, “SimFlex:
Statistical sampling of computer system simulation,” IEEE
Micro, vol. 26, no. 4, pp. 18–31, July-Aug. 2006.

[38] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe,
“SMARTS: accelerating microarchitecture simulation via
rigorous statistical sampling,” in Proceedings of the
International Symposium on Computer Architecture, 2003.

[39] T.-Y. Yeh and Y. N. Patt, “A comprehensive instruction
fetch mechanism for a processor supporting speculative
execution,” in Proceedings of the Annual International
Symposium on Microarchitecture, 1992.

	Introduction
	Motivation
	Conventional Instruction-Supply Path
	Covering L1-I Misses with Stream-Based Prefetching
	Putting It All Together

	Confluence: Unifying Instruction-Supply Metadata
	AirBTB Organization
	AirBTB Insertions and Replacements
	AirBTB Operation
	Prefetcher Microarchitecture

	Methodology
	Baseline System Configuration
	Instruction-Supply Mechanisms
	Instruction Prefetchers
	BTB Designs

	Evaluation
	Performance and Area Comparison
	Dissecting the AirBTB Benefits
	Sensitivity to Design Parameters

	Related Work
	Conclusion
	Acknowledgements
	References

